
Synthesis From Examples: Interaction Models and Algorithms
(Invited Talk Paper)

Sumit Gulwani
Microsoft Research

Redmond, WA, USA
sumitg@microsoft.com

Abstract—Examples are often a natural way to specify
various computational artifacts such as programs, queries,
and sequences. Synthesizing such artifacts from example based
specifications has various applications in the domains of end-
user programming and intelligent tutoring systems. Synthesis
from examples involves addressing two key technical chal-
lenges: (i) design of a user interaction model to deal with
the inherent ambiguity in the example based specification. (ii)
design of an efficient search algorithm - these algorithms have
been based on paradigms from various communities including
use of SAT/SMT solvers (formal methods community), version
space algebras (machine learning community), and A*-style
goal-directed heuristics (AI community).

This paper describes some effective user interaction models
and algorithmic methodologies for synthesis from examples
while discussing synthesizers for a variety of artifacts rang-
ing from tricky bitvector algorithms, spreadsheet macros for
automating repetitive data manipulation tasks, ruler/compass
based geometry constructions, algebraic identities, and pre-
dictive intellisense for repetitive drawings and mathematical
terms.

Keywords-Program Synthesis, Inductive Synthesis, End User
Programming, Intelligent Tutoring Systems, Domain Specific
Languages, Programming By Example

I. INTRODUCTION

Program synthesis is the task of automatically synthe-
sizing a program in some underlying domain-specific lan-
guage (DSL) from a given specification using some search
technique [1]. A traditional view of program synthesis is
that of synthesizing programs from complete specifications.
One approach is to give a specification as a formula in a
suitable logic [2]–[7]. Another is to write the specification
as a simpler, but possibly far less efficient program [8]–[10].
While these approaches have the advantage of completeness
of specification, such specifications are often unavailable,
difficult to write, or expensive to check against using au-
tomated verification techniques. In this paper, we focus on
another style of specification, namely examples [11]–[13].
Programming by example (PBE) can be seen as a dual
to program testing, which has seen decades of successful
research. Instead of finding test cases that explore various
paths in a given program (and potentially expose any bugs),
the goal here is to synthesize programs in the first place
starting from test cases, i.e., input-output examples.

There are two key challenges in designing inductive
synthesizers that take examples as specifications. The first
challenge is that of designing a good user interaction model
that can deal with the inherent ambiguities in examples,
which are often an under-specification of the user’s intent.
§II discusses a variety of effective user interaction models.

The second challenge is that of designing an efficient
algorithm that can search for desired artifacts (in the under-
lying DSL) that are consistent with the given examples. §III
discusses some general algorithmic methodologies. These
involve use of techniques that have been developed in
various communities including use of SAT/SMT constraint
solvers (formal methods community), version space algebras
(machine learning community), and A*-style goal-directed
heuristics (AI community).

We briefly discuss applications of inductive synthesizers
to not only synthesis of a variety of traditional programs
such as bitvector algorithms (§IV-A) and spreadsheet macros
(§IV-B) but also to synthesis of more general structured con-
cepts or artifacts such as geometric constructions (§IV-C),
algebraic identities (§IV-D), sequences (§IV-E), and even
drawings (§IV-F).

II. INTERACTION MODELS

While examples constitute the most natural form of speci-
fication in several cases, they are often an under-specification
of the intent. We discuss below some general methodologies
for resolving ambiguities in the example based specification.

A. User Driven Interaction

This is the most intuitive and widely applicable interaction
model. The user may verify the artifact returned by the
synthesizer either by examining the artifact itself, or by
examining its behavior on several other inputs. If the user
finds any discrepancy in the behavior of the artifact and
the expected behavior on some new input, the user may
repeat the synthesis process after adding the new input-
output example to the previous set of input-output examples.

