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Abstract

Algorithms and Methodology for Scalable Model Checking

by

Shaz Qadeer

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Thomas A. Henzinger, Chair

Model checking algorithms for the verification of reactive systems proceed by a systematic

and exhaustive exploration of the system state space. They do not scale to large designs

because of the state explosion problem —the number of states grows exponentially with

the number of components in the design. Consequently, the model checking problem is

PSPACE-hard in the size of the design description. This dissertation proposes three novel

techniques to combat the state explosion problem.

One of the most important advances in model checking in recent years has been the

discovery of symbolic methods, which use a calculus of expressions, such as binary decision

diagrams, to represent the state sets encountered during state space exploration. Symbolic

model checking has proved to be effective for verifying hardware designs. Traditionally,

symbolic checking of temporal logic specifications is performed by backward fixpoint rea-

soning with the operator pre. Backward reasoning can be wasteful since unreachable states

are explored. We suggest the use of forward fixpoint reasoning based on the operator post .

We show how all linear temporal logic specifications can be model checked symbolically by

forward reasoning. In contrast to backward reasoning, forward reasoning performs compu-

tations only on the reachable states.

Heuristics that improve algorithms for application domains, such as symbolic

methods for hardware designs, are useful but not enough to make model checking feasi-

ble on industrial designs. Currently, exhaustive state exploration is possible only on designs

with about 50-100 boolean state variables. Assume-guarantee verification attempts to com-

bat the state explosion problem by using the principle of “divide and conquer,” where the
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components of the implementation are analyzed one at a time. Typically, an implemen-

tation component refines its specification only when its inputs are suitably constrained by

other components in the implementation. The assume-guarantee principle states that in-

stead of constraining the inputs by implementation components, it is sound to constrain

them by the corresponding specification components, which can be significantly smaller.

We extend the assume-guarantee proof rule to deal with the case where the specification

operates at a coarser time scale than the implementation. Using our model checker Mocha,

which implements this methodology, we verify VGI, a parallel DSP processor chip with 64

compute processors each containing ∼800 state variables and ∼30K gates.

Our third contribution is a systematic model checking methodology for verifying

the abstract shared-memory interface of sequential consistency on multiprocessor systems

with three parameters —number of processors, number of memory locations, and number

of data values. Sequential consistency requires that some interleaving of the local temporal

orders of read/write events at different processors be a trace of serial memory. Therefore,

it suffices to construct a non-interfering serializer that watches and reorders read/write

events so that a trace of serial memory is obtained. While in general such a serializer

must be unbounded even for fixed values of the parameters —checking sequential consis-

tency is undecidable!— we show that the paradigmatic class of snoopy cache coherence

protocols has finite-state serializers. In order to reduce the arbitrary-parameter problem

to the fixed-parameter problem, we develop a novel framework for induction over the num-

ber of processors and use the notion of a serializer to reduce the problem of verifying

sequential consistency to that of checking language inclusion between finite state machines.

Professor Thomas A. Henzinger
Dissertation Committee Chair
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Chapter 1

Introduction

This dissertation is concerned with the correctness problem for reactive systems

[MP92]. A reactive system is composed of several processes operating and interacting with

each other and their common environment, continuously and without termination, to pro-

duce a desired outcome. This desired outcome is called the specification of the system. An

example of a reactive system is the sliding window protocol [Hol91] for reliably transmit-

ting messages from one computer to another. The sliding window protocol consists of three

processes —sender, receiver and channel. The protocol is supposed to interact continuously

with its environment which produces and consumes messages, and to ensure that every

message produced by the sender is eventually consumed by the receiver. Clearly we would

like the protocol to work forever and hence non-termination is a desirable property.

Examples of reactive systems abound in the modern world. There are micropro-

cessors and microcontrollers sitting in our desktop computers, in the network routers across

the Internet, and in the switches of the telecommunications network. There is the oper-

ating system managing the hardware resources of the computer. There are protocols that

make it possible for different parts of a distributed system like the Internet to talk to each

other. The diverse and critical presence of such systems in the affairs of modern society

makes it imperative that they work correctly. It is very difficult to design these systems

correctly because of the combinatorial explosion of the possible interactions between the

various components of the system and the environment. Hence there is a need for formally

verifying such designs.

In formal verification, the system, also called the implementation is modeled math-

ematically and its specification is described in a formal language. The satisfaction relation
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between the implementation and specification is then defined formally and checked. There

are two broad approaches to formal verification of reactive systems —theorem proving and

model checking. Theorem proving environments [BM79a, BM79b, GM93, GH93, ORR+96]

typically use a very expressive logic for expressing the implementation and the specification.

The implementation is expressed as a set of axioms, the specification is written down as a

theorem to be proved in the axiomatic system and the verifier tries to discover a proof of the

theorem according to the inference rules of the logic. Theorem proving has all the expressive

power of higher order logic at its disposal and complex implementations and specifications

can be easily expressed. But the logics used are mostly undecidable and theorem proving

systems require a lot of interaction with the verifier. Although some automation has been

introduced, the process of proof discovery remains largely manual and quite tedious. The

lack of automation has made it difficult for theorem proving to be used in an industrial

context.

Model checking [CE81, QS81] uses finite state machines as a model for the imple-

mentation. Either temporal logic [Pnu77] or nondeterministic finite state machines [MS72]

are used for specification. If temporal logic is used as specification, the verification problem

is called property checking. If nondeterministic finite state machines are used as specifica-

tion, the verification problem is called refinement checking. Both property checking and

refinement checking are decidable and the algorithms typically work by exploring the finite

state space of the implementation. The automatic nature of model checking makes it at-

tractive for practical use in the industry. The applicability of model checking is somewhat

restricted though, for the following reasons.

1. A number of important systems are not finite-state; they are infinite-state or pa-

rameterized. Distributed algorithms [Lyn96] in an operating system that use integer

variables are an example of infinite-state systems. Shared-memory multiprocessor pro-

tocols [ABM93, LLG+92, KOH+94, HP96a, SG97] that are supposed to work for an

arbitrary number of processors and memory locations are examples of parameterized

systems. Model checking uses finite automata for the implementation and therefore

cannot directly verify such systems.

2. Even for finite-state systems, model checking algorithms do not scale. Reactive sys-

tems are typically described as composition of a number of smaller processes. The

state space of a process A, expressed as a composition of processes A1, A2, . . . , An
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with state spaces of size S1, S2, . . . , Sn respectively, is S1 × S2 × · · · × Sn, which is

exponential in S1 + S2 + · · ·+ Sn in the worst case. Since model-checking algorithms

explore the state space of the implementation exhaustively, complexity is directly pro-

portional to the size of the state space and consequently exponential in the size of

system description. This exponential growth of the state space with the number of

components in the system is called the state explosion problem. This problem has

limited current model checking techniques to the verification of systems with 50-100

boolean state variables.

This dissertation has addressed both the problems mentioned above. Chapters 2, 3

and 4 discuss techniques to make model checking scalable on finite-state systems. Chapter 5

focuses on the verification of a particular class of parameterized systems, shared-memory

multiprocessor protocols, and attempts to make the problem amenable to model checking.

There are two general classes of techniques for combating the state explosion

problem in model checking. Type-1 techniques focus on improving algorithms, often de-

veloping heuristics that target specific application domains, such as symbolic methods

[BCM+92, McM93] for synchronous hardware designs, and partial-order methods [Val90,

GW91, Pel93, God96] for asynchronous communication protocols. Type-2 techniques focus

on dividing the verification task at hand into simpler tasks, often making use of the com-

positional structure of both implementation and specification, such as assume-guarantee

methods [MC81, Sta85, AL95, AH96, McM97] for proof decomposition. While type-1 tech-

niques can be applied fully automatically and improve the efficiency of formal verification,

they need to be complemented by type-2 techniques in order to make the approach fully

scalable. Type-2 techniques, however, require substantial assistance from human verifica-

tion experts, and their systematic application in nontrivial situations remains somewhat of

a black art.

In Chapter 2, we discuss a new type-1 technique for property checking. Currently,

there are two techniques for performing state space exploration —enumerative [HP96b,

Dil96] and symbolic [McM93, BHSV+96]. In enumerative search, states and transitions

are explored individually. A state is represented as a record and the explored states are

stored in a table for bookkeeping. On the other hand, symbolic search uses a calculus of

expressions [Koz83] to represent state sets and operations on them. State exploration is

encoded as a fixpoint computation on these expressions. Both enumerative and symbolic
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searches can be done either forward in which transitions from explored states are taken, or

backward in which transitions to explored states are taken. Previously, symbolic checking

of temporal logic specifications was done by backward fixpoint reasoning with the operator

pre [BCM+92]. For any state set A, this operator computes the state set pre(A) that

can reach A in one step. Backward reasoning can be wasteful since unreachable states

are explored, and empirical studies have shown that evaluating pre on unreachable state

sets is expensive [INH96]. We suggest the use of forward fixpoint reasoning based on the

operator post . For any state set A, this operator computes the state set post(A) that can

be reached from A in one step. We show how all linear temporal logic properties can be

model checked by forward reasoning. In contrast to backward reasoning, forward reasoning

performs computations only on the reachable states.

In Chapter 3, we discuss a type-2 technique called assume-guarantee reasoning.

This technique has been implemented in the model checker Mocha [AHM+98], that was

developed in collaboration with other students in the group. In Mocha, both implemen-

tation and specification are compositions of FSMs. The implementation refines the speci-

fication if every behavior of the implementation is a behavior of the specification. Mocha

works on the principle of “divide and conquer.” Instead of putting all implementation com-

ponents together to get a flat representation, Mocha analyzes one component at a time.

Typically, an implementation component refines its specification only when its inputs are

suitably constrained by other components in the implementation. The assume-guarantee

principle states that instead of constraining the inputs by implementation components, it is

sound to constrain them by the corresponding specification components, thereby avoiding

the composition of large implementation FSMs. If the specification does not mention some

of the inputs, then it can be enriched by defining those inputs abstractly. Thus, Mocha

utilizes the input design structure to decompose the refinement proof into smaller proof

obligations that are within the capacity of the state exploration engine, while making sure

that the decomposition is sound by the principle of assume-guarantee reasoning.

For some systems, it is easier to express the specification such that multiple steps

of the implementation correspond to a single step of the specification. Consider a system in

which process A uses a rather complicated protocol taking several steps to send a message

to process B which takes some action based on it. A simple specification would just say that

the message sent by A reaches B, thereby collapsing several steps of the implementation

into a single step of the specification. In Chapter 4, we introduce the sampling operator
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that is used to relate an implementation to a specification operating at a coarser time scale.

We generalize the assume-guarantee rule of Chapter 3 to incorporate the sample operator.

The generalized rule has been implemented in Mocha and used to verify VGI, a parallel

DSP processor chip designed by the Infopad group at Berkeley. The size of the chip was

clearly beyond the capacity of existing model checking techniques —the chip has 64 compute

processors each containing ∼800 state variables and ∼30K gates, and required sustained

effort by several people over a few months to specify and verify it.

In Chapter 5, we develop a systematic model checking methodology for verifying

abstract shared-memory interfaces on multiprocessor systems. The design of a correct and

efficient shared memory is one of the most difficult tasks in the design of such systems

[AG96]. The shared-memory interface is a contract between the designer and the program-

mer of the multiprocessor. All abstract memory models can be understood in terms of the

fundamental serial-memory model. A serial memory behaves as if there is a centralized

memory that services read and write requests atomically such that a read to a location

returns the latest value written to that location. Sequential consistency [Lam79] offers a

natural tradeoff between the flexibility afforded to the implementor and the complexity of

the programmer’s view of the memory. Sequential consistency requires that some interleav-

ing of the local temporal orders of read/write events at different processors be a trace of

serial memory. We develop a systematic methodology for proving sequential consistency

for memory systems with three parameters —number of processors, number of memory

locations, and number of data values. From the definition of sequential consistency it suf-

fices to construct a non-interfering serializer [KP92] that watches and reorders read/write

events so that a trace of serial memory is obtained. While in general such a serializer must

be unbounded even for fixed values of the parameters —checking sequential consistency is

undecidable! [AMP96]— we show that the paradigmatic class of snoopy cache coherence

protocols [HP96a] has finite-state serializers. Therefore sequential consistency for fixed

parameter values can be checked by language inclusion between finite automata.

In order to reduce the arbitrary-parameter problem to the fixed-parameter prob-

lem, we develop a novel framework for induction over the number of processors. Classical

induction schemas [KM89], which are based on process invariants that are inductive with

respect to an implementation preorder that preserves the temporal sequence of events, are

inadequate for our purposes, because proving sequential consistency requires the reorder-

ing of events. Hence we introduce merge invariants, which permit certain reorderings of
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read/write events. We show that under certain reasonable assumptions about the mem-

ory system, it is possible to conclude sequential consistency for any number of processors,

memory locations, and data values by model checking two finite-state systems involving

process and merge invariants: they involve two processors each accessing a maximum of

three locations, where each location stores at most two data values.

In this dissertation, for each model checking technique we have used the simplest

modeling language that can be used to described it. Chapter 2 describes a type-1 technique

that works off the full state space of the system and does not make use of the its composi-

tional structure. Hence, we use Kripke structures [Eme90], which are state transition graphs

where the states are labeled with observations. Chapters 3 and 4 describe a type-2 tech-

nique that makes use of the structure of the design and tries to avoid building the full state

space. Hence we use transition constraints with private and observable variables, and initial

and transition predicates on them. Transition constraints are closed under composition and

therefore they can be used to describe complex systems compositionally. Since they can

easily be translated to Kripke structures, the technique in Chapter 2 is also applicable to

them. Chapter 3 also uses a special class of transition constraints called reactive modules

[AH96], which partitions the observable variables into inputs and outputs and also have

executable non-blocking semantics. Chapter 5 describes a verification technique for shared-

memory multiprocessors. Typically, the components in a shared memory multiprocessor

synchronize by means of observable actions. A component performs an output action to

synchronize with other components for which that action is an input action [Hoa85, Mil89].

Hence, we use I/O-processes that are state transition graphs with edges labeled by pri-

vate, observable input, or observable output actions. I/O-processes are also closed under

composition and can be used to describe a complex memory protocol compositionally. The

technique of Chapter 2 is applicable, after simple modifications, also to I/O-processes.
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Chapter 2

Symbolic Model Checking with

Forward Reasoning

The discovery of symbolic model-checking methods [BCM+92] has been a very im-

portant development for achieving the goal of automatic verification. Traditional symbolic

model-checking tools have been based on backward state traversal [McM93, BHSV+96].

They compute expressions that represent state sets using, in addition to positive boolean

operations, the functions pre and p̃re, which map a set of states to a subset of its predecessor

states. Formally, given a set U of states, the set pre(U) contains the states for which there

exists a successor state in U , and the set p̃re(U) contains the states all of whose successor

states are in U . By evaluating fixpoint expressions over boolean and pre operations, compli-

cated state sets can be calculated. For example, to find the set of states from which a state

satisfying a predicate p is reachable, the model checker starts with the set U of states in

which p holds, and repeatedly adds to U the set pre(U), until no more states can be added.

Formally, the model checker calculates the least fixpoint of the expression U = p ∨ pre(U).

Binary decision diagrams (BDDs) [Bry86] have been used to represent the state transition

graph of the system and the state sets encountered in evaluating these expressions. The use

of BDDs has yielded model-checking tools that can handle very large state spaces [CGL94].

Specification logics can be broadly classified into two categories —branching-time

and linear-time. Branching-time specifications are concerned with the branching nature of

the system’s state transition graph, whereas linear-time specifications ignore the branching

structure and treat the state transition graph as a collection of paths of states. Symbolic
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model-checking techniques were first applied to branching-time specifications by first trans-

lating them into fixpoint expressions [BCM+92] and then evaluating the expression on the

state space of the system. Symbolic techniques were extended to linear-time specifications

[CGH94] through the use of tableau construction. First, the automata representing the

the negation of the property, also called its tableau, is constructed. Then it is composed

with the state transition graph of the system and the emptiness of the result is checked by

evaluating a fixpoint expression.

As an alternative to symbolic model checking, in enumerative model checking

states are represented individually. Traditional enumerative model-checking tools check

linear-time specifications by forward state traversal [HP96b, Dil96]. There, the basic oper-

ation is to compute, for a given state, the list of successor states. Forward state traversal

has several obvious advantages over backward state traversal. First, for operational system

models, successor states are often easier to compute than predecessor states. Second, only

the reachable part of the state space is traversed. Third, optimizations such as on-the-fly

[GPVW95] and partial-order [Pel94] methods can be incorporated naturally. For example,

in on-the-fly model checking, only those parts of the state space are traversed which are

relevant for satisfying (or violating) the given specification.

Some of the advantages of forward state traversal can be easily incorporated into

symbolic methods. For example, we may first compute the set of reachable states by sym-

bolic forward state traversal, and then restrict backward state traversal to model checking

of the reachable states. This method, however, is unsatisfactory; for example, it cannot

find even a short error trace if the set of reachable states cannot be computed. We present

a tighter, and more advantageous, integration of forward state traversal with symbolic

methods. In symbolic forward state traversal, we replace the functions pre and p̃re by the

functions post and p̃ost , respectively, which map a set of states to a subset of its successor

states. Formally, given a set U of states, the set post(U) contains the states for which

there exists a predecessor state in U , and the set p̃ost(U) contains the states all of whose

predecessor states are in U . Then, we evaluate fixpoint expressions over boolean and post

operations on state sets. It has recently been shown that certain branching-time as well

as linear-time specifications, such as response (i.e., 2(p → 3q)), can be model checked by

symbolic forward state traversal [INH96, IN97]. We attempt a more systematic study of

what can and what cannot be model checked in this way. In particular, we show that all

ω-regular (linear-time) specifications (which include all LTL specifications) are amenable
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to a symbolic forward approach, while some CTL (branching-time) specifications are not.

Notice that while the symbolic LTL model checking method [CGH94] can be easily modified

to use fixpoint expressions over post , it involves composing the automaton of the negation

of the property with the system and results in search over an expanded state space. Our

method, on the other hand, performs a fixpoint computation over the state space of the

system only.

For a systematic study of the properties that can be checked with forward reason-

ing, we define post-µ, a fixpoint calculus that is based on post operations in the same way

in which the traditional µ-calculus, here called pre-µ, is based on pre operations [Koz83].

While pre-µ expressions refer to the future of a given state in a model, post-µ expressions

refer to its past. Therefore, in stark contrast to the fact that every LTL and CTL specifica-

tion has an equivalent expression in pre-µ, almost no LTL or CTL specification, including

response, has an equivalent expression in post-µ. In order to compare pre and post log-

ics, rather, we need to define query logics, whose formulas refer to a whole model, not an

individual state. Query logics are based on the emptiness predicate E . For a specification

φ, which is true in some states of a model and false in others, the query E(φ) is true in a

model iff φ is false in all states of the model. The query logic post-µ∅ contains all queries

of the form E(φ) and ¬E(φ), for post-µ expressions φ. On the positive side, we prove that

every ω-regular (Büchi) specification has an equivalent query in post-µ∅. As with the trans-

lation from Büchi automata to pre-µ expressions [EL86, BC96], the translation from Büchi

automata to post-µ∅ queries is linear and involves only fixpoint expressions of alternation

depth two. Moreover, we show that every co-Büchi specification has an equivalent query in

alternation-free post-µ∅, which can be checked efficiently (in linear time). On the negative

side, we prove that there are CTL specifications that are not equivalent to any boolean

combination of post-µ∅ queries.