B. Synthesizer Driven Interaction

This interaction model obviates the need for the user to
verify the synthesized artifact and provide any counterexam-

User Synthesizer
Input→ Output Program 1 Program 2 Distinguishing Input ?
01011→ 01000 (x+ 1)& (x− 1) (x+ 1)&x 00000 ?
00000→ 00000 −(¬x)&x (((x&− x) | − (x− 1))&x)⊕ x 00101 ?
00101→ 00100 (x+ 1)&x · · · 01111 ?
01111→ 00000 · · · · · · 00110 ?
00110→ 00000 · · · · · · 01100 ?
01100→ 00000 · · · · · · 01010 ?
01010→ 01000 (((x− 1)|x) + 1)&x None Program is

(((x− 1)|x) + 1)&x(((x− 1)|x) + 1)&x(((x− 1)|x) + 1)&x

Figure 1. An illustration of the synthesizer driven interaction model [14] for synthesis of a bitvector algorithm (§IV-A) from input-output examples (for
the task of turning off the righmost contiguous sequence of 1 bits). Program 1 and Program 2 are two semantically different programs generated by the
synthesizer that are consistent with the past set of input-output pairs (in previous rows) provided by the user. The synthesizer also produces a distinguishing
input on which the two programs yield different results, and asks the user for the output corresponding to the distinguishing input. The process is repeated
until the synthesizer can find at most one program.

ple input. Instead the synthesizer generates a new input in
each round and prompts the user for output on that input.

Given a set of input-output examples, the synthesizer
searches for programs in the underlying DSL that map each
input in the given set of examples to the corresponding
output. The number of such programs may either be 0,
1, or more than 1. If the synthesizer is unable to find
any such program over the search space, the synthesizer
declares failure. If the synthesizer finds exactly 1 program,
the synthesizer declares success and presents the program to
the user. If the synthesizer finds at least two (semantically
distinct) programs P1 and P2, both of which map each input
in the given set to the corresponding output, the synthesizer
declares the user specification to be partial. It then generates
a distinguishing input, an input on which the two programs
P1 and P2 yield different results, and asks the user to
provide the output corresponding to the distinguishing input.
The synthesis process is then repeated after adding this
new input-output pair to the previous set of input-output
examples. This interaction model is described in [14] and is
illustrated in Fig. 1.

C. Randomly Selected Examples

In certain domains, if the examples are selected uniformly
at random from among the space of all valid examples, and
if an artifact is consistent with those selected examples, then
the artifact is the intended artifact with high probability (over
the choice of the examples). A well-known instance of such
a domain is that of polynomials and the probabilistic result
follows from the classical result on polynomial identity
testing [15]. We have extended the identity testing result
to restricted forms of linear programs [16], [17], geometric
constructions [18], and algebraic identities [19]. The latter
results have led to inductive synthesizers for respective
domains [18], [19].

D. Counterexample Guided Synthesis

Even when a complete formal specification is available, it
is often best to reduce the synthesis problem to synthesizing
from examples. This is done by using a Counterexample

Guided Inductive Synthesis (CEGIS) methodology, wherein
examples are iteratively generated from counterexamples
that exhibit deviation between the candidate solution and
the formal specification. The counterexamples are generated
automatically using SAT/SMT based constraint solvers. This
methodology has been used for synthesizing a large variety
of programs including bitvector algorithms [4], graph algo-
rithms [5], and vectorized code fragments [20]. It also forms
the basis for program synthesis by sketching [21].

III. ALGORITHMS

The key technical challenge in synthesis from examples
is to map the examples to artifact(s) in the underlying DSL.
This is essentially a search problem, and can benefit from
techniques developed in various communities. We present
below certain classes of techniques that have been frequently
used in recent work on synthesis.

A. Version Space Algebras

One class of techniques is based on the concept of
version-space algebras, where the key idea is to design data-
structures and algorithms to succinctly represent and manip-
ulate the set of all artifacts that are consistent with a given
example(s) [22]. In particular, the following ingredients are
required:

• Data structure for representing consistent artifacts: The
number of artifacts in the underlying DSL that are
consistent with a given set of examples is often huge.
We need a data structure to succinctly represent a large
set of such artifacts.

• Algorithm for synthesizing consistent artifacts: It in-
volves two key procedures: (i) A procedure to learn
the set of all artifacts, represented using the above
data structure, that are consistent with a given single
example. (ii) A procedure to intersect these sets (each
corresponding to a different example).