Symbolic forward model checking combines the benefits of symbolic over enu-

merative state traversal with the benefits of forward over backward state traversal. In

[INH96, IN97], the authors present experimental evidence that symbolic forward state

traversal can be significantly more efficient than symbolic backward state traversal. Our

preliminary experimental results confirm this observation. In addition, we give some theo-

retical justifications for the symbolic forward approach. We show that unlike enumerative

forward model checking (which is traditionally based on depth-first state traversal) and un-

like symbolic backward model checking, the symbolic forward approach guarantees a.s.a.p.
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error detection. Intuitively, if a model violates a safety specification, and the shortest error

trace has length m, then the breadth-first nature of symbolic forward model checking en-

sures that the error will be found before any states at a distance greater than m from the

initial states are explored.

The remainder of this chapter is organized as follows. In Section 2.1 we define

the logics pre-µ and post-µ, and the query logics they induce. In Section 2.2, we translate

Büchi automata into equivalent post-µ∅ queries of alternation depth two, and co-Büchi

automata into equivalent alternation-free post-µ∅ queries. We also show that the translation

guarantees a.s.a.p. error detection for safety specifications. In Section 2.3, we compare the

distinguishing and expressive powers of the various pre, post, and query logics. Finally, in

Section 2.4 we put our results in perspective and report on some experimental evidence for

the value of symbolic forward model checking.

2.1 Definition of pre and post logics

2.1.1 Pre and post µ-calculi

The µ-calculus is a modal logic augmented with least and greatest fixpoint oper-

ators [Koz83]. In this paper, we use the equational form of the propositional µ-calculus,

as in [CKS92]. The modalities of the µ-calculus relate a set of states to a subset of its

predecessor states. Therefore, we refer to the µ-calculus by pre-µ.

The formulas of pre-µ are defined with respect to a set P of propositions and a

set V of variables. A modal expression is either p, ¬p, X, ϕ ∨ ψ, ϕ ∧ ψ, ∃ ϕ, or ∀ ϕ, for

propositions p ∈ P , variables X ∈ V , and modal expressions ϕ and ψ. Let I be a finite

subset of the set of natural numbers. An equational block B = 〈λ, {Xi = ϕi | i ∈ I}〉 consists

of a flag λ ∈ {µ, ν} and a finite set of equations Xi = ϕi, where each Xi is a variable, each

ϕi is a modal expression, and the variables Xi are pairwise distinct. If λ = µ, then B is a

µ-block ; otherwise B is a ν-block. Let the function flag map each block to its flag. For the

equational block B, let vars(B) = {Xi | i ∈ I} be the set of variables on the left-hand sides

of the equations of B. A block tuple B = 〈B1, . . . , Bn〉 is a finite list of equational blocks

such that the variable sets vars(Bj), for 1 ≤ j ≤ n, are pairwise disjoint. For the block

tuple B, let vars(B) =
⋃

1≤j≤n vars(Bj). For every variable X ∈ vars(B), let expandB(X)

be the modal expression on the right-hand side of the unique equation in B whose left-hand
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side is X. A pre-µ formula φ = 〈B, X0〉 is a pair that consists of a block tuple B and a

variable X0 ∈ vars(B). The variable X0 is called the root variable of φ. The formula φ is a

pre-µ sentence if every variable that occurs in some modal expression of B is a member of

vars(B).

The semantics of a pre-µ formula is defined with respect to a Kripke structure

and a valuation for the variables. A Kripke structure is a tuple K = 〈P,W,R, L〉 that

consists of a finite set P of propositions, a finite set W of states, a binary transition relation

R ⊆ W ×W total in both the first and second arguments (i.e., for every state w ∈ W ,

there is a state w′ such that R(w,w′) and there is a state w′′ such that R(w′′, w)), and a

labeling function L : W → 2P that assigns to each state a set of propositions. The set

P of propositions contains the distinguished proposition init ; a state w ∈ W is initial if

init ∈ L(w). We define four functions pre, p̃re, post and p̃ost from 2W to 2W as follows.

For any set U ⊆W of states, let

pre(U) = {w ∈W | there exists a state w′ ∈ U with R(w,w′)},
p̃re(U) = {w ∈W | for all states w′ with R(w,w′), we have w′ ∈ U},
post(U) = {w ∈W | there exists a state w′ ∈ U with R(w′, w)},
p̃ost(U) = {w ∈W | for all states w′ with R(w′, w), we have w′ ∈ U}.

The functions pre and post can be defined on states u ∈ W as pre(u) = pre({u}) and

post(u) = post({u}) respectively.

A K-valuation for a set V of variables is a function Γ : V → 2W that assigns to

each variable a set of states. If Γ and Γ′ are K-valuations for V , and V ′ ⊆ V is a subset

of the variables, we write Γ[Γ′/V ′] for the K-valuation for V that assigns Γ′(X) to each

variable X ∈ V ′, and Γ(X) to each variable X ∈ V \V ′. Let PV,K be the set of all K-

valuations over V . We extend the set union ∪ and set intersection ∩ to PV,K , where they

denote the pointwise set union and intersection, respectively. If, for example, Γ1(X) = S1

and Γ2(X) = S2, then (Γ1 ∪ Γ2)(X) = S1 ∪ S2 and (Γ1 ∩ Γ2)(X) = S1 ∩ S2. We define

the pointwise set-containment relation v over PV,K as Γ v Γ′ iff for all X ∈ V , we have

that Γ(X) ⊆ Γ′(X). The tuple 〈PV,K ,v〉 is a complete lattice. For any subset Y ⊆ PV,K ,

let glb(Y ) and lub(Y ) denote the greatest lower bound and the least upper bound of Y

respectively. Let f be a function from PV,K to PV,K . The function f is monotonic if for all

Γ,Γ′ ∈ PV,K , if Γ v Γ′ then f(Γ) v f(Γ′). The function f is said to be continuous if for all

chains Γ0 v Γ1 v Γ2 v . . . , we have that f(lub({Γi|i ≥ 0})) = lub({f(Γi|i ≥ 0})). Since
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both V and K are finite, the set PV,K is also finite. In that case, it can be shown easily

that f is monotonic iff f is continuous. A valuation Γ ∈ PV,K is a fixpoint of f if f(Γ) = Γ.

Theorem 2.1 (Knaster-Tarski) Let K be a Kripke structure, V be a set of propositional

variables and f : PV,K → PV,K be a monotonic function. Then, the greatest fixpoint of f is

lub({Γ|Γ v f(Γ)}) and the least fixpoint of f is glb({Γ|f(Γ) v Γ}).

For all i ≥ 0, define the function f i from PV,K to PV,K inductively as follows.

f0(Γ) = Γ

f i+1(Γ) = f(f i(Γ))

Suppose f is monotonic (and hence continuous). Let ⊥ be the valuation that maps

every variable to the empty set and let > be the valuation that maps every variable to W .

Then the least fixpoint µf =
⋃
i≥0 f

i(⊥) and the greatest fixpoint νf =
⋂
i≥0 f

i(>). This

gives us a procedure for computing the least and greatest fixpoints of functions from PV,K
to PV,K when K is finite. Given a Kripke structure K = 〈P,W,R, L〉 and a K-valuation Γ

for a set V of variables, every modal expression ϕ over the propositions P and the variables

V defines a set ϕK(Γ) ⊆W of states that satisfy ϕ. The definition proceeds inductively as

follows.

• pK(Γ) = {w ∈W | p ∈ L(w)}.

• (¬p)K(Γ) = {w ∈W | p 6∈ L(w)}

• XK(Γ) = Γ(X).

• (ϕ ∨ ψ)K(Γ) = ϕK(Γ) ∪ ψK(Γ).

• (ϕ ∧ ψ)K(Γ) = ϕK(Γ) ∩ ψK(Γ).

• (∃ ϕ)K(Γ) = pre(ϕK(Γ)).

• (∀ ϕ)K(Γ) = p̃re(ϕK(Γ)).

Given K, every block tuple B = 〈B1, . . . , Bn〉 over P and V defines a function BK from

PV,K to PV,K : inductively, if n = 0, then BK(Γ) = Γ; if B1 is a µ-block, then BK(Γ) is the
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least fixpoint of the function FKB,Γ; if B1 is a ν-block, then BK(Γ) is the greatest fixpoint of

FKB,Γ. The monotonic function FKB,Γ from PV,K to PV,K is defined by

FKB,Γ(Γ′)(X) =

 expand(X)K(〈B2, . . . , Bn〉K(Γ[Γ′/vars(B1)])) if X ∈ vars(B1),

(〈B2, . . . , Bn〉K(Γ[Γ′/vars(B1)]))(X) otherwise.

Note that for a pre-µ sentence φ = 〈B, X0〉, the function BK is a constant function. Given

K, the sentence φ defines the set φK = BK(Γ)(X0) of states (for any choice of Γ). For a

state w ∈ W and a pre-µ sentence φ, we write w |=K φ if w ∈ φK . For a Kripke structure

K, we write K |= φ, and say that K satisfies φ, if there is an initial state w of K such that

w |=K φ.1 The model-checking problem for pre-µ is to decide, given a Kripke structure K

and a pre-µ sentence φ, whether K |= φ.

We now define the notion of alternation depth of a block tuple B as in [EL86,

CKS92]. Given a block tuple B = 〈B1, . . . , Bn〉, the block Bi depends on the block Bj if

i 6= j and some variable that occurs in a modal expression of Bi is contained in vars(Bj).

We write Bj → Bi if Bi depends on Bj . The transitive closure of → is represented by →∗.
Define a function label from the set of blocks to N by induction as follows.

label(Bn) = 1.

label(Bi) = max(Yi ∪ Zi).

where

Yi = {1} ∪ {label(Bj)|j > i ∧ flag(Bj) = flag(Bi) ∧Bj →∗ Bi →∗ Bj}, and

Zi = {1} ∪ {1 + label(Bj)|j > i ∧ flag(Bj) 6= flag(Bi) ∧Bj →∗ Bi →∗ Bj}.
The alternation depth of B is defined to be max({label(Bi)|1 ≤ i ≤ n}). The

block tuple B is said to be alternation-free if the alternation depth of B is one. The pre-µ

sentence φ = 〈B, X0〉 is alternation-free if B is alternation-free.

Example 2.1 Consider the pre-µ formula ϕ = 〈B1, B2〉, where B1 is a ν-block containing

the single equation X1 = ∃ X2 and B2 is a µ-block containing the single equation X2 =

(p ∧ X1) ∨ ∃ X2. This formula is equivalent to the linear temporal logic formula 23p.

Then label(B2) = 1. Also B1 → B2 and B2 → B1. Therefore Y1 = {1} and Z1 = {1, 2},
and label(B1) = max({1, 2}) = 2. Thus we get that the alternation depth of ϕ is two.

The logic post-µ is obtained from the logic pre-µ by replacing the future modal

operators ∃ and ∀ by the past modal operators ∃ - and ∀ - , with the interpretations
1 Note that we work, for convenience, with the dual of the usual requirement that all initial states satisfy

a pre-µ sentence.
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(∃ - ϕ)K(Γ) = post(ϕK(Γ)) and (∀ - ϕ)K(Γ) = p̃ost(ϕK(Γ)). The semantics of post-µ

can alternatively be defined as follows. For a Kripke structure K = 〈P,W,R, L〉, define

the Kripke structure K−1 = 〈P,W,R−1, L〉, where R−1(w,w′) iff R(w′, w). For a post-µ

sentence φ, define φ−1 to be the pre-µ sentence obtained from φ by replacing each occurrence

of ∃ - and ∀ - by ∃ and ∀ , respectively. Then, for every state w of K, we have w |=K φ

iff w |=K−1 φ−1.

2.1.2 Query logics

We define query logics that are based on pre-µ and post-µ. The sentences of pre-µ

refer to the future of a given state in a Kripke structure, and the sentences of post-µ refer

to its past. By contrast, the sentences of query logics, called queries, refer to the whole

structure and thus enable translations between pre and post logics. The query logics are

obtained from pre-µ and post-µ by adding a predicate E , called the emptiness predicate, on

sentences. For a logic L, the query logic L∅ contains the two queries E(φ) and ¬E(φ) for

each sentence φ of L. The query logic LE is richer and its queries are constructed inductively

as follows:

• E(φ), where φ is a sentence of L,

• ¬θ1 and θ1 ∨ θ2, where θ1 and θ2 are queries of LE .

We sometimes refer to queries in L∅ and LE as sentences. The satisfaction relation |= for

queries on a Kripke structure K is inductively defined as follows:

• K |= E(φ) iff for all states s of K, we have s 6|= φ,

• K |= ¬θ1 iff K 6|= θ1, and

• K |= θ1 ∨ θ2 iff K |= θ1 or K |= θ2.

Example 2.2 To see why query logics are needed to compare forward and backward

reasoning, consider the problem of invariant checking. Given a set bad of error states, we

would like to check whether there is an initial state that has a path to a state in bad . The

property of having a path to a state in bad is expressed by the pre-µ sentence ϕ = 〈B〉,
where B is a µ-block with a single equation X = bad ∨ ∃ X. This sentence is equivalent

to the CTL property ∃3bad . Clearly ϕ talks about an event in the future whereas any



CHAPTER 2. SYMBOLIC MODEL CHECKING WITH FORWARD REASONING 15

sentence in post-µ, which uses only past operators, talks only about events in the past.

Therefore no sentence of post-µ is equivalent to ϕ. The invariant checking problem can

also be expressed by the pre-µ query E(init ∧ ϕ). Consider the post-µ sentence ϕ′ = 〈B′〉,
where B′ is a µ-block containing the single equation X ′ = init ∨∃ - X ′. Then the invariant

checking problem is also expressed by the post-µ query E(ϕ′ ∧ bad).

While our motivation for query logics is theoretical, for the purpose of comparing

pre and post logics, query logics are also practical. This is because once the state set φK

has been computed (either explicitly or implicitly, using BDDs), the evaluation of the query

E(φ) requires constant time. Therefore, checking a query in pre-µE or post-µE is not harder

than model checking pre-µ or post-µ sentences, respectively.

2.1.3 Equivalences on Kripke structures induced by pre and post logics

Let K = 〈P,W,R, L〉 and K ′ = 〈P,W ′, R′, L′〉 be two Kripke structures with the

same set of propositions. A relation β ⊆ W ×W ′ is a pre-bisimilarity relation if for all

states w and w′, we have that β(w,w′) implies the following.

(1) L(w) = L′(w′),

(2) for every state v with R(w, v), there is a state v′ with R′(w′, v′) and β(v, v′), and

(3) for every state v′ with R′(w′, v′), there is a state v with R(w, v) and β(v, v′).

Note that, in particular, β(w,w′) implies that either both w and w′ are initial, or neither

of them is initial. It is easy to see that pre-bisimilarity relations are closed under union.

Thus, if β1 and β2 are pre-bisimilarity relations, so is β1 ∪ β2. The pre-bisimilarity relation

β is a pre-bisimulation between K and K ′ if for all states w ∈W , there is a state w′ ∈W ′

such that β(w,w′), and for all states w′ ∈ W ′, there is a state w ∈ W such that β(w,w′).

The pre-bisimilarity relation β is an init-pre-bisimulation between K and K ′ if for all initial

states w ∈W , there is an initial state w′ ∈W ′ such that β(w,w′), and for all initial states

w′ ∈ W ′, there is an initial state w ∈ W such that β(w,w′). The relation β ⊆ W ×W ′ is

a post-bisimulation between K and K ′ if β is a pre-bisimulation between K−1 and K ′−1.

The relation β ⊆ W ×W ′ is a init-post-bisimulation between K and K ′ if β is a init-pre-

bisimulation between K−1 and K ′−1.

Proposition 2.2 ([BCG88]) Let K and K ′ be two Kripke structures. Then, for all w

and w′ the following statements are equivalent.
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(1) There is a pre-bisimilarity relation β between K and K ′ such that β(w,w′).

(2) For all pre-µ sentences φ, we have that w |=K φ iff w′ |=K′ φ.

The following are easy extensions of the above result for pre-µ.

Proposition 2.3 Let K and K ′ be two Kripke structures.

• There is an init-pre-bisimulation between K and K ′ iff for all sentences φ of pre-µ,

we have K |= φ iff K ′ |= φ.

• The following three statements are equivalent:

(1) There is a pre-bisimulation between K and K ′.

(2) For all queries θ of pre-µ∅, we have K |= θ iff K ′ |= θ.

(3) For all queries θ of pre-µE , we have K |= θ iff K ′ |= θ.

Proof:

• (=⇒) Let β be an init-pre-bisimulation between K and K ′. Consider a sentence φ of

pre-µ. Suppose K |= φ. Then there is an initial state w of K such that w |=K φ.

Since β be an init-pre-bisimulation, there is an initial state w′ of K ′ such that β(w,w′).

From Proposition 2.2 we have that w′ |=K′ φ and hence K ′ |= φ. Similarly if K ′ |= φ,

we can show that K |= φ.

(⇐=) Suppose for all sentences φ of pre-µ, we have K |= φ iff K ′ |= φ. Consider an

initial state w of K. Suppose for all initial states v of K ′ there is a pre-µ sentence

ϕv such that w |=K ϕv and v 6|=K′ ϕv. Let ψ =
∧
v ϕv. Then we get a contradiction

because K |= ψ but K ′ 6|= ψ. Therefore, there is an initial state w′ of K ′ such that

no pre-µ sentence can distinguish between w and w′. From Proposition 2.2, there

is a pre-bisimilarity relation βw between K and K ′ such that βw(w,w′). Thus, for

each initial state w ∈ W we can get pre-bisimilarity relation βw and for each initial

state w′ ∈ W ′ we can get pre-bisimilarity relation βw′ . We take the union of all such

relations to get the desired init-pre-bisimulation between K and K ′.

• ((1) =⇒ (2)) Suppose β is a pre-bisimulation between K and K ′. Let φ be a pre-µ

sentence. Suppose K |= E(φ). Then for all states v ∈ W , we have that v 6|= φ.

Consider an arbitrary state w′ ∈ W ′. Since β is a pre-bisimulation, there is a state
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w ∈ W such that β(w,w′). Since w 6|= φ we have from Proposition 2.2 that w′ 6|= φ.

Therefore, we have that K ′ |= E(φ). Similarly, we can show that if K ′ |= E(φ) then

K |= E(φ). It easily follows that K |= ¬E(φ) iff K ′ |= ¬E(φ).

((2) =⇒ (3)) We prove this by an induction over the structure of the queries in pre-µE .

The base case is supplied by (2). Suppose θ1 and θ2 are such that K |= θ1 iff K ′ |= θ1

and K |= θ2 iff K ′ |= θ2. Then we have that (a) K |= ¬θ1 iff K 6|= θ1 iff K ′ 6|= θ1

iff K ′ |= ¬θ1, and (b) K |= θ1 ∨ θ2 iff K |= θ1 or K |= θ2 iff K ′ |= θ1 or K ′ |= θ2 iff

K ′ |= θ1 ∨ θ2.

((3) =⇒ (1)) Suppose for all queries θ of pre-µE , we have K |= θ iff K ′ |= θ. In

particular, this holds for all queries θ of pre-µ∅. Consider a state w of K. Suppose

for all states v of K ′ there is a pre-µ sentence ϕv such that w |=K ϕv and v 6|=K′ ϕv.

Let ψ =
∧
v ϕv. Then we get a contradiction because K 6|= E(ψ) but K ′ |= E(ψ).

Therefore, there is a state w′ of K ′ such that no pre-µ sentence can distinguish between

w and w′. From Proposition 2.2, there is a pre-bisimilarity relation β between K and

K ′ such that β(w,w′). Thus, for each state w ∈W we can get pre-bisimilarity relation

βw and for each state w′ ∈ W ′ we can get pre-bisimilarity relation βw′ . We take the

union of all such relations to get the desired init-pre-bisimulation between K and K ′.

Proposition 2.4 Let K and K ′ be two Kripke structures.

• There is an init-post-bisimulation between K and K ′ iff for all sentences φ of post-µ,

we have K |= φ iff K ′ |= φ.

• The following three statements are equivalent:

(1) There is a post-bisimulation between K and K ′.

(2) For all queries θ of post-µ∅, we have K |= θ iff K ′ |= θ.

(3) For all queries θ of post-µE , we have K |= θ iff K ′ |= θ.

Proof: The proof runs exactly along the lines of the proof of Proposition 2.3.
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2.2 Intersection of pre and post logics

Of particular interest is the intersection of the query logics pre-µE and post-µE . It

contains the queries that can be specified in both pre-µE , which often is more convenient

for specifiers, and in post-µE , which often is more efficient for symbolic model checking. In

this section we show that essentially all linear properties lie in this intersection. On the

other hand, there are simple branching properties that do not lie in the intersection.

2.2.1 In

Consider a Kripke structure K = 〈P,W,R, L〉. An observation of K is a subset of

the set of propositions P . An error trace of K is a finite or infinite sequence of observations.

A linear property of K is a set of error traces.2 Many useful linear properties, namely, the

ω-regular linear properties, can be specified by finite automata. A finite automaton A =

〈P, S, S0, SF , r, `〉 consists of a finite set P of propositions, a finite set S of states, a set S0 ⊆ S
of initial states, a set SF ⊆ S of accepting states, a binary transition relation r ⊆ S × S,

and a labeling function ` : S → 2P that assigns to each state a set of propositions. 3 The

following definitions regarding paths apply equally to Kripke structures and automata. A

path π = u0, u1, . . . of K (resp. A) is a finite or infinite sequence of states such that for all

i ≥ 0, we have R(ui, ui+1) (resp. r(ui, ui+1)). A reverse-path π = u0, u1, . . . of K (resp. A)

is a finite or infinite sequence of states such that for all i ≥ 0, we have R(ui+1, ui) (resp.

r(ui+1, ui)). The path π is initialized if u0 is an initial state. We denote the concatination

of two paths π1 and π2 by π1 · π2. For a finite path or reverse-path π, let last(π) denote

the last state in the path and let |π| denote the length of the path. A finite path or

reverse-path π = u0, u1, . . . , un is a cycle if u0 = un. If π1 = u0, u1, . . . , un is a finite

path, π2 = v0, v1, . . . , vn is a cycle, and either |π1| = 0 or R(un, v0) (resp. r(un, v0)), then

u0, u1, . . . , un · (v0, v1, . . . , vn−1)ω is an infinite path. By Inf (π) we denote the set of states

that appear in π infinitely often. The labeling functions L and ` are lifted from states

to paths in the obvious way. Using the set Sf of accepting states, we classify paths as

accepting or rejecting. For example, we may say that a path is accepting if it visits a state

2 Recall that we work, for convenience, in a setting that is dual to the one that considers linear properties
to consist of all non-error traces.

3Note that while classical definitions of automata refer to an alphabet that labels the transitions between
states, here we assume that the alphabet (the set P of propositions) lables the states. This notational
difference between the two approaches is technical.
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from SF . We consider several classifications, which depend on the interpretation we place

on the automaton. We will get back to this point shortly.

With each finite automaton A we associate a sentence ∃A that is interpreted over

a Kripke structure K with the same propositions as A. The automaton A models execution

sequences that violate the property of interest. The model-checking problem for automata is

to decide, given K and A, whether K |= ∃A, where K |= ∃A if there exist an initialized path

π1 of K and an accepting initialized path π2 of A such that L(π1) = `(π2). The observation

sequence L(π1) is then called an error trace of K with respect to A. Recall that the accepting

paths of A depend on the interpretation we place on the automaton A. We consider here

three different interpretations: safety automata, Büchi automata, and co-Büchi automata.

For each interpretation we reduce the model-checking problem for automata to the model-

checking problem for post-µ∅, by translating automata into equivalent post-µ∅ queries. The

post-µ∅ query θ is equivalent to the automaton A if for every Kripke structure K, we have

K |= ∃A iff K |= θ.

In all translations, we will make use of the following. With each state s of the

automaton A, we associate variables Xs and X ′s. In addition, we use the two variables X

and X ′. In the following, let V = {Xs|s ∈ S}∪{X ′s|s ∈ S}∪{X,X ′}. For each state s of A,

let γs be a variable-free and modality-free expression that characterizes the state s locally,

namely, γs =
∧
p∈`(s) p ∧

∧
p6∈`(s) ¬p. Now, let BA be the following µ-block, which consists

of |S|+ 1 equations, with vars(BA) = {Xs | s ∈ S} ∪ {X}:

Xs =

 γs ∧ (init ∨
∨
t∈pre(s) ∃ - Xt) if s ∈ S0,

γs ∧
∨
t∈pre(s) ∃ - Xt if s 6∈ S0,

X =
∨
f∈SF Xf .

Note that the size of BA is linear in the size of A.

Safety automata

A safety property of a Kripke structure K is a set of finite error traces. The

regular safety properties can be specified by safety automata. A safety automaton is a

finite automaton A such that a path π of A is accepting if π is a finite path and its last

state is an accepting state of A. We show in Theorem 2.7 that the safety automaton A is

equivalent to the post-µ∅ query θA = ¬E(〈〈BA〉, X〉).
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If a finite error trace exists, we would like a model-checking algorithm to detect

it as soon as possible. By evaluating the query θA as follows (in the standard way), this

can indeed be guaranteed. The evaluation of the µ-block BA over a Kripke structure

K proceeds in iterations. Let XK(i) ⊆ W denote the value of variable X ∈ vars(BA)

after the i-th iteration, and let ΓK(i) denote the K-valuation that assigns to each variable

in X ∈ vars(BA) the value XK(i). Initially, XK(0) = ∅ for all X ∈ vars(BA). In all

subsequent iterations, the value of each variable X ∈ vars(BA) is updated according to

the equation XK(i + 1) = expand(X)K(ΓK(i)). Since the modal expressions in BA are

monotonic, we have that ΓK(0) v ΓK(1) v ΓK(2) v . . . . Therefore, if XK(m) 6= ∅ for

some m, then XK(n) 6= ∅ for all n > m. Hence, we can detect that K |= θA as soon as

XK(m) is nonempty. In other words, using symbolic forward state traversal, we will explore

only states up to distance m from initial states.

Lemma 2.5 Let A = 〈P, S, S0, SF , r, `〉 be a safety automaton and K = 〈P,W,R, L〉 be a

Kripke structure. For all i ≥ 0, s ∈ S, and w ∈W , we have that w ∈ XK
s (i) iff there is an

initialized path π1 of K ending in w and an initialized path π2 of A ending in s such that

L(π1) = `(π2) and |π1| = |π2| ≤ i.

Proof: We prove this by induction on i.

Base case: We have that XK
s (0) = ∅ for all s ∈ S. Also, the length of a path in

K or A is always greater than 0. Hence, it is not possible to have paths π1 and π2 such

that |π1| = |π2| ≤ 0.

Inductive case: Assume the statement holds for i. We prove it for i+ 1. By the

definition above, we have that

XK
s (i+ 1) =

 γs ∧ (init ∨
∨
t∈pre(s) post(XK

t (i))) if s ∈ S0,

γs ∧
∨
t∈pre(s) post(XK

t (i)) if s 6∈ S0.

(Case 1. s 6∈ S0) Suppose v ∈ XK
s (i + 1). From the definition of XK

s (i + 1), we have

that L(v) = `(s), and there is t ∈ pre(s) and u ∈ XK
t (i) such that R(u, v). From the

induction hypothesis, there is an initialized path π1 in K ending in u and an initialized

path π2 in A ending in t such that L(π1) = `(π2) and |π1| = |π2| ≤ i. Extend π1

by v and π2 by s to get the desired initialized paths. Suppose there are initialized

paths π1 of K ending in v and π2 of A ending in s such that |π1| = |π2| ≤ i + 1 and

L(π1) = `(π2). Since s is not an initial state, |π2| > 1. Let u be the predecessor of
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v in π1 and t be the predecessor of s in π2. Then there are initialized paths π′1 in K

ending in u and π′2 in A ending in t such that L(π′1) = `(π′2) and |π′1| = |π′2| ≤ i. From

the induction hypothesis, we get that u ∈ XK
t (i). Using the definition of XK

s (i+ 1),

we conclude that v ∈ XK
s (i+ 1).

(Case 2. s ∈ S0) Suppose v ∈ XK
s (i+ 1). If v ∈ (γs ∧ init)K then v is an initial state and

L(v) = `(s). We get π1 = v and π2 = s and |π1| = |π2| ≤ i+ 1. If v 6∈ (γs ∧ init)K , we

have that L(v) = `(s), and there is t ∈ pre(s) and u ∈ XK
t (i) such that R(u, v). We

follow the same reasoning as in Case 1. Suppose there are initialized paths π1 of K

ending in v and π2 of A ending in s such that |π1| = |π2| ≤ i+ 1 and L(π1) = `(π2).

If |π1| = 1, then v ∈ (γs ∧ init)K and hence v ∈ XK
s (i+ 1). If |π1| > 1, we follow the

same reasoning as in Case 1.

Corollary 2.6 Let A = 〈P, S, S0, SF , r, `〉 be a safety automaton and K = 〈P,W,R, L〉 be a

Kripke structure. Let Γ ∈ PV,K . For all s ∈ S and w ∈W , we have that w ∈ 〈BA〉K(Γ)(Xs)

iff there is an initialized path π1 of K ending in w and an initialized path π2 of A ending

in s such that L(π1) = `(π2).

The following theorem guarantees that if there is an error trace of length m, then

we will find it in m iterations.

Theorem 2.7 For every safety automaton A, an equivalent alternation-free post-µ∅ query

θA = ¬E(〈〈BA〉, X〉) can be constructed in linear time. Further, for every Kripke structure

K, if the shortest error trace in K with respect to A has length m, then XK(m + 1) 6= ∅,
where X is the root variable of θA.

Proof: Let K be a Kripke structure and Γ ∈ PV,K . Suppose K |= ∃A and the shortest

error trace of K with respect to A has length m. Then there is an initialized path π1 of K

and an initialized accepting path π2 of A such that L(π1) = `(π2) and |π1| = |π2| = m. Let

the path π1 end in state w and the path π2 end in state s. From Lemma 2.5, we have that

w ∈ XK
s (m) and therefore w ∈ XK(m + 1). From the monotonicity property, we get that

〈BA〉K(Γ)(X) 6= ∅. Therefore K |= θA. Suppose K |= θA. Then 〈BA〉K(Γ)(X) 6= ∅. This

means that 〈BA〉K(Γ)(Xs) 6= ∅ for some s ∈ SF . Therefore, we have that w ∈ XK
s (i) for

some i. An application of Lemma 2.5 gives us that K |= ∃A.
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Example 2.3 Consider the LTL formula ψ = 3p. A computation π satisfies ψ iff p always

holds along π. The safety automaton Aψ in the figure accepts exactly all the computations

that satisfy ψ.

s t

Aψ :

p

The µ-block BA contains the equations

Xs = ¬p ∧ (init ∨ ∃ - Xs).

Xt = p ∧ (init ∨ ∃ - Xs).

X = Xt.

Büchi automata

Safety automata cannot specify infinite error traces. For that, we use Büchi au-

tomata. A Büchi automaton A is a finite automaton such that a path π of A is accepting

if Inf (π) ∩ SF 6= ∅; that is, some accepting state of A occurs infinitely often in π. It is

well-known [EL86, Dam94, BC96] that for every Büchi automaton A, there exists a pre-µ∅
query ϑA such that for every Kripke structure K, we have K |= ∃A iff K |= ϑA. We now

show that there exists also a post-µ∅ query θA with the same property, thereby proving

that the model-checking problem for Büchi automata lies in the intersection of pre-µ∅ and

post-µ∅. We define two equational blocks: a ν-block B1 and a µ-block B2. The block B1

contains the following |SF |+ 1 equations, with vars(B1) = {X ′ | f ∈ SF } ∪ {X ′}:

X ′f = Xf ∧
∨
t∈pre(f) ∃ - X ′t,

X ′ =
∨
f∈SF X

′
f .

The block B2 contains an equation for each state s ∈ S\SF , defined by

X ′s = γs ∧
∨
t∈pre(s) ∃ - X ′t.

Then θA = ¬E(〈〈B1, B2, BA〉, X ′〉). The translation is linear in the size of the Büchi au-

tomaton. Also, the equational blocks B1 and B2 depend on each other and the alternation
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depth of θA is two. Since Büchi automata are expressively equivalent to the ω-regular

languages, the query logic post-µ∅ can specify all ω-regular properties.

It is instructive to compare the translation of A to pre-µ∅ [BC96]. The translation

contains three equational blocks —a µ-block C1, a ν-block C2, and a µ-block C3. The block

C1 contains a single equation

X ′ =
∨
s∈S0

X ′s.

The block C2 contains an equation for each state s ∈ SF , defined by

X ′f = γf ∧
∨
t∈post(f) ∃ X ′t,

The block C3 contains an equation for each state s ∈ S\SF , defined by

X ′s = γs ∧
∨
t∈post(s) ∃ X ′t.

Then θA = ¬E(〈〈C1, C2, C3〉, X ′〉). Again, the translation is linear in the size of the au-

tomaton and has an alternation depth of two. Hence, translation of LTL formulas to either

post-µ∅ or pre-µ∅ has the same complexity.

Lemma 2.8 Let K be a Kripke structure and Γ ∈ PV,K . Then for all s ∈ S \ SF and

w ∈ W , we have that w ∈ 〈B2〉K(Γ)(X ′s) iff there is f ∈ SF , u ∈ Γ(X ′f ), a path π1 in K

from u to w, and a path π2 in A from f to s such that L(π1) = `(π2).

Proof: Let K be a Kripke structure. For all s ∈ S \ SF , let reach(s) ⊆ W be the set of

states such that w ∈ reach(s) iff there is f ∈ SF , u ∈ Γ(X ′f ), a path π1 in K from u to w,

and a path π2 in A from f to s such that L(π1) = `(π2). Then, we have to prove that for all

s ∈ S \ SF and w ∈ W , we have that w ∈ 〈B2〉K(Γ)(X ′s) iff w ∈ reach(s). In the following,

let s ∈ S \ SF and w ∈W .

(=⇒) Recall that 〈B2〉K(Γ) is the greatest fixpoint of the function FK〈B2〉,Γ defined

below.

FK〈B2〉,Γ(Γ′)(X) =

 E(s,Γ′) if X = X ′s for some s ∈ S \ SF ,
Γ′(X) otherwise,

where E(s,Γ′) = γs ∧ (
∨
t∈pre(s)∩SF post(Γ(X ′t))∨

∨
t∈pre(s)∩S\SF post(Γ′(X ′t))). Consider an

evaluation Γ′ such that FK〈B2〉,Γ(Γ′) ⊆ Γ′. Define a new valuation ∆ as follows.

∆(X) =

 Γ′(X ′s) ∩ reach(s) if X = X ′s forsome s ∈ S \ SF ,
Γ′(X ′s) otherwise.
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We show that FK〈B2〉,Γ(∆) v ∆. We need to show that if s ∈ S \ SF then FK〈B2〉,Γ(∆)(X ′s) ⊆
∆(X ′s). Suppose w ∈ FK〈B2〉,Γ(∆)(X ′s) for some s ∈ S \ SF . Since ∆ v Γ′ and FK〈B2〉,Γ

is monotonic, we have that FK〈B2〉,Γ(∆) v FK〈B2〉,Γ(Γ′). Therefore, w ∈ FK〈B2〉,Γ(Γ′)(X ′s) ⊆
Γ′(X ′s).

Case 1. There is t ∈ pre(s) ∩ SF and v ∈ Γ(X ′t) such that R(v, w). Because of the paths

π′1 = v · w and π′2 = t · s, we have that w ∈ reach(s).

Case 2. There is some t ∈ pre(s) ∩ S \ SF and v ∈ ∆(X ′t) such that R(v, w). Since

v ∈ ∆(X ′t) we have that v ∈ reach(t) also. Hence, there is f ∈ SF , u ∈ Γ(X ′f ), a path

π1 in K from u to v, and a path π2 in A from f to t such that L(π1) = `(π2). Let

π′1 be obtained from π1 by appending w and π′2 be obtained from π2 by appending s.

This gives us that w ∈ reach(s).

Thus we get that w ∈ Γ′(X ′s) and w ∈ reach(s). Therefore w ∈ ∆(X ′s). From Theorem 2.1,

the least fixpoint 〈B2〉K(Γ) of FK〈B2〉,Γ is equal to glb({Γ′|FK〈B2〉,Γ(Γ′) v Γ′}). This clearly

means that if s ∈ S \ SF then 〈B2〉K(Γ)(X ′s) ∩ reach(s) = 〈B2〉K(Γ)(X ′s). In other words,

we have that 〈B2〉K(Γ)(X ′s) ⊆ reach(s). Hence w ∈ reach(s).

(⇐=) Suppose there is f ∈ SF , u ∈ Γ(X ′f ), a path π1 in K from u to w, and a path

π2 in A from f to s such that L(π1) = `(π2). Suppose that w 6∈ 〈B2〉K(Γ)(X ′s). Consider

the smallest n such that π2(n) ∈ S \ SF and π1(n) 6∈ 〈B2〉K(Γ)(X ′t) where t = π2(n).