• Ranking: The number of examples required to identify a
unique artifact can often be large. Hence, it is desirable
to use some form of ranking to guess the desired artifact
from a small number of examples. The effectiveness of

such a ranking is inspired by Occam’s razor, which
states that a smaller and simpler explanation is usu-
ally the correct one. The ranking scheme should be
consistent with the underlying version-space algebra in
order to retain efficiency, i.e., it should be based on
features that are invariant of the underlying version-
space. The ranking can also be a function of the user-
provided examples [23]; in addition, it can also take
into account any test inputs provided by the user (i.e.,
new additional inputs on which the user may execute a
synthesized program).

Version-space algebras were pioneered by Mitchell for
refinement-based learning of Boolean functions [24], while
Lau et.al. [25] extended the concept to learning more
complex functions in a Programming By Demonstration
(PBD) setting [11], [12]. We have lifted the concepts of
version-space algebra to the PBE setting for fairly expressive
DSLs (involving conditionals and loops) for spreadsheet data
manipulation including syntactic string transformations [26],
semantic string transformations [27], number transforma-
tions [28], and table transformations [29].

B. Brute Force Search

The general idea here is to systematically explore the en-
tire state space of artifacts and check the correctness of each
candidate against the given examples. This approach works
relatively well when the specification consists of examples
(as opposed to a formal relational specification) since check-
ing the correctness of a candidate solution against examples
can be done much faster than validating the correctness
against a formal relational specification. However, this is
easier said than done and often requires innovative non-
trivial optimizations. Following are some instances of such
optimizations have been inspired by paradigms from various
communities: goal-directed search [18] (AI community),
branch and bound [20], clues based on textual features of
examples [23] (Machine Learning community), and common
subexpression evaluation [19] (PL community).

C. Constraint Solving

The general idea here is to reduce the synthesis problem to
that of solving a SAT/SMT formula and let an off-the-shelf
SAT/SMT solver efficiently explore the search space. This
exploits the recent advances made in the Satisfiability (SAT)
and Satisfiability Modulo Theory (SMT) solving technology
to efficiently explore the search space of programs.

This approach has been applied to synthesis from com-
plete formal specifications, but its applicability has been
limited to synthesizing restricted forms of artifacts such
as switching logics [6], program inverses [10], or pro-
grams whose correctness proof involves a given set of
templates [3]. On the other hand, if the specification is in
the form of examples, possibly generated using a CEGIS
loop (§II-D) [4], [5], [20], [21] or distinguishing-input

based methodology (§II-B) [14], then the reduction of the
synthesis problem to solving of SAT/SMT constraints can
be performed for a larger variety of programs.

IV. ARTIFACTS

There is a huge variety of artifacts that can be synthesized
from examples. We start out with an application in the
traditional domain of algorithm synthesis (bitvector algo-
rithms §IV-A). Then, we discuss some useful applications in
the domain of end-user programming (spreadsheet macros
§IV-B). We also discuss some surprising applications in
the domain of intelligent tutoring systems ranging from
solution generation (geometry constructions §IV-C) to prob-
lem generation (algebraic proof problems §IV-D) to content
entry (intellisense for drawings §IV-F and mathematical
expressions §IV-E).

A. Bitvector Algorithms

Bitvector algorithms are typically straight-line sequence
of instructions that use both arithmetic and logical bitwise
operators.1 Such programs can be quite unintuitive and
extremely difficult for average, or sometimes even expert,
programmers to discover methodically.

Consider the task of masking the right-most significant 1-
bit in an input bitvector, (e.g., converting 01100 into 01000).
A simple method to accomplish this would be to iterate
over the input bitvector starting from the rightmost end
until a 1 bit is found and then set it to 0. However, this
algorithm is worst-case linear in the number of bits in the
input bitvector. Furthermore, it uses undesirable branching
code inside a loop. There is a non-intuitive, but quite elegant,
way to achieving the desired functionality in constant time
by using a tricky composition of the standard subtraction
operator and the bitwise logical & operator, which are
supported by almost every architecture. In particular, the
desired functionality can be achieved using the following
composition: x & (x − 1). Fig. 1 describes an algorithm
for a more sophisticated problem of masking the right-
most contiguous sequence of 1-bits. As yet another example,
consider the task of computing (the floor of) the average of
two 32-bit integers x and y. Note that computing average
using the expression (x+y)/2 is inherently flawed and vul-
nerable since it can overflow. However, using some bitwise
tricks, the average can be computed without overflowing and
without using conditionals; one such way to compute it is:
(x& y) + ((x⊕ y) >> 1)).