Since π2(0) = f ∈ SF , we have that n > 0. Let t′ = π2(n − 1). Then either t′ ∈ SF

or π1(n − 1) ∈ 〈B2〉K(Γ)(X ′t′). In either case, since 〈B2〉K(Γ) is a fixpoint we get that

π1(n) ∈ 〈B2〉K(Γ)(X ′t) which is a contradiction. Thus we get that w ∈ 〈B2〉K(Γ)(X ′s).

Theorem 2.9 Let A be a Büchi automaton. Then, we have that the post-µ∅ query θA =

¬E(〈〈B1, B2, BA〉, X ′〉) is equivalent to A. The query θA can be constructed in linear time

and its alternation depth is two.

Proof: Let K be a Kripke structure. Let B be the block tuple 〈B1, B2, BA〉. We need to

show that K |= ∃A iff K |= ¬E(〈B, X ′〉). Let Γ ∈ PV,K . Since 〈B, X ′〉 is a sentence, the

greatest fixpoint BK(Γ) of FKB,Γ is independent of Γ.

(=⇒) Suppose K |= ∃A. Then there is an initialized path π1 in K and an accepting

initialized path π2 in A such that L(π1) = `(π2). Since both K and A are finite, there are

m and n such that 0 ≤ m < n, π1(m) = π1(n), and π2(m) = π2(n) ∈ SF . Therefore, we
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have initialized paths π′1 = π1(0), π1(1), . . . , π1(m− 1) · (π1(m), π1(m+ 1), . . . , π1(n− 1))ω

in K and π′2 = π2(0), π2(1), . . . , π2(m − 1) · (π2(m), π2(m + 1), . . . , π2(n − 1))ω in A such

that L(π′1) = `(π′2). Define the function before on [m,n) as follows.

before(k) =

 n− 1 if k = m,

k − 1 if k > m.

For all s ∈ SF , let add(s) = {π1(k)|m ≤ k < n and π′2(k) = s}. Define the

valuation ∆ as follows.

∆(X) =

 add(s) if X = X ′s for some s ∈ SF ,
∅ otherwise.

Recall that BK(Γ) is the greatest fixpoint of the function FKB,Γ defined as follows.

FKB,Γ(Γ′)(X) =

 (Xf ∧ (
∨
t∈pre(f) ∃ - (X ′t)))

K(〈B2, BA〉K(Γ′)) ifX ∈ vars(B1),

〈B2, BA〉K(Γ′)(X) otherwise.

Notice that Γ does not appear on the right hand side of the function because the tuple

〈B1, B2, BA〉 does not contain any free variables. We have the following facts.

1. 〈B2, BA〉K(Γ′)(Xs) = 〈BA〉K(Γ′)(Xs) for all s ∈ S.

2. 〈B2, BA〉K(Γ′)(X ′s) = Γ′(X ′s) for s ∈ SF .

3. 〈B2, BA〉K(Γ′)(X ′s) = 〈B2〉K(Γ′)(X ′s) for s ∈ S \ SF .

Thus we can simplify the above definition to the following.

FKB,Γ(Γ′)(X) =


∨
f∈SF Γ′(X ′f ) if X = X ′,

E(f,Γ′) if X = X ′f for some f ∈ SF ,
〈B2, BA〉K(Γ′)(X) otherwise,

where

E(f,Γ′) = 〈BA〉K(Γ′)(Xf ) ∧ (
∨
t∈pre(f)∩SF post(Γ′(X ′t)) ∨∨
t∈pre(f)∩S\SF post(〈B2〉K(Γ′)(X ′t))).

We now show that ∆ v FKB,Γ(∆) for any valuation Γ. All we need to show is that if

f ∈ SF and u ∈ add(f) then u ∈ FKB,Γ(∆)(X ′f ). Suppose u ∈ add(f) for some f ∈
SF . Then for some m ≤ k < n, we have that f = π2(k) and u = π1(k). There are
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initialized paths σ1 in K to u and σ2 in A to f such that L(σ1) = `(σ2). Hence, from

Lemma 2.6 we have that u ∈ 〈BA〉K(∆)(Xf ). Let s = π2(before(k)). If s ∈ SF then

v = π1(before(k)) ∈ ∆(X ′s). Then there is s ∈ pre(f) ∩ SF such that u ∈ post(∆(X ′s)).

Therefore u ∈ FKB,Γ(∆)(X ′f ). If s ∈ S \ SF then there is a path σ1 = π1(k), π1(k + 1), . . . ,

π1(n − 1), π1(m), . . . , π1(before(k)) in K and a path σ2 = π2(k), π2(k + 1), . . . , π2(n −
1), π2(m), . . . , π2(before(k)) in A such that L(σ1) = `(σ2). Therefore, from Lemma 2.8 we

have that v = π1(before(k)) ∈ 〈B2〉K(∆)(X ′s). Then there is s ∈ pre(f) ∩ S \ SF such that

u ∈ post(〈B2〉K(∆)(X ′s)). Therefore u ∈ FKB,Γ(∆)(X ′f ). Thus, we get that ∆ v FKB,Γ(∆).

From Theorem 2.1, we get that the greatest fixpoint BK(Γ) of FKB,Γ is equal to lub({Γ′|Γ′ v
FKB,Γ(Γ′)}). Therefore we have that ∆ v BK(Γ). This means that there is some f ∈ SF
such that BK(Γ)(X ′f ) 6= ∅. Therefore BK(Γ)(X ′) 6= ∅ and K |= θA.

(⇐=) Suppose K |= ¬E(〈B, X ′〉). We incrementally construct infinite reverse-

paths π1 in K and π2 in A maintaining the invariants that (1) L(π1) = `(π2), and (2) if

last(π1) = w and last(π2) = s then s ∈ SF and w ∈ BK(Γ)(X ′s). Since BK(X ′) 6= ∅, there

is w ∈ BK(Γ)(X ′f ) for some f ∈ SF . Also w ∈ BK(Γ)(X ′f ) means that w ∈ BK(Γ)(X ′f ).

Therefore L(w) = `(f). Let π1 = w and π2 = f initially. Since w ∈ BK(Γ)(X ′f ), there is a

t ∈ pre(f) and v ∈ BK(Γ)(X ′t) such that R(v, w).

Case 1. t ∈ SF Augment π1 by appending v and π2 by appending t.

Case 2. t ∈ S \ SF We have that BK(Γ) = 〈B2〉K(BK(Γ)). Therefore we get that v ∈
〈B2〉K(BK(Γ))(X ′t). From Lemma 2.8, we get that there are u ∈ W , f ′ ∈ SF , a path

π′1 in K from u to v, and a path π′2 in A from f ′ to t such that u ∈ BK(Γ)(X ′f ′) and

L(π′1) = `(π′2). Augment π1 by appending π′1 after reversing it and π2 by appending

π′2 after reversing it.

The above process can be repeated ad infinitum to get infinite reverse-paths π1 in K and

π2 in A such that L(π1) = `(π2) and there are infinitely many occurrences of states in SF

on π2. Since both K and A are finite, there are m and n such that 0 ≤ m < n, π1(m) =

π1(n) and π2(m) = π2(n) ∈ SF . Therefore, we have reverse-paths π′1 = π1(0), π1(1), . . . ,

π1(m − 1) · (π1(m), π1(m + 1), . . . , π1(n − 1))ω in K and π′2 = π2(0), π2(1), . . . , π2(m −
1) · (π2(m), π2(m + 1), . . . , π2(n − 1))ω in A such that L(π′1) = `(π′2). Consider the paths

(π1(m), π1(n−1), π1(n−2), . . . , π1(m+1))ω inK and (π2(m), π2(n−1), π2(n−2), . . . , π2(m+

1))ω in A. Let π2(m) = f ∈ SF . We know that π1(m) ∈ BK(Γ)(X ′f ) and therefore

π1(m) ∈ BK(Γ)(Xf ). From Theorem 2.7, we get that there are initialized paths σ1 in
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K to π1(m) and σ2 in A to π2(m) such that L(σ1) = `(σ2). We get initialized paths

π′1 = σ1(0), σ1(1), . . . , σ1(last(σ1)− 1) · (π1(m), π1(n− 1), π1(n− 2), . . . , π1(m+ 1))ω in K

and π′2 = σ2(0), σ2(1), . . . , σ2(last(σ2) − 1) · (π2(m), π2(n − 1), π2(n − 2), . . . , π2(m + 1))ω

in A such that L(π′1) = `(π′2).

In particular, since all sentences of the linear temporal logic LTL can be translated to Büchi

automata [VW94], Theorem 2.9, together with [EL86], implies that all LTL sentences lie

in the intersection pre-µ∅ ∩ post-µ∅. Hence, LTL model checking can proceed by symbolic

forward state traversal. Since the translation from LTL to Büchi automata involves an

exponential blow-up, the translation from LTL to post-µ∅ is also exponential.

Example 2.4 Consider the LTL formula ψ = 23p. A computation π satisfies ψ iff p

holds infinitely often along π. The Büchi automaton Aψ in the figure accepts exactly all

the computations that satisfy ψ.

p

ts

Aψ :

The ν-block B1 contains the equations

X ′s = Xs ∧ (∃ - X ′s ∨ ∃ - X ′t).

X ′ = X ′s.

The µ-block B2 contains the single equation X ′t = ¬p ∧ (∃ - X ′s ∨ ∃ - X ′t). The µ-block BA

contains the equations

Xs = p ∧ (init ∨ ∃ - Xs ∨ ∃ - Xt).

Xt = ¬p ∧ (init ∨ ∃ - Xs ∨ ∃ - Xt).

Co-Büchi automata

Recall that the translation from Theorem 2.9 results in formulas of alternation

depth two. It has been recently argued [KV98a] that a linear property given by a co-
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Büchi automaton can be translated into an alternation-free pre-µ∅ query.4 Consequently,

the model checking of linear properties that are specified by co-Büchi automata requires

time that is only linear in the size of the Kripke structure. We now show that every co-

Büchi automaton A can also be translated into an equivalent alternation-free post-µ∅ query

θA, thereby proving that the model-checking problem for co-Büchi automata lies in the

intersection of alternation-free pre-µ∅ and alternation-free post-µ∅. A co-Büchi automaton

A is a finite automaton such that a path π of A is accepting if Inf (π) ⊆ SF ; that is, all the

non-accepting states of A occur in π only finitely often. We define an equational ν-block

B3 that contains the following |SF |+ 1 equations, with vars(B3) = {X ′f | f ∈ SF } ∪ {X ′}:

X ′f = Xf ∧
∨
t∈pre(f)∩SF ∃ - X ′t,

X ′ =
∨
f∈SF X

′
f .

Then, θA = ¬E(〈〈B3, BA〉, X ′〉). Note that θA is alternation-free and is linear in the size of

A.

Theorem 2.10 Let A be a co-Büchi automaton. Then, we have that the post-µ∅ query

θA = ¬E(〈〈B3, BA〉, X ′〉) is equivalent to A. The query θA can be constructed in linear time

and its alternation depth is one.

Proof: Let K be a Kripke structure. Let B be the block tuple 〈B3, BA〉. We need to show

that K |= ∃A iff K |= ¬E(〈B, X ′〉). Let Γ ∈ PV,K . Since 〈B, X ′〉 is a sentence, the greatest

fixpoint BK(Γ) of FKB,Γ is independent of Γ.

(=⇒) Suppose K |= ∃A. Then there is an initialized path π1 in K and an accepting

initialized path π2 in A such that L(π1) = `(π2). Since both K and A are finite, there are

m and n such that 0 ≤ m < n, π1(m) = π1(n) and π2(m) = π2(n) ∈ SF . Therefore, we

have initialized paths π′1 = π1(0), π1(1), . . . , π1(m− 1) · (π1(m), π1(m+ 1), . . . , π1(n− 1))ω

in K and π′2 = π2(0), π2(1), . . . , π2(m − 1) · (π2(m), π2(m + 1), . . . , π2(n − 1))ω in A such

that L(π′1) = `(π′2). Define the function before on [m,n) as follows (exactly as in the proof

of Theorem 2.9).

before(k) =

 n− 1 if k = m,

k − 1 if k > m.

4 The results in [KV98a] refer to sentences of the form ∀A, for deterministic Büchi automata A. Since an
ω-regular language can be specified by a deterministic Büchi automaton iff its complement can be specified
by a co-Büchi automaton, the corresponding result for ∃A, for co-Büchi automata A, follows by duality.
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For all s ∈ SF , let add(s) = {π1(k)|m ≤ k < n and π′2(k) = s}. Define the

valuation ∆ as follows.

∆(X) =

 add(s) if X = X ′s for some s ∈ SF ,
∅ otherwise.

Recall that BK(Γ) is the greatest fixpoint of the function FKB,Γ defined as follows.

FKB,Γ(Γ′)(X) =

 (Xf ∧ (
∨
t∈pre(f)∪SF ∃ - (X ′t)))

K(〈BA〉K(Γ′)) ifX ∈ vars(B3),

〈BA〉K(Γ′)(X) otherwise.

Notice that Γ does not appear on the right hand side of the function because the tuple

〈B3, BA〉 does not contain any free variables. We have that 〈BA〉K(Γ′)(X ′s) = Γ′(X ′s) for

s ∈ SF .

Thus we can simplify the above definition to the following.

FKB,Γ(Γ′)(X) =



∨
f∈SF Γ′(X ′f ) if X = X ′,

〈BA〉K(Γ′)(Xf )∧ if X = X ′f for some f ∈ SF ,∨
t∈pre(f)∩SF post(Γ′(X ′t))

〈BA〉K(Γ′)(X) otherwise.

We now show that ∆ v FKB,Γ(∆) for any valuation Γ. All we need to show is that if f ∈ SF
and u ∈ add(f) then u ∈ FKB,Γ(∆)(X ′f ). Suppose u ∈ add(f) for some f ∈ SF . Then for

some m ≤ k < n, we have that f = π2(k) and u = π1(k). There are initialized paths σ1 in

K to u and σ2 in A to f such that L(σ1) = `(σ2). Hence, from Lemma 2.6 we have that

u ∈ 〈BA〉K(∆)(Xf ). Let s = π2(before(k)). Since s ∈ SF then v = π1(before(k)) ∈ ∆(X ′s).

Then there is s ∈ pre(f) ∩ SF such that u ∈ post(∆(X ′s)). Therefore u ∈ FKB,Γ(∆)(X ′f ).

Thus, we get that ∆ v FKB,Γ(∆). From Theorem 2.1, we get that the greatest fixpoint

BK(Γ) of FKB,Γ is equal to lub({Γ′|Γ′ v FKB,Γ(Γ′)}). Therefore we have that ∆ v BK(Γ).

This means that there is some f ∈ SF such that BK(Γ)(X ′f ) 6= ∅. Therefore BK(Γ)(X ′) 6= ∅
and K |= θA.

(⇐=) Suppose K |= ¬E(〈B, X ′〉). We incrementally construct infinite reverse-

paths π1 in K and π2 in A maintaining the invariants that (1) L(π1) = `(π2), (2) for

all k < |π2| we have that π2(k) ∈ SF , and (3) if w = last(π1) and s = last(π1) then

w ∈ BK(Γ)(X ′s). There are f and w such that f ∈ SF and w ∈ BK(Γ)(X ′f ). Since

w ∈ BK(Γ)(X ′f ), we have that w ∈ B(Γ)(Xf ). Therefore L(w) = `(f). Let π1 = w and
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π2 = f initially. Since w ∈ BK(Γ)(X ′f ), there is a t ∈ pre(f) ∪ SF and v ∈ BK(Γ)(X ′t)

such that R(v, w). Augment π1 by appending v and π2 by appending t. The above process

can be repeated ad infinitum to get infinite reverse-paths π1 in K and π2 in A such that

L(π1) = `(π2) and for all k we have that π2(k) ∈ SF . Since both K and A are finite,

there are m and n such that 0 ≤ m < n and π1(m) = π1(n). Therefore, we have reverse-

paths π′1 = π1(0), π1(1), . . . , π1(m− 1) · (π1(m), π1(m+ 1), . . . , π1(n− 1))ω in K and π′2 =

π2(0), π2(1), . . . , π2(m−1)·(π2(m), π2(m+1), . . . , π2(n−1))ω in A such that L(π′1) = `(π′2).

Consider the paths (π1(m), π1(n− 1), π1(n− 2), . . . , π1(m+ 1))ω in K and (π2(m), π2(n−
1), π2(n−2), . . . , π2(m+1))ω in A. Let π2(m) = f ∈ SF . We know that π1(m) ∈ BK(Γ)(X ′f )

and therefore π1(m) ∈ BK(Γ)(Xf ). From Theorem 2.7, we get that there are initialized

paths σ1 in K to π1(m) and σ2 in A to π2(m) such that L(σ1) = `(σ2). We get initialized

paths π′1 = σ1(0), σ1(1), . . . , σ1(last(σ1)−1) ·(π1(m), π1(n−1), π1(n−2), . . . , π1(m+1))ω in

K and π′2 = σ2(0), σ2(1), . . . , σ2(last(σ2)−1) · (π2(m), π2(n−1), π2(n−2), . . . , π2(m+ 1))ω

in A such that L(π′1) = `(π′2).

Example 2.5 Consider the LTL formula ψ = 32p. A computation π satisfies ψ iff

p always holds after a certain point along π. The co-Büchi automaton Aψ in the figure

accepts exactly all the computations that satisfy ψ.

p

ts

Aψ :

The ν-block B3 contains the equations

X ′s = Xs ∧ ∃ - Xs.

X = X ′s.

2.2.2 Out

We now show that there exist branching temporal-logic specifications that cannot

be model checked by evaluating post-µE queries. A post-µE query θ is equivalent to a pre-µ

sentence φ if for every Kripke structure K, we have K |= φ iff K |= θ.
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p q

init init

p q

initK ′1 :K1 :

Figure 2.1: K1 and K ′1 are post-bisimilar

r

p q

K2 :

r

p q

r

init initK ′2 :

Figure 2.2: K2 and K ′2 are post-bisimilar

Proposition 2.11 There exist pre-µ sentences (in fact, CTL sentences) that have no equiv-

alent post-µE queries.

Proof: We give examples of pre-µ formulas that do not have equivalent post-µE queries.

In all cases, we give post-bisimilar Kripke structures such that the formula can distinguish

between them. From Proposition 2.4, no post-µE query can distinguish between post-

bisimilar Kripke structures, and we are done.

1. Consider the formula φ1 = 〈〈〈µ, {X = ∃ p ∧ ∃ q}〉〉, X〉, which is equivalent to

the CTL sentence ∃ p ∧ ∃ q. It distinguishes between the post-bisimilar Kripke

structures K1 and K ′1 in Figure 2.1. Indeed, K1 satisfies φ1 but K ′1 does not satisfy

φ1.

2. Consider the formula φ2 = 〈〈〈µ, {X1 = (r ∧ X2 ∧ X3) ∨ ∃ X1}〉, 〈µ, {X2 = p ∨
∃ X2}〉, 〈µ, {X3 = q∨∃ X3}〉〉, X1〉, which is equivalent to the CTL sentence ∃3(r∧
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init init initK ′3 :K3 :

p p

Figure 2.3: K3 and K ′3 are post-bisimilar but not pre-bisimilar

∃3p∧∃3q). It distinguishes between the post-bisimilar Kripke structures K2 and K ′2
in Figure 2.2. Indeed, K2 satisfies φ2 but K ′2 does not satisfy φ2.

3. Consider the formula φ3 = 〈〈〈ν, {X = ∃ p ∧ ∃ X}〉〉, X〉, which is equivalent to the

CTL sentence ∃2∃ p. It distinguishes between the post-bisimilar Kripke structures

K3 and K ′3 in Figure 2.3. Indeed, K3 satisfies φ3 but K ′3 does not satisfy φ3.

Interestingly, while the CTL sentence ∃2∃ p has no equivalent post-µ∅ query,

the CTL sentence ∃2∃3p, which is equivalent to the pre-µ sentence 〈〈B1, B2〉, X1〉 with

B1 = 〈ν, {X1 = X2∧∃ X1}〉 and B2 = 〈µ, {X2 = p∨∃ X2}〉, and which is not equivalent

to any LTL sentence [CD88], does have an equivalent query in post-µ∅. The query is

¬E(〈〈B3, B4〉, X1〉), with B3 = 〈ν, {X1 = p ∧X2, X2 = X3 ∧ ∃ - X2}〉 and B4 = 〈µ, {X3 =

init ∨ ∃ - X3}〉.

2.3 Hierarchy of pre and post logics

Let L1 and L2 be two logics whose sentences are interpreted over Kripke structures.

The logic L2 is as expressive as the logic L1 if for every sentence φ1 of L1, there is a sentence

φ2 ∈ L2 such that for every Kripke structure K, we have K |= φ1 iff K |= φ2. The logic L2

is more expressive than L1 if L2 is as expressive as L1 but L1 is not as expressive as L2.

The logic L2 is as distinguishing as the logic L1 if for all Kripke structures K and K ′, if

there is a sentence φ1 of L1 such that K |= φ1 but K ′ 6|= φ1, then there is a sentence φ2 of
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L2 such that K |= φ2 but K ′ 6|= φ2. Finally, the logic L2 is more distinguishing than L1 if

L2 is as distinguishing as L1 but L1 is not as distinguishing as L2. In this section, we study

the distinguishing and the expressive powers of pre-µ and post-µ and the query logics they

induce.

�
�
�
�
�
�

�
�
�
�
�
�

p
initinit
p

K ′4K4 :

p p

Figure 2.4: K4 and K ′4 are init-post-bisimilar but not post-bisimilar

Proposition 2.12 The distinguishing powers of pre and post logics are summarized in the

figure below. An arrow from logic L1 to logic L2 indicates that L1 is as distinguishing as

L2. A line without arrow indicates incomparability.

post-µ post-µEpost-µ∅

pre-µ pre-µ∅ pre-µE

Proof: Proposition 2.3 implies that the distinguishing powers of pre-µ∅ and pre-µE co-

incide. Similarly, proposition 2.4 implies that the distinguishing powers of post-µ∅ and

post-µE coincide. In order to prove the incomparability results, we show that the four rela-

tions init-pre-bisimulation, init-post-bisimulation, pre-bisimulation, and post-bisimulation

are all distinct. Recall that there may be states in a Kripke structure that are not reach-

able from an initial state, as there may be states from which no initial state is reachable.

Consider the Kripke structures K4 and K ′4 appearing in Figure 2.4. There is an init-pre-

bisimulation and an init-post-bisimulation between K4 and K ′4, but no pre-bisimulation or

post-bisimulation. Hence, pre-bisimulation is more distinguishing than init-pre-bisimulation

and post-bisimulation is more distinguishing than init-post-bisimulation. Now consider the
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Kripke structures K3 and K ′3 appearing in Figure 2.3. There is a post-bisimulation and an

init-post-bisimulation between K3 and K ′3, but no pre-bisimulation or init-pre-bisimulation.

Also, there is a pre-bisimulation and an init-pre-bisimulation between K−1
3 and K ′−1

3 but no

post-bisimulation or init-post-bisimulation. Hence, pre-bisimulation and post-bisimulation

as well as init-pre-bisimulation and init-post-bisimulation are incomparable.

We make the following observations about the distinguishing power hierarchy of

pre and post logics.

• If we restrict attention to Kripke structures in which all the states are reachable from

some state satisfying init, then the hierarchy of pre logics collapses. Formally, suppose

that K |= E(¬∃3- init). Then for every formula φ of pre-µ, we have that K |= E(φ)

iff K 6|= ∃3φ.

• If we restrict attention to Kripke structures in which all the states can reach some

state satisfying init, then the hierarchy of post logics collapses. Formally, suppose

that K |= E(¬∃3init). Then for every formula φ of post-µ, we have that K |= E(φ)

iff K 6|= ∃3- φ.

Proposition 2.13 The expressive powers of pre and post logics are summarized in the

figure below. An arrow from logic L1 to logic L2 indicates that L1 is as expressive as L2. A

line without arrow indicates incomparability.

post-µ post-µEpost-µ∅

pre-µ pre-µEpre-µ∅

Proof: It is easy to see that if a logic L2 is not as distinguishing as a logic L1, then L2

is not as expressive as L1. Therefore, most of our expressiveness results follow from the

corresponding results about distinguishability. In addition, as a Kripke structure K satisfies

a sentence φ iff K satisfies the query ¬E(init ∧ φ), the query logics pre-µ∅ and post-µ∅ are

more expressive than pre-µ and post-µ, respectively. In order to prove the advantage of the

full query logics pre-µE and post-µE over its subsets pre-µ∅ and post-µ∅, it is easy to see

that no query of the query logics pre-µ∅ and post-µ∅ is equivalent to the query E(p)∨ E(q).



CHAPTER 2. SYMBOLIC MODEL CHECKING WITH FORWARD REASONING 35

2.4 Discussion and experimental results

2.4.1 Intersection of pre and post logics

While previous works presented symbolic forward state-traversal procedures for

model checking some isolated linear and branching properties [INH96, IN97], we attempted

to study more systematically the class of properties that can be model checked using both

symbolic forward and backward state traversal. In particular, we showed that all ω-regular

linear properties (which includes all properties expressible in LTL) fall into this class, while

some simple branching properties (expressible in CTL) do not. Our proof goes through a

translation of ω-regular linear properties to the a query logic that uses the post operator on

sets of states. Thus, given a Kripke structure K and an automaton A for the property, we

translate A to a query in post-µ∅ and evaluate the query in K. Alternatively, one can check

K with respect to the formula ∃A by searching for an accepting path in the intersection

K × A. It follows that when the type of A is such that the accepting paths of K × A can

be specified using post-µ∅, forward symbolic model checking of K with respect to ∃A is

possible. In particular, when A is a Büchi automaton, the accepting paths of K ×A can be

specified by a formula of the form 23p, which is equivalent to a post-µ∅ query of alternation

depth two, and when A is a co-Buchi automaton, the required formula is of the form 32p,

which is equivalent to a post-µ∅ query of alternation depth one.

We showed that every query that can be specified in both pre-µ∅ and post-µ∅ can-

not distinguish between structures that are both pre-bisimilar and post-bisimilar. The exact

characterization of the intersection pre-µ∅ ∩ post-µ∅ remains open. In [GK94], the authors

identified a set of temporal-logic sentences called equi-linear. In particular, a pre-µ sentence

is equi-linear if it cannot distinguish between two Kripke structures with the same language

(i.e., observation sequences that correspond to initialized paths). Clearly, all LTL sentences

are equi-linear. However, some CTL sentences that have no equivalent LTL sentence are

also equi-linear. For example, it is shown in [GK94] that while the CTL sentence ∃2∃ p is

not equi-linear, the CTL sentence ∃2∃3p is equi-linear. Motivated by the examples from

Section 2.2.2, we conjecture that equi-linearity precisely characterizes the properties that

can be model checked using both symbolic forward and backward state traversal. Formally,

we conjecture that a pre-µ sentence is equi-linear iff there is an equivalent post-µ∅ query.
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2.4.2 Union of pre and post logics

In this chapter, we primarily think of post-µE as a language for describing symbolic

model-checking procedures for temporal-logic specifications. Furthermore, we have focused

on specification languages that contain only future temporal operators. Since LTL with past

temporal operators is not more expressive than LTL without past operators [LPZ85], every

LTL+past sentence can also be translated into an equivalent post-µ∅ query. In addition,

post-µ also permits the easy evaluation of branching past temporal operators that cannot

be evaluated using pre-µ. For example, the sentence ∀2(grant → (¬init)∀W̃req), where W̃
is a past version of the “weak-until” operator [MP92], specifies that grants are given only

upon request. Assuming a branching interpretation for past temporal operators [KP95],

this sentence has an equivalent post-µ∅ query, but no equivalent pre-µE query; that is, it

can be model checked by symbolic forward state traversal but not by symbolic backward

state traversal.

While the intersection pre-µE ∩ post-µE identifies the queries that can be model

checked by both forward and backward symbolic state traversal, it is the “union” (pre-µ ∪
post-µ)E5 that identifies the queries that can be model checked at all symbolically, by mixed

forward and backward state traversal.6 The logics pre-µE and post-µE are strict subsets of

(pre-µ ∪ post-µ)E . For example, the pre-µ ∪ post-µ sentence init ∧ ∃ p1 ∧ ∃ p2 ∧ ∃ - q1 ∧
∃ - q2 is not expressible in either pre-µE or post-µE . Furthermore, it is the alternation-free

fragment of (pre-µ∪post-µ)E that identifies the queries that can be model checked efficiently.

Thus it is also of interest to ask which temporal logics can be translated into the (alternation-

free) union of pre and post query logics. Such temporal logics can have both future and past

temporal operators. In particular, it is easy to see that every CTL+past sentence (under the

branching interpretation for past) has an equivalent query in the alternation-free fragment

of (pre-µ ∪ post-µ)∅.

2.4.3 Experimental results

In our experiments, we performed BDD-based symbolic model checking on a pa-

rameterized sliding-window protocol, described in Appendix A, for the reliable transmission
5 By the union pre-µ∪post-µ we refer to the logic with all four modal operators ∃ , ∀ , ∃ - , and ∀ - .

It has, of course, strictly more sentences than the union of the sets of pre-µ and post-µ sentences.
6 In fact, not only can model checking algorithms be extended from pre-µ to (pre-µ ∪ post-µ)E without

extra cost, the satisfiability problem for the union is also not harder than the satisfiability problem for either
pre-µ or post-µ [Var98].
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WINDOW Forward Backward Reach-optimized backward
2 (30) 18 222 91
3 (45) 300 4584 -
4 (50) 5231 - -

Table 2.1: Experimental results for sliding window protocol

of packets over an unreliable channel. The parameter to the protocol is WINDOW , the

number of outstanding unacknowledged messages at the sender end. In the protocol, the

messages are modeled as boolean values. We checked whether all computations of the pro-

tocol satisfy the partial specification φ, which states that if the produced message msgP

toggles infinitely often at the sender end, then so does the consumed message msgC at the

receiver end. Formally, the specification φ is given by the LTL sentence

23(msgP ↔ ¬msgP)→ 23(msgC ↔ ¬msgC ).

We note that this sentence cannot be handled by the methods presented in [INH96, IN97].

In the table below we list the running times (in seconds) for different values of

WINDOW for checking φ using VIS [BHSV+96] for both symbolic forward and backward

state traversal. The quantity within the parentheses is the number of boolean variables

used to encode the state space of the protocol. It is folk wisdom in symbolic model checking

that using don’t-care minimization based on unreachable states can dramatically improve

the running times. So we also applied first symbolic forward state traversal to compute

the set of reachable states and then symbolic backward state traversal for model checking,

using the unreachable states as don’t cares. These results are shown in the last column. A

dash indicates an unsuccessful verification attempt where the model checking run exceeded

our time limit. In the future, we hope to compare our approach also against enumerative

forward state-traversal methods for LTL model checking.
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Chapter 3

Assume-Guarantee Reasoning

In this chapter, we focus on the verification problem of refinement checking when

the specification is a more abstract design. We refer to the design being analyzed as the

implementation. The refinement-checking problem is PSPACE-hard in the size of the im-

plementation description and in the state space of the specification [MS72, KV98b]. Not

surprisingly, algorithms for refinement checking are exponential in the size of the implemen-

tation description and doubly exponential in the size of the specification description. To

combat this state explosion problem, we divide the verification task at hand into simpler

tasks by making use of the compositional structure of both implementation and specification

under the paradigm of assume-guarantee reasoning. We have developed a formal-verification

tool, called Mocha [AHM+98], which is based on the system description language of reac-

tive modules [AH96]. Reactive modules permit the modular and hierarchical description of

heterogeneous systems, and have been designed explicitly to support compositional tech-

niques such as assume-guarantee reasoning. We illustrate our methodology on a simple

three-stage pipeline and also describe our verification of a complex hardware circuit that

implements Tomasulo’s algorithm for out-of-order execution.

We now briefly outline our methodology, which approaches a refinement-checking

problem of the form P1‖P2 � Q (where � is the trace-containment relation) by introducing

abstraction and witness modules. Suppose that the state space of the implementation

P1‖P2 is too large to be handled by exhaustive search algorithms. A naive compositional

approach would attempt to prove both P1 � Q and P2 � Q, and then conclude P1‖P2 � Q.

Though sound, the naive approach often fails in practice, because P1 usually refines Q only

in a suitable constraining environment, and so does P2. Hence we construct a suitable



CHAPTER 3. ASSUME-GUARANTEE REASONING 39

constraining environment A2 for P1, and similarly A1 for P2. Since A1 describes the aspects

of P1 that are relevant to constraining P2, and similarly A2 is an abstract description of P2,

the two new modules A1 and A2 are called abstraction modules. By assume-guarantee

reasoning, we conclude P1‖P2 � Q from the two proof obligations P1‖A2 � A1‖Q and

A1‖P2 � Q‖A2.

Traditionally, the size of the implementation has been viewed as the main source

of complexity for the refinement-checking problem. In our approach, we shift the focus to

the size of the gap between the implementation and the specification. As an extreme case,

if we are given two identical copies of a design, we ought to be able to verify that one is

a valid refinement of the other, no matter how large the designs. We want the success

rate of our methodology to increase if the designer invests effort in structuring the imple-

mentation and specification so as to expose more commonality between them. Abstraction

modules form an intermediate layer between the implementation and the specification, and

thus provide a systematic way of reducing the gap. In our case studies, we found that

abstraction modules generally take the form of abstract definitions for hidden implementa-

tion variables. When composed with the original specification, which often specifies only

relationships between primary inputs and outputs, the abstraction modules yield a richer

specification that is closer to the implementation. Constructing good abstraction modules

requires manual effort. Once constructed, our methodology automatically makes effective

use of the abstraction modules to decompose the refinement check.

Even if the state space of the implementation becomes manageable as a result of

proof decomposition, each remaining refinement check, say P ′ = P1‖A2 � A1‖Q = Q′, is

still PSPACE-hard in the size of the specification state space. However, for the special case

that all variables of Q′ are also present in P ′ (in this case, we say that Q′ is projection

refinable by P ′), the refinement check reduces to a transition-invariant check, which verifies

that every move of P ′ can be mimicked by Q′. The complexity of this procedure is linear on

the state spaces of both P ′ and Q′. If Q′ is not projection refinable by P ′, our methodology

advocates the introduction of a witness module W , which makes explicit how the hidden

variables of the specification Q′ depend on the state of the implementation P ′. Then Q′

is projection refinable by P ′‖W , and it suffices to prove P ′‖W � Q′ in order to conclude

P ′ � Q′. The construction of witness modules also requires manual effort, but whenever

the specification Q′ simulates the implementation P ′, a suitable witness can be found.

Related work. Assume-guarantee rules for various formalisms can be found in
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[MC81, Sta85, AL95, AH96, McM97]. Abstraction modules have appeared before as re-

finement maps [McM97]. Witnesses have appeared in various guises and forms (homomor-

phisms, refinement mappings, simulation relations, etc.) in different works [Lam83, LT87,

AL91, BBLS92, CGL92, Kur94, LV95, McM97]. Our choice of case studies is not new either;

other correctness proofs for Tomasulo’s algorithm can be found in [DP97, McM98]

3.1 Transition constraints

A variable has a name and a type associated with it. For any set of variables V let

V ′ denote the set of new variables whose names are obtained from the names of variables in

V by putting a ′ at the end with the type remaining unchanged. For example, if V = {a, b}
with a and b being of types integer and boolean respectively, then V ′ = {a′, b′} where a′

and b′ have the same types as a and b respectively. A valuation for a set of variables V is

a function that maps every variable in V to a value of appropriate type. For example the

function f on V such that f(a) = 5 and f(b) = false is a valuation for V . A transition

constraint A is a 4-tuple 〈Priv(A), Obs(A), I(A),U(A)〉 with the following components:

• A finite set Priv(A) of private variables and a finite set Obs(A) of observable variables,

such that Priv(A)∩Obs(A) = ∅. The set Var(A) is the union of Priv(A) and Obs(A).

• A initial predicate I(A) over Var(A)′ and an update predicate U(A) over Var(A) ∪
Var(A)′.

A state of a transition constraint A is a valuation for Var(A). A state s of A is

initial if it satisfies the initial predicate of A. Given two states s and t, we write s →A t

if the update predicate of A evaluates to true, when its unprimed variables are assigned

values from s and its primed variables are assigned values from t. A trajectory of A is a

finite sequence s0, . . . , sn of states such that (1) s0 is an initial state of A, and (2) for i < n,

we have si →A si+1. The states that lie on trajectories are called reachable. An observation

of A is a valuation for Obs(A). If s is a valuation to a set of variables and P ⊆ Var(A),

we use [s]P to denote the valuation restricted to the variables in P . We also use [s]A to

denote [s]Obs(A). For a state sequence s = s0, . . . , sn, we write [s]A = [s0]A, . . . , [sn]A for

the corresponding observation sequence. If s is a trajectory of A, then the projection [s]A

is called a trace of A. Let Y ⊆ Var(A) for some constraint A. Then A is said to be

non-blocking for Y if (1) for all valuations Γ of Y there is an initial state t of A such that
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[t]Y = Γ, and (2) for all states s of A and valuations Γ of Y ′ there is a state t of A such

that s →A t and [t]Y = Γ.

Parallel composition. The composition operation combines two transition con-

straints into a single transition constraint whose behavior captures the interaction between

the two components. Two transition constraints A and B are compatible if their sets of pri-

vate variables is disjoint. Given two compatible transition constraints A and B , the compo-

sition A‖B is the transition constraint 〈Priv(A)∪Priv(B), Obs(A)∪Obs(B), I(A)∧I(B),

U(A) ∧ U(B)〉.