[14] describes a constraint solving based (§III-C) induc-
tive synthesizer for such bitvector programs. These programs

1These algorithms “typically describe some plausible yet unusual op-
eration on integers or bit strings that could easily be programmed using
either a longish fixed sequence of machine instructions or a loop, but the
same thing can be done much more cleverly using just four or three or two
carefully chosen instructions whose interactions are not at all obvious until
explained or fathomed” [30].

(a) Syntactic String Transformation
Input v1 Output
Adam Smith Smith, A.
Sumit Gulwani Gulwani, S.
George Necula Necula, G.
Peter Lee Lee, P.
Madhur Malik Malik, M.

(b) Number Transformation
Input v1 Output
0d 5h 26m 5:00
0d 4h 57m 4:30
0d 4h 27m 4:00
0d 3h 57m 3:30

(c) Semantic String Transformation
Input v1 Output
6-3-2008 Jun 3, 2008
3-26-2010 Mar 26, 2010
8-1-2009 Aug 1, 2009
9-24-2007 Sep 24, 2007

Background Knowledge Table
MonthRec

Number Name
1 January
2 February
3 March
· · · · · ·

(d) Semantic String Transformation
Input v1 Input v2 Output
Stroller 10/12/2010 $145.67+0.30*145.67
Bib 23/12/2010 $3.56+0.45*3.56
Diapers 21/1/2011 $21.45+0.35*21.45
Wipes 2/4/2009 $5.12+0.40*5.12
Aspirator 23/2/2010 $2.56+0.30*2.56

Background Knowledge (user-defined) Tables
MarkupRec

Id Name Markup
S33 Stroller 30%
B56 Bib 45%
D32 Diapers 35%
W98 Wipes 40%
A46 Aspirator 30%
· · · · · · · · ·

CostRec
Id Date Price
S33 12/2010 $145.67
S33 11/2010 $142.38
B56 12/2010 $3.56
D32 1/2011 $21.45
W98 4/2009 $5.12
A46 2/2010 $2.56
· · · · · · · · ·

(e) Table Transformation
Input Table:

Qual 1 Qual 2 Qual 3
Andrew 01.02.2003 27.06.2008 06.04.2007

Ben 31.08.2001 05.07.2004
Carl 18.04.2003 09.12.2009

Output Table:
Andrew Qual 1 01.02.2003
Andrew Qual 2 27.06.2008
Andrew Qual 3 06.04.2007

Ben Qual 1 31.08.2001
Ben Qual 3 05.07.2004
Carl Qual 2 18.04.2003
Carl Qual 3 09.12.2009

Figure 2. Variety of spreadsheet data manipulation tasks. The inductive synthesizers described in [26]–[29] can automate the tasks in (a), (b), (c)/(d), and
(e) respectively. The bold entries in (a)-(d) in the Output columns are automatically produced by the respective inductive synthesizers from the first few
example rows.

are synthesized from examples using the distinguishing-
input based synthesizer-driven interaction model (§II-B).

B. Spreadsheet Macros

Spreadsheet users often struggle with repetitive data trans-
formations tasks. Fig. 2 illustrates some such tasks that
involve manipulation of strings, numbers, and tables. In each
of these cases, the users can easily express their intent using
examples, from which the desired scripts for task automation
can be synthesized.

We have defined various DSLs for transformations on
strings [26], [27], numbers [28], and tables [29]. The DSL
for Syntactic string transformations [26] includes substring
and concatenate operators along with limited forms of reg-
ular expressions, conditionals, and loops. Semantic string
transformations [27] combine syntactic transformations with
lookup operations from other relational tables (contain-
ing required background knowledge). Number transforma-
tions [28] allow for formatting and rounding transformations
on numbers. Table transformations [29] allow for layout
transformations on tables.

Each of these languages is expressive enough to capture
several real-world tasks in the underlying domain, but also
restricted enough to enable efficient learning from exam-
ples. For each of these languages, we have developed a
version-space algebra based inductive synthesizer (§III-A)

that can generate scripts for automating repetitive tasks from
input-output examples. The inductive synthesis technology
for syntactic string transformations ships as the Flash Fill
feature in Excel 2013 [31].

C. Geometry Constructions

Geometry constructions are essentially straight-line pro-
grams that manipulate geometry objects (points, lines, and
circles) using ruler and compass operators. Hence, the prob-
lem of synthesizing geometry constructions can be phrased
as a synthesis problem [18] in a manner very similar to the
problem of synthesizing bitvector algorithms (§IV-A), which
are straight-line programs over bitvector operators. Fur-
thermore, because of probabilistic testing property (§II-C),
geometric constructions can be synthesized from random
examples or models. Fig. 3 illustrates the workflow, wherein
random models can be generated from logical description of
the given problem using off-the-shelf numerical solvers. The
underlying synthesis algorithm performs brute-force search
(over an extended library of ruler/compass operators) using
goal-directed heuristics (§III-B).

D. Algebraic Identities

Generating fresh problems that involve using a given set
of concepts and have a given difficulty level is often a tedious
task for the teacher. The ability to automatically generate
such fresh problems has several applications: (a) It can

Example
Problem
⇓

sinA

1 + cosA
+

1 + cosA

sinA
= 2 cscA

(From [32])

∣∣∣∣∣∣
(x+ y)2 zx zy
zx (y + z)2 xy
yz xy (z + x)2

∣∣∣∣∣∣ = 2xyz(x+ y + z)3

(From [33])

Generalized
Problem
Template
⇓

T1A

1± T2A
+

1± T3A
T4A

= 2 T5A

where Ti ∈ {cos, sin, tan, cot, sec, csc}

∣∣∣∣∣∣
F0(x, y, z) F1(x, y, z) F2(x, y, z)
F3(x, y, z) F4(x, y, z) F5(x, y, z)
F6(x, y, z) F7(x, y, z) F8(x, y, z)

∣∣∣∣∣∣ = c F9(x, y, z)

where Fi(0 ≤ i ≤ 8) and F9 are homogeneous polynomials of degrees
2 and 6 respectively, ∀(i, j) ∈ {(4, 0), (8, 4), (5, 1), . . .} : Fi =
Fj [x→y; y→z; z→x], and c ∈ {±1,±2, . . . ,±10}.