The notion that two transition constraints describe the same system at different

levels of detail is captured by the refinement relation. The transition constraint B is refinable

by transition constraint A if every observable variable of B is an observable variable of A.

The transition constraint A refines the transition constraint B , written A � B , if (1) B is

refinable by A, and (2) for every trajectory s of A, the projection [s]B is a trace of B .

Witness constraints. Let A and B be two transition constraints. The problem

of checking if A � B is PSPACE-hard in the state space of B . However, the refinement

check is simpler in the special case in which all variables of B are observable. The module B

is projection refinable by the module A if (1) B is refinable by A, and (2) B has no private

variables. If B is projection refinable by A, then every variable of B is observable in both

A and B . Therefore, checking if A � B reduces to checking if for every trajectory s of A,

the projection [s]B is a trajectory of B . According to the following theorem, this can be

done by a transition-invariant check, whose complexity is linear in the state spaces of both

A and B .

Theorem 3.1 (Projection refinement) Let A and B be two transition constraints where

B is projection refinable by A. Then A � B iff (1) if s is an initial state of A, then [s]B is

an initial state of B, and (2) if s is a reachable state of A and s→A t, then [s]B →B [t]B .

Proof: (=⇒) Since B is projection refinable by A, we have that for every trajectory s

of A the projection [s]B is a trajectory of B . (1) Suppose s is an initial state of A. Then

s is a trajectory of A. Therefore [s]B is a trajectory of B and [s]B is an initial state

of B . (2) Suppose s is a reachable state of A. Then there is a trajectory s0, s1, . . . , s of A

ending in s. Since s→A t the sequence s0, s1, . . . , s, t is also a trajectory of A. Therefore

[s0]B , [s1]B , . . . , [s]B , [t]B is a trajectory of B and we get [s]B →B [t]B .



CHAPTER 3. ASSUME-GUARANTEE REASONING 42

(⇐=) We show that for every trajectory s of A, the sequence [s]B is a trajectory

of B by induction on the length of s.

Base step. Suppose s = s0 is a trajectory of A. Then [s0]B is an initial state

of B . Therefore [s]B is a trajectory of B .

Inductive step. Suppose s = s0, s1, . . . , sn is a trajectory of A for some n > 0.

Then s′ = s0, s1, . . . , sn−1 is a trajectory of A, state sn−1 is a reachable state of A and

sn−1 →A sn. From the induction hypothesis, we have that [s0]B , [s1]B , . . . , [sn−1]B is a

trajectory of B . Moreover [sn−1]B →B [sn]B . Therefore [s0]B , [s1]B , . . . , [sn−1]B , [sn]B is a

trajectory of B .

We make use of this theorem as follows. Suppose that B is refinable by A, but not

projection refinable. This means that there are some private variables in B . Define Bu to

be the constraint obtained by making every private variable of B an observable variable. If

we compose A with a constraint W whose observable variables include the private variables

of B , then Bu is projection refinable by the composition A‖W . Moreover, if W does not

constrain A, that is, it is non-blocking on those observable variables that are also observable

variables of A, then A‖W � Bu implies A � B . Such a constraint W is called a witness

to the refinement A � B . The following theorem states that in order to check refinement,

it is sufficient to first find a non-blocking witness constraint and then check projection

refinement.

Theorem 3.2 (Witness transition constraints) Let A and B be two transition con-

straints such that B is refinable by A. Let W be a transition constraint such that (1) W is

compatible with A, (2) Priv(B) ⊆ Obs(W ), and (3) W is non-blocking on Obs(W )∩Obs(A).

Then Bu is projection refinable by A‖W , and if A‖W � Bu then A � B.

Proof: Bu by definition does not have any private variables. Since B is refinable A we have

that Obs(B) ⊆ Obs(A). Therefore Obs(Bu) = Obs(B) ∪ Priv(B) ⊆ Obs(A) ∪ Obs(W ) =

Obs(A‖W ).

Suppose A‖W � Bu. Let P = Obs(W ) ∩ Obs(A). We show that for every

trajectory s of A, there is a trajectory t of A‖W such that [s]A = [t]A. Since A‖W � Bu,

we can conclude that A � B . We do induction on the length of s.

Base step. Let s = s0. Since W is non-blocking on P there is an initial state

s′0 of W such that [s′0]P = [s0]P . Therefore there is an initial state t0 of A‖W such that

[t0]Var(A) = s0.
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Inductive step. Let s = s0, s1, . . . , sn for some n > 0. From the induction

hypothesis, there is a trajectory t0, t1, . . . , tn−1 of A‖W such that for all i < n we have that

[si]A = [ti]A. Let s = [sn−1]Var(W ). Since W is non-blocking on P , there is a state s′ of

W such that s →W s′ and [s′]P = [sn]P . Therefore there is a state t of A‖W such that

tn−1 →A‖W t and [t]Var(A) = s. Thus we get a trajectory t = t0, t1, . . . , tn−1, t of A‖W such

that [s]A = [t]A.

Assume-guarantee reasoning. Consider the problem of proving A � B where

A is the composition A1‖A2‖ . . . ‖An of n transition constraints and B is the composition

B1‖B2‖ . . . ‖Bm of m transition constraints. Typically, the state spaces of the components

of A are large and the state spaces of the components of B are small. The state space of

A is the product of the state spaces of A1, . . . ,An and consequently quite large. Therefore

it is impractical to explore the state space of A directly to prove A � B . We would like

to decompose the proof into smaller proof obligations that reason locally about the various

components in A constrained by a suitable environment containing components mostly from

B . We prove below a theorem that lets us do this decomposition.

We use Aτ to denote the transition constraint with the same variables as A, which

restricts their valuations only up to τ update rounds. Formally, a state sequence s =

s0, . . . , sn is a trajectory of Aτ if (1) n ≤ τ and s is a trajectory of A, or (2) n > τ and

s0, . . . , sτ is a trajectory of A. Note that if τ < 0, then every state sequence is a trajectory

of Aτ .

Theorem 3.3 (Assume-guarantee rule for constraints [McM98]) Suppose A =

A1‖A2‖ . . . ‖An and B = B1‖B2‖ . . . ‖Bm are transition constraints. Let ≺ be a partial

order on the components of B, let Z (Bi) = {Bj |Bj≺Bi}, and let ZC(Bi) = {Bj |Bj 6∈
Z (Bi)}. For each Bi, let Ci be some composition of transition constraints from A, let Di

be some composition of transition constraints from Z (Bi), and let Ei be some composition

of transition constraints from ZC(Bi). If C τ
i ‖Dτ

i ‖E
τ−1
i � Bτ

i for all 1 ≤ i ≤ m and τ ∈ N,

then A � B.

Proof: Let B = {B1,B2, . . . ,Bm}. We extend the order ≺ on the set B to the set B × N
as follows. We say that 〈Bj , τ ′〉≺〈Bk, τ〉 iff Bj≺Bk or Bj = Bk and τ ′ < τ . It is not too

difficult to see that ≺ is a partial order on B × N. We write A |= 〈Bk, τ〉 if all traces of A

of length τ + 1 are traces of Bk. We show by well-founded induction on the partial order ≺
that A |= 〈Bk, τ〉 for all 1 ≤ k ≤ m and for all τ ∈ N.
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Suppose A |= 〈Bj , τ
′〉 for all 〈Bj , τ

′〉≺〈Bk, τ〉. Then we show that A |= 〈Bk, τ〉.
Consider a trace σ of A of length τ + 1.

1. Since σ is a trace of A, we have that σ is a trace of Ai and hence a trace of Aτ
i for all

1 ≤ i ≤ n.

2. From the induction hypothesis, we have that σ is a trace of Bj and hence of Bτ
j for

all Bj ∈ Z (Bk).

3. Case 1. If τ = 0 then σ is a trace of Bτ−1
j for all 1 ≤ j ≤ m.

Case 2. If τ > 0 then there is a trace σ′ of A of length τ − 1 and a state s of A such

that σ = σ′.[s]A. From the induction hypothesis, we have that σ′ is a trace of Bj and

hence of Bτ−1
j for all 1 ≤ j ≤ m. Therefore σ is a trace of Bτ−1

j for all 1 ≤ j ≤ m.

We know that C τ
k ‖Dτ

k ‖E
τ−1
k � Bτ

k . Since σ is a trace of C τ
k , Dτ

k and E τ−1
k , we get that σ

is a trace of Bτ
k and hence a trace of Bk.

Example 3.1 Consider a simple communication protocol modeled by two constraints —

a sender and a receiver of messages. To simplify the example, we have abstracted out

the messages being transmitted and focus only on the signaling between the two. The

specification of the protocol is given by SndSpec‖RcvSpec, where SndSpec and RcvSpec are

transition constraints shown in Figure 3.1. The SndSpec constraint has observable variables

ack and snd , and a private variable wait . When a message is produced during some round,

the variable snd is set to true, and reset to false in the next round. Further, the variable wait

is set to true, to denote that SndSpec is waiting for an ack . When wait is true and SndSpec

receives an ack , wait is reset to false. The RcvSpec constraint has observable variables

snd and ack , and a private variable pending . When RcvSpec receives a message (indicated

by snd being true), it records the event by setting pending to true. It then waits for an

arbitrary amount of time, and then resets wait to false, simultaneously sending an ack . The

implementation of the protocol is given by SndImpl‖RcvImpl , where SndImpl and RcvImpl

are transition constraints shown in Figure 3.2. The constraint SndImpl differs from SndSpec

in its response to an incorrect ack . If SndImpl receives an ack when it is not waiting for one,

it just goes into an error state, and behaves nondeterministically from then on. In a similar

situation, SndSpec just ignores the offending ack . Thus SndImpl 6� SndSpec. Similarly,

RcvImpl differs from RcvSpec, if it receives a message when pending is true. Consequently

RcvImpl 6� RcvSpec. However, we can apply the assume-guarantee rule in Theorem 3.3 in
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constraint SndSpec

observable snd ,ack :bool

private wait :bool

init

¬wait ′ ∧ ¬snd ′

update

(¬wait ∨ (wait ∧ ack ∧ ¬wait ′)) ∧ (¬wait ∧ wait ′) = snd ′

endconstraint

constraint RcvSpec

observable ack ,snd :bool

private pending :bool

init

¬pending ′ ∧ ¬ack ′

update

((¬pending ∧ snd ∧ pending ′) ∨ pending) ∧ (pending ∧ ¬pending ′) = ack ′

endconstraint

Figure 3.1: Specification of sender/receiver
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constraint SndImpl

observable snd ,ack :bool

private wait ,error :bool

init

¬wait ′ ∧ ¬error ′ ∧ ¬snd ′

update

((¬wait ∧ error ′ = error)∨
(wait ∧ ack ∧ ¬wait ′ ∧ error ′ = error)∨
(¬wait ∧ ack ∧ error ′)∨
(error ∧ error ′ = error))

∧
(¬wait ∧ wait ′) = snd ′

endconstraint

constraint RcvImpl

observable ack ,snd :bool

private pending ,error :bool

init

¬pending ′ ∧ error ′ ∧ ¬ack ′

update

((¬pending ∧ snd ∧ pending ′ ∧ error ′ = error)∨
(pending ∧ error ′ = error)∨
(pending ∧ snd ∧ error ′))

∧ ((pending ∧ ¬pending ′ = ack ′) ∨ error)

endconstraint

Figure 3.2: Implementation of sender/receiver
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the following way. Let ≺ be the empty partial order on the set SndSpec,RcvSpec. Then, we

can show that SndImplτ‖RcvSpecτ−1 � SndSpecτ and RcvImplτ‖SndSpecτ−1 � RcvSpecτ

for all τ . Thus we conclude that SndImpl‖RcvImpl � SndSpec‖RcvSpec.

Transition constraints, though simple, are not convenient for describing complex

systems because they do not differentiate between input and output variables and they

cannot be simulated. In the next section, we describe a special type of transition con-

straints called reactive modules that address this issue. We will then use Theorem 3.3 to

derive a similar assume-guarantee rule for reactive modules and describe our verification

methodology based on reactive modules.

3.2 Reactive modules

Reactive modules [AH96] are a special class of transition constraints with two

special properties: (1) differentiation between inputs and outputs, and (2) executable non-

blocking semantics. A reactive system is invariably described as a composition of smaller

systems that communicate with other through inputs and outputs. Typically a component

does not control its inputs but depending on the received input makes internal decisions

that may result in different outputs. For expressing certain kinds of properties, it is neces-

sary to be able to make the distinction between the uncontrollable input nondeterminism

and the controllable internal nondeterminism. Reactive modules provide this distinction

by partitioning the observable variables into external variables and interface variables. We

denote the interface and external variables of a module P by Intf (P ) and Extl(P ) respec-

tively. External variables are updated by the environment and can be read by the module,

and interface variables are updated by the module and can be read by the environment.

The interface and private variables of a module are called controlled variables. During the

design phase of a complex reactive it is very important to be able to simulate or run the

design on test inputs in order to get intuition into its behavior. Reactive modules provide

simulation capability through their executable semantics.

The state of a reactive module changes again in a sequence of rounds. For the

external variables, the values in the initial and update rounds are left unspecified (i.e.,

chosen nondeterministically). For the controlled variables, the values in the initial and

update rounds are specified by (possibly nondeterministic) guarded commands. In each

update round, the new value of a controlled variable may depend on the (latched) values
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of some variables from the previous round. In addition, in each round, the initial (or new)

value of a controlled variable may depend on the initial (or new) values of some other

variables from the same round; such a dependency between the values of variables within

a single round is called an await dependency. In order to avoid inconsistent specifications,

the await dependencies must be acyclic. In reactive modules, the acyclicity restriction is

enforced statically, by partitioning the controlled variables into atoms that can be ordered

such that in each round, the initial (or new) values for all variables of an atom can be

determined simultaneously from the initial (or new) values of the external variables and the

variables of earlier atoms.

Each round, therefore, consists of several subrounds —one for the external vari-

ables, and one per atom. Each atom has an initial command, which specifies the possible

initial values for the variables of the atom, and an update command, which specifies the

possible new values for the variables of the atom within each update round. In the update

command, unprimed occurrences of variables refer to the latched values from the previous

round; in both the initial and update commands, primed occurrences of variables refer to

the initial (or new) values from the same round.

Example 3.2 Consider the simple instruction set architecture defined by the reactive

module ISA of Figure 3.3. The module ISA has five external variables (inputs) —the

operation op, the immediate operand inp, the source registers src1 and src2 , and the

destination register dest . There are two interface variables (outputs) —the value out of a

STORE instruction, and a boolean variable stall , which indicates if the current inputs have

been accepted. If the value of stall is true in a round, then no instruction is processed in

that round, and the environment is supposed to produce the same instruction again in the

next round. Finally, there is one private variable—the register file isaRegFile.

A round of the module ISA consists of four subrounds. In the first subround of

each update round, the environment chooses an operation, operands, and a destination,

by assigning values to the external variables. In the second subround, the atom ISAStall

decides nondeterministically if the current inputs are processed, by setting stall to true or

false. The third subround belongs to the atom ISARegFile. If the updated value of stall

is false, then the current instruction is processed appropriately. If the operation is AND

or OR, it is performed on the source registers and the result is placed into the destination

register. If the operation is LOAD , the immediate operand is assigned to the destination

register. The fourth subround belongs to the atom ISAOut . If the updated value of stall



CHAPTER 3. ASSUME-GUARANTEE REASONING 49

module ISA

external op, inp, src1 , src2 , dest

interface out , stall

private isaRegFile

atom ISAStall controls stall

init update

[]true → stall ′ := nondet

atom ISARegFile controls isaRegFile

init

[]true → forall i do isaRegFile ′[i] := 0

update

[]¬stall ′ ∧ op′ = LOAD → isaRegFile ′[dest ′] := inp′

[]¬stall ′ ∧ op′ = AND → isaRegFile ′[dest ′] := isaRegFile[src1 ′] ∧ isaRegFile[src2 ′]

[]¬stall ′ ∧ op′ = OR → isaRegFile ′[dest ′] := isaRegFile[src1 ′] ∨ isaRegFile[src2 ′]

atom ISAOut controls out

init update

[]¬stall ′ ∧ op′ = STORE → out ′ := isaRegFile[dest ′]

Figure 3.3: Instruction set architecture

is false and the current operation is STORE , then out is updated to the contents of the

destination register from the previous round. Since both atoms ISARegFile and ISAOut

wait, in each update round, for the new value of stall , they must be executed after the atom

ISAStall , which produces the new value of stall . However, there are no await dependencies

between the atoms ISARegFile and ISAOut , and therefore the third and fourth subrounds

of each update round can be interchanged.

Let P be a module. It can be interpreted as a transition constraint C(P ), which has

the same set of traces as P . The observable variables of C(P ) are the observable variables of

P , and the private variables of C(P ) are the private variables of P . The initial and update

predicates of C(P ) can be derived from the initial and update commands of P , respectively.

The initial predicate of C(P ) is is defined to be true in states s such that s can result from

the initial round of P . In similar spirit, the update predicate of C(P ) is defined to be true in

a state pair (s, t) such that P can start with state s and change to state t by the execution

of an update round. The awaits relation on the variables of P is denoted by �P and defined
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as y �P x iff y is controlled by an atom that awaits x. Let Y be a subset of the set of

variables of P . Then Y is awaits-closed in P if for all y ∈ Y and for all x ∈ Var(P ), we

have that (1) if y �P x then x ∈ Y , and (2) if x is controlled by the same atom as y then

x ∈ Y . The non-blocking semantics of modules gives us that a module is non-blocking for

an awaits-closed subset of its set of variables.

Fact 3.1 Let P be a module and Y ⊆ Var(P ) be awaits-closed in P . Then P is non-blocking

for Y .

The module Q is refinable by module P if (1) every interface variable of Q is an

interface variable of P , and (2) every external variable of Q is an observable variable of P .

The module P refines the module Q, written P � Q, if (1) Q is refinable by P , and (2) for

every trajectory s of P , the projection [s]Q is a trace of Q.

Fact 3.2 Let P and Q be modules such that Q is refinable by P . Then C(Q) is refinable by

C(P ) and P � Q iff C(P ) � C(Q).

Parallel Composition. The rules for compatibility of modules are more strin-

gent than in the case of transition constraints. Two modules P and Q are compatible if

(1) the controlled variables of P and Q are disjoint, and (2) the await dependencies between

the variables of P and Q are acyclic. If P and Q are two compatible modules, then the

composition P‖Q is the module whose atoms are the union of the atoms from P and Q. The

interface variables of P‖Q are the interface variables of P and Q, and the private variables

of P‖Q are the private variables of P and Q. The external variables of P‖Q consist of the

external variables of P that are not interface variables of Q, and the external variables of

Q that are not interface variables of P .

Example 3.3 The module ISA from Figure 3.3 can be seen as the parallel composition of

three modules. The module ISAStall has the interface variable stall ; the module ISARegFile

has the external variables op, inp, src1 , src2 , dest , and stall , and the interface variable

isaRegFile; the module ISAOut has the external variables op, dest , stall , and isaRegFile,

and the interface variable out . The operation hide makes the interface variable isaRegFile

private:

ISA = hide isaRegFile in ISAStall‖ISARegFile‖ISAOut
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module Opr1

interface opr1

external stall , pipe1 .op, pipe2 .op, pipe1 .inp,wbReg , regFile, src1

atom Opr1 controls opr1

update

[] ¬stall ′ → opr1 ′ :=

if src1 ′ = pipe1 .dest ∧ pipe1 .op 6= NOP ∧ pipe1 .op 6= STORE

then if pipe1 .op = LOAD then pipe1 .inp else aluOut′

else if src1 ′ = pipe2 .dest ∧ pipe2 .op 6= NOP ∧ pipe2 .op 6= STORE

then wbReg else regFile[src1 ′]

module Opr2

interface opr2

external stall , pipe1 .op, pipe2 .op, pipe1 .inp,wbReg , regFile, src2

atom Opr2 controls opr2

update

[]¬stall ′ → opr2 :=

if ((src2 ′ = pipe1 .dest) ∧ ¬(pipe1 .op = NOP) ∧ ¬(pipe1 .op = STORE )) then

if (pipe1 .op = LOAD) then pipe1 .inp else aluOut′ fi

else if ((src2 ′ = pipe2 .dest) ∧ ¬(pipe2 .op = NOP) ∧ ¬(pipe2 .op = STORE )) then wbReg

else regFile[src2 ′] fi fi

module Pipe1

interface pipe1 .op, pipe1 .inp, pipe1 .dest

external stall , inp, op, dest

atom Pipe1 controls pipe1 .op, pipe1 .dest , pipe1 .inp

init

[]true → pipe1 .op′ := NOP

update

[]true → pipe1 .op’ := if stall ′ then NOP else op′;

pipe1 .dest ′ := dest ′; pipe1 .inp′ := inp′

Figure 3.4: Pipeline stage 1



CHAPTER 3. ASSUME-GUARANTEE REASONING 52

module Pipe2

interface pipe2 .op, pipe2 .dest ,wbReg , aluOut

external pipe1 .op, pipe1 .inp, pipe1 .dest , opr1 , opr2

atom ALU controls aluOut

update

[]pipe1 .op = AND → aluOut ′ := opr1 ∧ opr2

[]pipe1 .op = OR → aluOut ′ := opr1 ∨ opr2

atom Pipe2 controls pipe2 .op, pipe2 .dest

init

[]true → pipe2 .op′ := NOP

update

[]true → pipe2 .op′ := pipe1 .op; pipe2 .dest ′ := pipe1 .dest

atom WbReg controls wbReg

update

[]pipe1 .op = AND ∨ pipe1 .op = OR → wbReg ′ := aluOut ′

[]pipe1 .op = LOAD → wbReg ′ := pipe1 .inp

module RegFile

interface regFile

external pipe2 .op, pipe2 .dest ,wbReg , aluOut

atom RegFile controls regFile

init

[]true → forall i do regFile ′[i] := 0

update

[] pipe2 .op = AND ∨ pipe2 .op = OR ∨ pipe2 .op = LOAD →
forall i do regF ile′[i] := if pipe2 .dest = i then wbReg else regFile[i]

Figure 3.5: Pipeline stages 2 and 3



CHAPTER 3. ASSUME-GUARANTEE REASONING 53

module PipeOut

interface out

external op, regFile, dest

atom Out controls out

update

[]¬stall ′ ∧ op′ = STORE → out ′ := regFile[dest ′]

module Stall

interface stall

external op, dest , pipe1 .op, pipe1 .dest , pipe2 .op, pipe2 .dest

atom Stall controls stall

update

[] op′ = STORE ∧ pipe1 .op 6= NOP ∧ pipe1 .op 6= STORE ∧ dest ′ = pipe1 .dest →
stall ′ := true

[] op′ = STORE ∧ pipe2 .op 6= NOP ∧ pipe2 .op 6= STORE ∧ dest′ = pipe2 .dest →
stall ′ := true

[]default→ stall ′ := false

Figure 3.6: Pipeline output and stall

Given two compatible modules P and Q, it is seen that one gets the same traces

by (1) viewing P and Q as transition constraints and interpreting P‖Q as composition

of transition constraints, and (2) first viewing P‖Q as composition of modules and then

interpreting the result as a transition constraint.

Fact 3.3 For any two compatible modules P and Q, the constraints C(P ) and C(Q) are

compatible and C(P‖Q) = C(P )‖C(Q).

Example 3.4 Consider the three-stage pipeline defined by the reactive module PIPELINE

shown in Figures 3.4, 3.5 and 3.6. In the first stage of the pipeline, the operands are fetched;

in the second stage, the operations are performed; in the third stage, the result is written into

the register file. The PIPELINE module is the parallel composition of seven modules. The

first stage consists of the modules Pipe1 , Opr1 , and Opr2 . Forwarding logic in Opr1 and

Opr2 ensures that correct values are given to the second stage, even if the value in question

has not yet been written into the register file. The second stage consists of the module
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Pipe2 , which has an ALU atom that processes arithmetic operations using the operands

from the first stage and writes the results into a write-back register called wbReg . The third

stage is consists of the module RegFile, which copies wbReg into the appropriate register.

The PipeOut module outputs a register value in response to a STORE instruction. The

Stall module controls the stall signal, which is set to true whenever a STORE instruction

cannot be accepted due to data dependencies.

Our goal is to show that PIPELINE is a correct implementation of the instruction

set architecture ISA. This is the case if every sequence of instructions given to PIPELINE

produces a sequence of outputs (and stalls) that is permitted by ISA. The module ISA is

refinable by PIPELINE , so it remains to be shown that every trace of PIPELINE is a trace

of ISA.

Theorem 3.4 Let P and Q be two modules such that Q is refinable by P . Let W be a

module such that (1) W is compatible with P , and (2) the interface variables of W include

the private variables of Q, and are disjoint from the external variables of P . Then Qu is

projection refinable by P‖W , and if P‖W � Qu then P � Q.

Proof: Since Q is refinable by P and the interface variables of W include the private

variables of Q, we get that every interface variable of Qu is an interface variable of P‖W
and every external variable of Qu is an observable variable of P‖W . Since Qu does not

have any private variables, we have that Qu is projection refinable by P‖W . Consider the

transition constraints C(P ), C(Q) and C(W ).

1. C(W ) is compatible with C(P ).

2. Priv(C(Q)) ⊆ Obs(C(W )).

3. Since Obs(C(W )) ∩ Obs(C(P )) is contained in the set of external variables of W , we

have that W is non-blocking on Obs(C(W )) ∩Obs(C(P )).

Suppose P‖W � Qu. Then C(P )‖C(W ) � C(Q)u. From Theorem 3.4, we get that C(P ) �
C(Q). Therefore P � Q.

The state space of a module may be exponential in the size of the module descrip-

tion. Consequently, even checking projection refinement may not be feasible. However,

typically both the implementation P and the specification Q consist of the parallel compo-

sition of several modules, in which case it may be possible to reduce the problem of checking
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if P � Q to several subproblems that involve smaller state spaces. The assume-guarantee

rule for reactive modules allows us to conclude P � Q as long as each component of the

specification Q is refined by the corresponding components of the implementation P within

a suitable environment. In the following we assume that the refinement problem has been

reduced to a projection refinement problem by supplying a suitable witness module and

therefore the specification does not have any private variables. We prove a general version

of the assume-guarantee rule for reactive modules [AH96].

Lemma 3.5 Let P and Q be modules such that Q has no private variables and every

interface variable of Q is an interface variable of P . Let R be a set of modules. Suppose

the composition of P and all the modules in R exists and is denoted by S, and S � Q. Let

Z = {R ∈ R|∃y ∈ Intf (Q). ∃z ∈ Intf (R). y �S z∨y �Q z}. Let C be the composition of all

the modules in the set Z and let D be the composition of all the modules in the set R \ Z.

Then for all τ , we have that C(P )τ‖C(C)τ‖C(D)τ−1 � C(Q)τ .

Proof: We have that S = P‖C‖D. Let Y be the least subset of Var(S) such that

(1) Intf (Q) ∪ Extl(S) ⊆ Y , (2) Y is awaits-closed in Q, and (3) Y is awaits-closed in

S. From the definition of C, we have that Y ⊆ Var(P‖C)∪Extl(S). We prove the theorem

by induction on τ .

Base step. We have to show that C(P )0‖C(C)0‖C(D)−1 � C(Q)0. Since every

trace is a trace of C(D)−1, we need to show C(P )0‖C(C)0 � C(Q)0. Consider a trace σ = s0

of length one of C(P )‖C(C). Since s0 is an initial state of C(P )‖C(C), we have that s0 is

an initial state of P‖C. Let s′0 be the restriction of s0 to Y . Since Y ⊆ Var(P‖C), the

valuation s′0 is obtained by executing a subset of atoms of P‖C. From Fact 3.1, we can

extend s′0 to t0 such that t0 is an initial state of P‖C‖D. Since P‖C‖D � Q, we get that

[t0]Q is an initial state of Q. But [t0]Q = [s0]Q because Var(Q) ⊆ Y . Therefore [s0]Q is an

initial state of Q.

Inductive step. Suppose τ > 0 and C(P )τ
′‖C(C)τ

′‖C(D)τ
′−1 � C(Q)τ

′
for all

τ ′ < τ . We will show that C(P )τ‖C(C)τ‖C(D)τ−1 � C(Q)τ . Consider a trajectory σ = σ′.s

of length τ + 1 of C(P )τ‖C(C)τ‖C(D)τ−1. Then σ is a trajectory of C(P ) and C(C), and

σ′ is a trajectory of C(D). Therefore σ is a trajectory of P and C, and σ′ is a trajectory

of D. Let s′ be the restriction of s to Y . Since Y ⊆ Var(P‖C) ∪ Extl(S), the valuation s′

is obtained by updating all external variables of S and executing a subset of atoms of S.

From Fact 3.1, we can extend s′ to a state t of S = P‖C‖D. Therefore, we get that σ′.t is
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a trajectory of P‖C‖D. Since P‖C‖D � Q, we get that [σ′.t]Q is a trace of Q and hence

of C(Q). But [t]Y = [s]Y . Since Y is an awaits-closed in Q and Intf (Q) ⊆ Y , we have that

[σ′.s]Q is also a trace of C(Q).

Theorem 3.6 (Assume-guarantee rule for modules) Let P = P1‖ · · · ‖Pn and Q =

Q1‖ · · · ‖Qm be reactive modules such that Q is projection refinable by P . For all 1 ≤ i ≤
m, let Γi be the composition of arbitrary compatible components from P and Q with the

exception of Qi. Suppose (1) Γi � Qi for all 1 ≤ i ≤ m, and (2) the relation �P ∪ �Q is

acyclic. Then P � Q.

Proof: Consider the set of atoms in Q. For each atom we can construct a module without

private variables containing that single atom. The interface variables of this module are

the controlled variables of the atom and the external variables are those read and awaited

variables that are not controlled by the atom. Clearly, we can express Q as the compo-

sition A1‖A2‖ . . . ‖Al of such modules. For all 1 ≤ j ≤ l, let Γ′j be equal to Γi if Aj

was built from an atom in Qi. For all 1 ≤ j ≤ l and 1 ≤ i ≤ n, if Aj was built from

an atom in Pi then Γ′j = Γi � Aj . Let �̃ denote the transitive closure of �P ∪ �Q.

Since �P ∪ �Q is acyclic, the relation �̃ is a partial order. Let ≺ be the relation on

the set {A1, A2, . . . , Al} such that Ak≺Aj iff there is a u ∈ Intf (Ak) and a v ∈ Intf (Aj)

such that v�̃u. Since �̃ is a partial order, we have that ≺ is a partial order. For each

Aj let Z(Aj) = {Ai|Ai≺Aj} and let ZC(Aj) = {Ai|Ai 6≺ Aj}. Consider the proof obli-

gation Γ′j � Aj . We denote the components of Γ′j by Bj . We partition Bj into three

parts in the following way. Let Cj be the components from the set {P1, . . . , Pn}, that is,

the set Cj = Bj ∩ {P1, . . . , Pn}. Let Cj be the composition of the modules in Cj . Let

Dj = {Ak ∈ Bj |∃y ∈ Intf (Aj). ∃x ∈ Intf (Ak). y �Γ′j
x ∨ y �Aj x}. Let Ej = Bj \ Dj . Let

Dj and Ej be the composition of modules from Cj and Dj respectively. Thus we have that

Γ′j = Cj‖Dj‖Ej � Aj . We know that Aj does not have any private variables and every in-

terface variable of Aj is also an interface variable of Cj . Therefore, we can apply Lemma 3.5

to conclude that C(Cj)τ‖C(Dj)τ‖C(Ej)τ−1 � C(Aj)τ for all τ . Moreover, for all j we have

that �Γ′j
⊆ �̃ and �Aj⊆ �̃. From the definition of ≺ we get that Dj ⊆ Z(Aj). There-

fore, from Theorem 3.3 we get that C(P1)‖C(P2)‖ . . . ‖C(Pn) � C(A1)‖C(A2)‖ . . . ‖C(Al), or

C(P1‖ . . . ‖Pn) � C(A1‖ . . . ‖Al). Therefore P1‖ . . . ‖Pn � A1‖ . . . ‖Al = Q1‖ . . . ‖Qm.

Example 3.5 We illustrate our assume-guarantee rule through the same communication

protocol that was discussed in Example 3.1. We now write the specification and implemen-
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module SndSpec

external ack:bool

interface snd:bool

private wait:bool

atom controls wait reads ack, wait

init

[]true → wait ′ := false

update

[]¬wait → wait ′ := true

[]wait ∧ ack → wait ′ := false

[]¬wait →
endatom

atom controls snd reads wait awaits wait

init

[]true → snd ′ := false

update

[]¬wait ∧ wait ′ → snd ′ := true

[]default→ snd ′ := false

endatom

endmodule

Figure 3.7: Specification of Sender
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module RcvSpec

interface ack:bool

external snd:bool

private pending:bool

atom controls pending reads pending, snd

init

[]true → pending ′ := false

update

[]¬pending ∧ snd → pending ′ := true

[]pending → pending ′ := false

[]pending →
endatom

atom controls ack reads pending awaits pending

init

[]true → ack ′ := false

update

[]pending ∧ ¬pending ′ → ack ′ := true

[]default→ ack ′ := false

endatom

endmodule

Figure 3.8: Specification of Receiver
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module SndImpl

external ack:bool

interface wait:bool

private wait, error:bool

atom controls wait, error reads ack, wait, error

init

[]true → wait ′ := false; error ′ := false

update

[]¬wait → wait ′ := true

[]wait ∧ ack → wait ′ := false

[]¬wait →
[]¬wait ∧ ack → error′ := true

[]error → wait ′ := nondet

endatom

atom controls snd reads wait awaits wait

init

[]true → snd ′ := false

update

[]¬wait ∧ wait ′ → snd ′ := true

[]default→ snd ′ := false

endatom

endmodule

Figure 3.9: Implementation of the sender
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module RcvImpl

interface ack:bool

external snd:bool

private pending, error:bool

atom controls pending, error reads pending, snd

init

[]true → pending ′ := false; error ′ := false

update

[]¬pending ∧ snd → pending ′ := true

[]pending → pending ′ := false

[]pending ∧ snd → error ′ := true

[]pending →
endatom

atom controls ack reads pending, error awaits pending

init

[]true → ack ′ := false

update

[]pending ∧ ¬pending ′ → ack ′ := true

[]error ′ → ack ′ := true

[]default→ ack ′ := false

endatom

endmodule

Figure 3.10: Implementation of Receiver
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tation in a more structured way using reactive modules. The specification of the protocol

is given by SndSpec‖RcvSpec, where SndSpec and RcvSpec are modules shown in Figure 3.7

and Figure 3.8 respectively. The SndSpec module partitions the observable variables of the

constraint SndSpec in Figure 3.1 into an external variable ack and an interface variable snd .

Similarly, the RcvSpec module partitions the observable variables of the constraint RcvSpec

in Figure 3.1 into an external variable snd and an interface variable ack . The implementa-

tion of the protocol is given by SndImpl‖RcvImpl , where SndImpl and RcvImpl are modules

shown in Figure 3.9 and Figure 3.10 respectively. Again, we have that SndImpl 6� SndSpec

and RcvImpl 6� RcvSpec. However, we can show that SndImpl‖RcvSpec � SndSpec and

RcvImpl‖SndSpec � RcvSpec, and we can conclude from the assume-guarantee rule in The-

orem 3.6 that SndImpl‖RcvImpl � SndSpec‖RcvSpec.

We make use of Theorem 3.6 as follows. First we decompose the specification Q

into its components Q1‖ · · · ‖Qn. Then we find for each component Qi of the specification a

suitable module Γi (called an obligation module) and check that Γi � Qi. This is beneficial

if the state space of Γi is smaller than the state space of P . The module Γi is the parallel

composition of two kinds of modules—essential modules and constraining modules. The

essential modules are chosen from the implementation P so that every interface variable of

Qi is an interface variable of some essential module. There may, however, be some external

variables of Qi that are not observable for the essential modules. In this case, to ensure

that Qi is refinable by Γi, we need to choose constraining modules from either from the

implementation P or from the specification Q (other than Qi). Once Qi is refinable by

Γi, if the refinement check Γi � Qi goes through, then we are done. Typically, however,

the external variables of Γi need to be constrained in order for the refinement check to go

through. Until this is achieved, we must add further constraining modules to Γi.

It is preferable to choose constraining modules from the specification, which is less

detailed than the implementation and therefore gives rise to smaller state spaces (in the

undesirable limit, if we choose Γi = P , then the proof obligation Γi � Qi involves the state

space of P and is no simpler than the original proof obligation P � Q). Unfortunately, due

to lack of detail, the specification often does not supply a suitable choice of constraining

modules. According to the following simple property of the refinement relation, however,

we can arbitrarily “enrich” the specification by composing it with new modules.

Theorem 3.7 (Abstraction modules) For all modules P , Q, and A, if P � Q‖A and
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Q is refinable by P , then P � Q.

So, before applying the assume-guarantee rule, we may add modules to the spec-

ification and prove P � Q‖A1‖ · · · ‖Ak instead of P � Q. The new modules A1, . . . , Ak

are called abstraction modules, as they usually give high-level descriptions for some imple-

mentation components, in order to provide a sufficient supply of constraining modules. In

summary, the creativity required from the human verification expert is the construction of

suitable abstraction modules, which on one hand, need to be as detailed as required to serve

as constraining modules in assume-guarantee reasoning, and on the other hand, should be

as abstract as possible to minimize their state spaces.