New
Problems

cosA

1− sinA
+

1− sinA

cosA

cosA

1− sinA
+

1− sinA

cosA

cosA

1− sinA
+

1− sinA

cosA
=== 2 tanA2 tanA2 tanA

cosA

1 + sinA
+

1 + sinA

cosA

cosA

1 + sinA
+

1 + sinA

cosA

cosA

1 + sinA
+

1 + sinA

cosA
=== 2 secA2 secA2 secA

cotA

1 + cscA
+

1 + cscA

cotA

cotA

1 + cscA
+

1 + cscA

cotA

cotA

1 + cscA
+

1 + cscA

cotA
=== 2 secA2 secA2 secA

tanA

1 + secA
+

1 + secA

tanA

tanA

1 + secA
+

1 + secA

tanA

tanA

1 + secA
+

1 + secA

tanA
=== 2 cscA2 cscA2 cscA

sinA

1− cosA
+

1− cosA

sinA

sinA

1− cosA
+

1− cosA

sinA

sinA

1− cosA
+

1− cosA

sinA
=== 2 cotA2 cotA2 cotA

∣∣∣∣∣∣
y2 x2 (y + x)2

(z + y)2 z2 y2

z2 (x+ z)2 x2

∣∣∣∣∣∣
∣∣∣∣∣∣

y2 x2 (y + x)2

(z + y)2 z2 y2

z2 (x+ z)2 x2

∣∣∣∣∣∣
∣∣∣∣∣∣

y2 x2 (y + x)2

(z + y)2 z2 y2

z2 (x+ z)2 x2

∣∣∣∣∣∣ === 2(xy + yz + zx)32(xy + yz + zx)32(xy + yz + zx)3

∣∣∣∣∣∣
−xy yz + y2 yz + y2

zx+ z2 −yz zx+ z2

xy + x2 xy + x2 −zx

∣∣∣∣∣∣
∣∣∣∣∣∣
−xy yz + y2 yz + y2

zx+ z2 −yz zx+ z2

xy + x2 xy + x2 −zx

∣∣∣∣∣∣
∣∣∣∣∣∣
−xy yz + y2 yz + y2

zx+ z2 −yz zx+ z2

xy + x2 xy + x2 −zx

∣∣∣∣∣∣ === xyz(x+ y + z)3xyz(x+ y + z)3xyz(x+ y + z)3

∣∣∣∣∣∣
yz + y2 xy xy
yz zx+ z2 yz
zx zx xy + x2

∣∣∣∣∣∣
∣∣∣∣∣∣
yz + y2 xy xy
yz zx+ z2 yz
zx zx xy + x2

∣∣∣∣∣∣
∣∣∣∣∣∣
yz + y2 xy xy
yz zx+ z2 yz
zx zx xy + x2

∣∣∣∣∣∣ === 4x2y2z24x2y2z24x2y2z2

Figure 4. Synthesis of algebraic proof problems that are similar in structure to a given example proof problem [19].

English
Description
⇓

Construct a triangle given its base L (with end-points
p1, p2), a base angle a, and sum of the other two
sides r.

PreCondition r > Length(p1, p2)

PostCondition
⇓

Angle(p, p1, p2) = a ∧
Length(p, p1) + Length(p, p2) = r

Random
Model
⇓

L = Line(p1 = 〈81.62, 99.62〉, p2 = 〈99.62, 83.62〉)
r = 88.07 a = 0.81 radians
p = 〈131.72, 103.59〉

Geometry
Program

ConstructTriangle(p1,p2,L,r,a):
L1 := ConstructLineGivenAngleLinePoint(L,a,p1);
C1 := ConstructCircleGivenPointLength(p1,r);
(p3, p4) := LineCircleIntersection(L1,C1);
L2 := PerpendicularBisector2Points(p2,p3);
p5 := LineLineIntersection(L1,L2);
return p5;

Figure 3. Synthesis of ruler/compass based geometry constructions [18].

help avoid copyright issues (since textbook problems cannot
simply be made available online), (b) It can help avoid
plagiarism: Students can be provided with different problems
that exercise the same set of concepts and have the same
difficulty level, and (c) It can help generate personalized
workflows: Students can be presented with the problem that
is slightly more difficult than the ones that they are able to
solve.

Figure 4 shows some algebraic proof problems that have
automatically synthesized starting from a given example
problem [19]. There are two different by-example paradigms
that are in play here. First, a generalized problem template

tanA·tan 2A·tan 3Atan 3Atan 3A = tanA+tan 2A+ tan 3Atan 2A+ tan 3Atan 2A+ tan 3A

yz − x2 zx− y2 xy − z2xy − z2xy − z2
zx− y2 xy − z2xy − z2xy − z2 yz − x2yz − x2yz − x2
xy − z2 yz − x2yz − x2yz − x2 zx− y2zx− y2zx− y2

(
A1 sin

3 α B1 sin
3 β C1 sin

3 γC1 sin
3 γC1 sin
3 γ

A2 sinα B2 sinβB2 sinβB2 sinβ C2 sin γC2 sin γC2 sin γ

)
Figure 5. Synthesis of low-entropy mathematical terms from their prefixes.
Our tool [34] can predict the bold parts in each of the above three texts
from the remaining prefixes.

is synthesized from the example problem(s). Second, the
validity of a match for the generalized problem is performed
by testing on random inputs (§II-C). Note that this has
the effect that the new synthesized problems are similar
in structure to the given example problem and match the
generalized problem template. The user can control the sim-
ilarity by providing more example problems for producing
the generalized problem template or by manually editing the
generalized problem template.

E. Mathematical Terms

Inputting mathematical text into a computer remains a
painful task. Markup languages like LaTeX lead to un-
readable text in encoded form, while WYSIWYG editors
like Microsoft Word require users to change cursor position
several times, and switch back and forth between keyboard
and mouse input.

Mathematical text, like several human created artifacts, is

Sketch ⇒ Beautification ⇒ Prediction

(a)

(b)

Figure 6. Synthesis of repetitive geometric drawings from partial sketches. The workflow involves beautification of partial sketches into geometric
objects [35] and prediction of other objects from the initial beautified objects by synthesizing object transformation logics [36].

often structured and has low entropy—hence it is amenable
to not only encryption but also prediction. Mathematical text
is often organized into sessions, each consisting of mutually
related expressions with an inherent progression. Examples
of such sessions include a lengthy equation, a symbolic
matrix, a solution to a problem, a list of problems in an
exercise, and a set of related rules and axioms. Predicting
sub-terms that the user is likely to input next can be phrased
as a synthesis-from-example problem [34]. Fig. 5 illustrates
some sessions containing terms with similar structure that
are amenable to prediction. This predictive capability can be
an important component of human-computer interfaces for
inputting mathematical text into a computer, be it through
speech, touch, keyboard, or multi-modal interfaces.

F. Repetitive Drawings

Structured drawings involving line and circle objects
arranged in some repetitive pattern (as shown in Fig. 6) are
quite common in real-life (e.g., brick/tiling patterns, wheels,
and architectural drawings). Making such drawings is time
consuming and cumbersome using existing drawing tools
because they only offer the ability to copy-paste objects
in the drawing. Copy-paste functionality is not sufficient to
enable efficient construction of such diagrams since it does
not position copied objects automatically, and is incapable
of dealing with transformations involving scaling (as in
Fig. 6(a)) or rotation (as in Fig. 6(b)) on copied objects.
Predicting the repetitive objects in a drawing from few
examples of initial objects can be phrased as a synthesis-
from-example problem [36].

V. CONCLUSION

General-purpose computational devices, such as smart-
phones and computers, are becoming accessible to people at
large at an impressive rate. In the future, even robots will be-
come household commodities. Unfortunately, programming
such general-purpose platforms has never been easy, because
we are still mostly stuck with the model of providing
step-by-step, detailed, and syntactically correct instructions
on how to accomplish a certain task, instead of simply
describing what the task is. The synthesis technology has
the potential to revolutionize this landscape, when targeted
for the right set of problems and using the right interaction
model.

We believe that the most interesting applications of the
synthesis technology can be in the areas of end-user pro-
gramming, and intelligent tutoring systems. In this paper,
we focused on example based interaction models. Another
effective form of interaction can be based on natural lan-
guage. It remains an open research problem to design
intelligent multi-modal interfaces that can take examples,
natural language, speech, touch, etc. as input. The solution
lies in bringing together various inter-disciplinary technolo-
gies that can combine user intent understanding, (possibly
unstructured) knowledge bases, and logical reasoning.

ACKNOWLEDGMENT

I would like to thank Ben Zorn and Rico Malvar who
have been strong advocates of this inter-disciplinary line of
research work at Microsoft Research. I would like to thank
all my co-authors on the various synthesis papers that are
referenced here.

REFERENCES

[1] S. Gulwani, “Dimensions in program synthesis,” in PPDP,
2010.

[2] Z. Manna and R. J. Waldinger, “A deductive approach to
program synthesis,” ACM Trans. Program. Lang. Syst., vol. 2,
no. 1, pp. 90–121, 1980.

[3] S. Srivastava, S. Gulwani, and J. Foster, “From program
verification to program synthesis,” in POPL, 2010.

[4] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan, “Synthesis
of loop-free programs,” in PLDI, 2011.

[5] S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv, “A
simple inductive synthesis methodology and its applications,”
in OOPSLA, 2010.

[6] A. Taly, S. Gulwani, and A. Tiwari, “Synthesizing switching
logic using constraint solving,” in VMCAI, 2009.

[7] S. Jha, S. Gulwani, S. Seshia, and A. Tiwari, “Synthesizing
switching logic for safety and dwell-time requirement,” in
ICCPS, 2010.

[8] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A.
Saraswat, “Combinatorial sketching for finite programs,” in
ASPLOS, 2006, pp. 404–415.

[9] R. Joshi, G. Nelson, and K. H. Randall, “Denali: A goal-
directed superoptimizer,” in PLDI, 2002, pp. 304–314.

[10] S. Srivastava, S. Gulwani, S. Chaudhuri, and J. S. Foster,
“Path-based inductive synthesis for program inversion,” in
PLDI, 2011.

[11] H. Lieberman, Your Wish Is My Command: Programming by
Example. Morgan Kaufmann, 2001.

[12] A. Cypher, Ed., Watch What I Do: Programming by Demon-
stration. MIT Press, 1993.

[13] S. Gulwani, “Synthesis from examples,” WAMBSE (Workshop
on Advances in Model-Based Software Engineering) Special
Issue, Infosys Labs Briefings, vol. 10, no. 2, 2012.

[14] S. Jha, S. Gulwani, S. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in ICSE, 2010.

[15] J. T. Schwartz, “Fast probabilistic algorithms for verification
of polynomial identities,” J. ACM, vol. 27, no. 4, 1980.

[16] S. Gulwani and G. C. Necula, “Discovering affine equalities
using random interpretation,” in POPL, 2003.

[17] S. Gulwani, “Program analysis using random interpretation,”
Ph.D. dissertation, UC-Berkeley, 2005.

[18] S. Gulwani, V. A. Korthikanti, and A. Tiwari, “Synthesizing
geometry constructions,” in PLDI, 2011, pp. 50–61.

[19] R. Singh, S. Gulwani, and S. Rajamani, “Automatically
generating algebra problems,” in AAAI, 2012.

[20] G. Barthe, J. M. Crespo, S. Gulwani, C. Kunz, and M. Mar-
ron, “From relational verification to simd loop synthesis,” in
PPoPP, 2013, To appear.

[21] A. Solar-Lezama, “Program synthesis by sketching,” 2008.

[22] S. Gulwani, W. Harris, and R. Singh, “Spreadsheet data
manipulation using examples,” Communications of the ACM,
Aug 2012.

[23] A. Menon, O. Tamuz, S. Gulwani, B. Lampson, and A. Kalai,
“A machine learning framework for programming by exam-
ple,” in ICML, 2013, To appear.

[24] T. M. Mitchell, “Generalization as search,” Artif. Intell.,
vol. 18, no. 2, 1982.

[25] T. Lau, S. Wolfman, P. Domingos, and D. Weld, “Program-
ming by demonstration using version space algebra,” Machine
Learning, vol. 53, no. 1-2, 2003.

[26] S. Gulwani, “Automating string processing in spreadsheets
using input-output examples,” in POPL, 2011.

[27] R. Singh and S. Gulwani, “Learning semantic string transfor-
mations from examples,” PVLDB, vol. 5, 2012.

[28] ——, “Synthesizing number transformations from input-
output examples,” in CAV, 2012.

[29] W. R. Harris and S. Gulwani, “Spreadsheet table transforma-
tions from examples,” in PLDI, 2011.

[30] H. S. Warren, Hacker’s Delight. Addison-Wesley, ’02.

[31] “Flash Fill (Microsoft Excel 2013 feature),”
http://research.microsoft.com/users/sumitg/flashfill.html.

[32] S. L. Loney, Plane Trigonometry. Cambridge University
Press.

[33] M. L. Khanna, IIT Mathematics.

[34] O. Polozov, S. Gulwani, and S. Rajamani, “Structure and term
prediction for mathematical text,” Tech. Rep. MSR-TR-2012-
7, 2012.

[35] S. Cheema, S. Gulwani, and J. LaViola, “Quickdraw: im-
proving drawing experience for geometric diagrams,” in CHI,
2012.

[36] ——, “Patternsketch: A new way to make structured drawings
with patterns,” Tech. Rep., 2012.