3.3 Verification of three-stage pipeline

We prove that PIPELINE � ISA using Theorems 3.1, 3.4, 3.6, and 3.7. We note

that ISA is refinable by PIPELINE , but not projection refinable. This is because isaRegFile

in ISA is a private variable. We claim that the module ISARegFile is a witness module

for isaRegFile. We then use Theorem 3.4 to reduce the proof obligation PIPELINE � ISA

to ISARegFile‖PIPELINE � ISAu. This proof obligation can be expanded in terms of

component modules to

ISARegFile‖RegFile‖Opr1‖Opr2‖
Pipe1‖Pipe2‖PipeOut‖Stall

� ISARegFile‖ISAOut‖ISAStall .

Let us start by identifying ISAOut with Q1. We need to find an obligation module Γ1,

such that Γ1 � ISAOut . There is only one interface variable for ISAOut , namely out . The

component of PIPELINE that generates out is PipeOut . Thus PipeOut is the only essential

module for Γ1. However, the proof obligation

Γ1 = PipeOut � Q1 = ISAOut

fails trivially, because ISAOut is not refinable by PipeOut . The module ISAOut has an

external variable isaRegFile that is not present in PipeOut . To achieve refinability, we add

ISARegFile, the module controlling isaRegFile, to Γ1 and try to prove

Γ1 = ISARegFile‖PipeOut � Q1 = ISAOut .
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This fails because the input regFile to PipeOut is not constrained. We add RegFile to

constrain regFile, but in vain, because the check

Γ1 = ISARegFile‖RegFile‖PipeOut � Q1 = ISAOut

also fails. The reason now is that the inputs to RegFile are not constrained. We add Pipe2

for this purpose, and then Pipe1 , Opr1 , Opr2 , and Stall to constrain the inputs to Pipe2 .

At last, we are able to prove the proof obligation

Γ1 = ISARegFile‖RegFile‖Pipe1‖Pipe2‖Opr1‖Opr2‖Stall‖PipeOut � Q1 = ISAOut .

Now, according to Theorem 3.6, the assume-guarantee proof looks as follows:

ISARegFile‖RegFile‖Pipe1‖Pipe2‖
Opr1‖Opr2‖Stall‖PipeOut

� ISAOut

ISARegFile � ISARegFile

Stall � ISAStall

ISARegFile‖RegFile‖Pipe1‖Pipe2‖
Opr1‖Opr2‖Stall‖PipeOut

� ISAOut‖ISARegFile‖ISAStall

However, notice that the biggest module on the left side above the line is exactly the same

as the module on the left side below the line. Hence, the compositional approach did not

yield much advantage.

So let us return to the PIPELINE module with the intent of adding abstraction

modules. We will add three abstraction modules—AbsOpr1 , AbsOpr2 , and AbsRegFile,

corresponding to Opr1 , Opr2 , and RegFile. Notice that whenever the required operand

specified by src1 is currently being produced by ALU or is in wbReg , module Opr1 looks

ahead and finds it. Otherwise, it gets the operand from the register file in PIPELINE . It is

observed that the specification variable isaRegFile[src1 ′] contains the same value that will

be produced by the forwarding logic. This observation can be used to write the following

abstraction module for Opr1 .

module AbsOpr1
external isaRegFile, src1 , stall
interface opr1
atom AbsOpr1 controls opr1

update
[]¬stall ′ → opr1 ′ := isaRegFile[src1 ′]
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Note that the abstraction module leaves the value of opr1 unspecified if stall is true. The

implementation module Opr1 , on the other hand, specifies a value for opr1 in every round.

Such incomplete specification is an essential characteristic of abstraction modules. A similar

abstraction module AbsOpr2 can be written for Opr2 .

To write an abstraction module for the implementation register file, regFile, ob-

serve that the value of regFile in every round must be equal to the value of isaRegFile

from two rounds earlier. Thus, the abstraction module for RegFile can be written as

AbsRegFile‖ISARegFiled , where AbsRegFile and ISARegFiled are given below.

module ISARegFiled

atom ISARegFiled controls isaRegFiled

init
[]true → forall i do isaRegFile ′d [i] := 0

update
[]true → forall i do isaRegFile ′d [i] := isaRegFile[i]

module AbsRegFile
atom AbsRegFile controls regFile

init
[]true → forall i do regFile ′[i] := 0

update
[]true → forall i do regFile ′[i] := isaRegFiled [i]

On composing AbsRegFile and ISARegFiled with ISA, we find that the new specification

is not projection refinable by ISARegFile‖PIPELINE , because of the new specification

variable isaRegFiled . To regain projection refinability, a witness module needs to be written

for the abstraction module isaRegFiled , and composed with PIPELINE . A suitable witness

is simply the module ISARegFiled . After adding the abstraction modules, according to
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Theorem 3.6, we obtain the following assume-guarantee proof:

PipeOut‖Pipe1‖Pipe2‖Stall‖
AbsRegFile‖ISARegFiled‖ISARegFile

� ISAOut

Opr1‖AbsOpr2‖Pipe1‖Pipe2‖
AbsRegFile‖ISARegFiled‖ISARegFile

� AbsOpr1

Opr2‖AbsOpr1‖Pipe1‖Pipe2‖
AbsRegFile‖ISARegFiled‖ISARegFile

� AbsOpr2

AbsOpr1‖AbsOpr2‖Pipe1‖Pipe2‖
RegFile‖ISARegFiled‖ISARegFile‖Stall

� AbsRegFile‖ISARegFiled

Stall � ISAStall

ISARegFile � ISARegFile

ISARegFile‖ISARegFiled‖RegFile‖
Pipe1‖Pipe2‖Opr1‖Opr2‖PipeOut‖Stall

�
ISARegFile‖ISAOut‖ISAStall

AbsOpr1‖AbsOpr2‖AbsRegFile

ISARegFiled

All proof obligations above the line satisfy projection refinability, and involve smaller state

spaces than the conclusion of the proof. Following Theorem 3.1, they can be discharged by a

transition-invariant check. Let us now focus on the modules below the line. Notice that the

composite module on the left side is PIPELINE ‖ ISARegFile ‖ ISARegFiled , and the com-

posite module on the right side is ISAu‖ISARegFiled‖AbsOpr1‖AbsOpr2‖AbsRegFile. By

Theorem 3.7, we can remove ISARegFiled‖AbsOpr1‖AbsOpr2‖AbsRegFile from the right

side to obtain the refinement PIPELINE‖ISARegFile‖ISARegFiled � ISAu. The module

ISARegFile ‖ ISARegFiled is a witness for the refinement PIPELINE � ISA. Hence, by

Theorem 3.4, we conclude that PIPELINE � ISA.

Related work. Most approaches to pipeline verification work off an abstraction

of the circuit in which the datapath bitvector variables are modeled as integers and the

datapath functions modeled as uninterpreted functions over integers. The approach in

[HIKB98, IHB98] uses finite instantiations of integer variables and a reachability algorithm

that can handle uninterpreted functions to perform a partial exploration of the control states

of the pipeline. The approach in [HIK98] extracts a control token net from a pipeline and

performs state exploration on an abstract interpretation of the net. Several researchers have

used theorem proving to verify that a pipeline refines an ISA specification. These approaches

express the transition relation of the pipeline and the ISA in quantifier free first-order logic
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with uninterpreted functions. They construct an abstraction function that relates a state

of the pipeline to a state of the ISA. A decision procedure is then used to verify that the

abstraction function is indeed correct. For simple pipelines, the abstraction function can

be constructed automatically by flushing the pipeline [BD94], that is, fresh instructions

are not allowed to enter the pipeline and the instructions already in are completed. For

more complicated pipelines, simple flushing yields huge terms that cannot be handled by

term rewriting decision procedures. Therefore, researchers have tried to decompose the

proof into smaller lemmas. The problem has is decomposed into two sub-problems by

manually constructing a design intermediate in abstraction between the pipeline and the

ISA [SH97, SH98a, SH98b], and verifying that the pipeline refines the design which in turn

refines the ISA. The “completion functions” approach [HSG98, HSG99] decomposes the

problem by treating the effect of each unfinished instruction in the pipeline separately.

3.4 Verification of Tomasulo’s algorithm

The Tomasulo algorithm allows processors to execute instructions in data flow

order. There could be multiple functional units, each of which could be pipelined indepen-

dently. Out of order execution of an instruction is allowed, if operands are available. The

specification module is the simple Instruction Set Architecture (ISA) module that we saw in

Figure 3.3. Recently, there have been a few efforts to verify this algorithm [DP97, McM98].

We present below our use of witness and abstraction modules to verify the algorithm in an

assume-guarantee fashion.

The implementation module TOMASULO has five main components: Implemen-

tation registers, reservation stations, bus, schedulers and a stall generator. Each register

in the implementation has three fields: valid , value and tag . If the valid bit is true then

the value field contains the current value of the register, otherwise the register is waiting

for its value from the reservation station pointed to by tag . The register file is modeled as

three arrays — impRegs.valid , impRegs.value and impRegs.tag . Each reservation station

has four fields: valid , aVal , bVal and op. The valid bit indicates if the station is currently

being used. The operation to be performed is stored in op and the operands are stored in

aVal and bVal . The operand values need not be available when an instruction is allocated

to reservation station. Consequently each of aVal and bVal have three fields, similar to a

register file: valid , value and tag . A reservation station is said to be enabled if its valid bit
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is true and both its operand values are available. The set of reservation stations is modeled

as eight arrays — st .valid , st .Op, st .aVal .valid , st .aVal .value, st .aVal .tag , st .bVal .valid ,

st .bVal .value and st .bVal .tag . Each reservation station can have pipelines of arbitrary

depth. We do not model these pipelines. We have a bus that chooses an enabled reserva-

tion station, performs its operation and broadcasts its result and tag. The registers and

reservation stations snoop this bus and update their values if their tag matches the tag on

the bus. There are two schedulers: the first allocSt schedules an invalid reservation station

(one whose valid bit is false) for an incoming instruction. The second opSt schedules an

enabled reservation station to access the bus. The variable stall is set to true whenever the

TOMASULO model is unable to accept an incoming instruction due to data dependencies.

The module for the i-th implementation register is given below. The environment
for the register consists of instruction inputs, bus values, and the variables stall and allocSt .
One such module is created for each of the implementation registers.

module IMPREG [i]

external bus.value, bus.tag , bus.valid , op, inp, dest , allocSt , stall

interface impRegs.valid , impRegs.value, impRegs.tag

atom IMPREG [i] controls impRegs.valid [i], impRegs.value[i], impRegs.tag [i]

init

[]true → impRegs.valid ′[i] := true; impRegs.value ′[i] := 0

update

[]¬stall ′ ∧ (op′ = STORE ) ∧ (dest ′ = i)→
impRegs.valid ′[i] := true; impRegs.value ′[i] := inp′

[]¬stall ′ ∧ ((op′ = AND) ∨ (op′ = OR)) ∧ (dest ′ = i)→
impRegs.valid ′[i] := false; impRegs.tag ′[i] := allocSt ′

[]¬impRegs.valid [i] ∧ bus.valid ∧ (impRegs.tag [i] = bus.tag)→
impRegs.valid ′[i] := true; impRegs.value ′[i] := bus.value

Each reservation station consists of four modules – one that controls the valid bit (valid),
one that controls opcode (op), and one each for the two operands (aVal and bVal). Their
descriptions are given below.

module STATION VALID [s]

interface st .valid [s]

external stall , allocSt , bus.valid , bus.tag , op

atom STATION VALID [s] controls st .valid [s]
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init

[]true → st .valid ′[s] := false

update

[]¬stall ′ ∧ (allocSt′ = s) ∧ ((op′ = AND) ∨ (op′ = OR))→ st .valid ′[s] := true

[]bus.valid ′ ∧ st .valid [s] ∧ (bus.tag ′ = s)→ st .valid ′[s] := false

module STATION OP [s]

interface st .Op[s]

external stall , op, allocSt

atom STATION OP [s] controls st .Op[s]

update

[]¬stall ′ ∧ (allocSt ′ = s) ∧ ((op′ = AND) ∨ (op′ = OR))→ st .Op′[s] := op′

module STATION AVAL[s]

interface st .aVal .valid [s], st .aVal .value[s], st .aVal .tag [s]

external impRegs.value, impRegs.tag , impRegs.valid , bus.valid , bus.tag , bus.value,

st .valid [s], stall , src1 op, allocSt

atom STATION AVAL[s] controls st .aVal .valid [s], st .aVal .value[s], st .aVal .tag [s]

init

[]true → st .aVal .valid ′[s] := false

update

[]¬stall′ ∧ (allocSt ′ = s) ∧ ((op′ = AND) ∨ (op′ = OR))→
st .aVal .valid ′[s] := impRegs.valid [src1 ′]; st .aVal .value ′[s] := impRegs.value[src1 ′];

st .aVal .tag ′[s] := impRegs.tag [src1 ′]

[]bus.valid ∧ st .valid [s] ∧ ¬st .aVal .valid [s] ∧ (bus.tag = st .aVal .tag [s])→
st .aVal .valid ′[s] := true; st .aVal .value ′[s] := bus.value

module STATION BVAL[s]

interface st .bVal .valid [s], st .bVal .value[s], st .bVal .tag [s]

external impRegs.value, impRegs.tag , impRegs.valid , bus.valid , bus.tag , bus.value,

st .valid [s], stall , src2 , op, allocSt

“Same as STATION AVAL[s] with src1 replaced by src2 ”

STATION [s] := STATION VALID [s]‖STATION OP [s]‖STATION AVAL[s]‖STATION BVAL[s]

The bus module computes the result of the operation that is scheduled by opSt and “broad-
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casts” the result and the tag of the reservation station available to the registers and other
reservation stations.

module BUS

interface bus.valid , bus.value, bus.tag

external stall , allocSt , st .valid , st .aVal .valid , st .aVal .value,

st .bVal .valid , st .Op, st .bVal .value, st .Op, opSt

atom BUS controls bus.valid , bus.value, bus.tag

init

[]true → bus.valid ′ := false

update

[]st .valid [opSt ′] ∧ st .aVal .valid [opSt ′] ∧ st .bVal .valid [opSt ′] ∧ st .Op[opSt ′] = AND →
bus.valid ′ := true; bus.value ′ := st .aVal .value[opSt ′] ∧ st .bVal .value[opSt ′];

bus.tag ′ := opSt ′

[]st .valid [opSt ′] ∧ st .aVal .valid [opSt ′] ∧ st .bVal .valid [opSt ′] ∧ st .Op[opSt ′] = OR →
bus.valid ′ := true; bus.value ′ := st .aVal .value[opSt ′] ∨ st .bVal .value[opSt ′];

bus.tag ′ := opSt ′

[]default→ bus.valid ′ := false

The two scheduler variables opSt and allocSt are set non-deterministically. If we want to
be more precise, we could set allocSt to an available reservation station (if one is available)
and opSt to a valid reservation station with correct operands (if one exists).

module ALLOC ST

interface allocSt

atom ALLOC ST controls allocSt

init update

[]true → allocSt ′ := nondet

module OP ST

interface opSt

atom OP ST controls opSt

init update

[]true → opSt ′ := nondet

The OUT module processes the LOAD instruction.
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module OUT

interface out

external impRegs.value, op, dest

atom OUT controls out

init

[]true → out ′ := 0

update

[](op′ = LOAD)→ out ′ := impRegs.value[dest ′]

The stall module sets stall to true when the execution cannot proceed due to data depen-
dencies or non-availability of reservation stations.

module STALL

interface stall

external impRegs.valid , impRegs.tag , st .valid , bus.valid , bus.tag allocSt , op, dest , src1 , src2

atom STALL controls stall

init

[]true → stall ′ := false

update

[]st .valid [allocSt ′] ∧ ((op′ = AND) ∨ (op′ = OR))→ stall ′ := true

[](op′ = LOAD) ∧ (¬impRegs.valid [dest ′])→ stall ′ := true

[]((op′ = AND)|(op′ = OR))∧
((¬impRegs.valid [src1 ′] ∧ bus.valid ∧ (impRegs.tag [src1 ′] = bus.tag))∨
(¬impRegs.valid [src2 ′] ∧ bus.valid ∧ (impRegs.tag [src2 ′] = bus.tag))∨
(¬impRegs.valid [dest ′] ∧ bus.valid ∧ (impRegs.tag [dest ′] = bus.tag)))→

stall ′ := true

[]((op′ = STORE ) ∧ ¬impRegs.valid [dest ′] ∧ bus.valid ∧ (impRegs.tag [dest ′] = bus.tag))→
stall ′ := true

[]default→ stall ′ := false

A Tomasulo module with 4 registers and 4 reservation stations can now be constructed as
follows:

IMPREGS := IMPREG [0]‖IMPREG [1]‖IMPREG [2]‖IMPREG [3]

STATIONS := STATION [0]‖STATION [1]‖STATION [2]‖STATION [3]

TOMASULO := IMPREGS‖STATIONS‖BUS‖STALL‖ALLOC ST‖OP ST‖OUT

Our aim is to show that TOMASULO � ISA. To ensure projection comparability,
we start by writing a witness module for the ISA registers, and composing the witness
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with the TOMASULO module. Just as in the proof of the 3-stage pipeline, we will use
ISARegFile to witness the register file of the specification. From Theorem 3.4, it suffices
to show that TOMASULO‖ISARegFile � ISAu. An abstraction module can be written for
the implementation registers, using the following observation: whenever an implementation
register is valid its value must coincide with its counterpart in the ISA.

module ABS REG [i]

external bus.value, bus.tag , bus.valid , op, inp, dest , allocSt , stall

interface impRegs.valid , impRegs.value, impRegs.tag

atom ABS REG VALID TAG [i] controls impRegs.valid [i], impRegs.tag [i]

init

[]true → impRegs.valid ′[i] := true

update

[]¬stall ′ ∧ (op′ = STORE ) ∧ (dest ′ = i)→
impRegs.valid ′[i] := true

[]¬stall ′ ∧ ((op′ = AND) ∨ (op′ = OR)) ∧ (dest ′ = i)→
impRegs.valid ′[i] := false; impRegs.tag ′[i] := allocSt ′

[]¬impRegs.valid [i] ∧ bus.valid ∧ (impRegs.tag [i] = bus.tag)→
impRegs.valid ′[i] := true

atom ABS REG VAL[i] controls impRegs.value[i]

init

[]true → impRegs.value ′[i] := 0

update

[]¬impRegs.valid ′[i]→ impRegs.value ′[i] := nondet

[]impRegs.valid ′[i]→ impRegs.value ′[i] := isaRegFile ′[i]

ABS REGS := ABS REG [0]‖ABS REG [1]‖ABS REG [2]‖ABS REG [3]

We also want to add abstraction modules for the reservation stations. To make it easier
to write abstraction modules, we define an auxiliary variable called history station for each
reservation station. The intent is that a history station contains the correct values of the
operands of, and the result eventually produced by, the corresponding reservation station. It
can get these values from the register file of ISA, since instructions are executed atomically
in the ISA.

module HIST STN AVAL[s]

interface histSt .aVal [s]
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external isaRegFile, op, src1 , allocSt , stall

atom HIST STN AVAL[i] controls histSt .aVal [s]

init

[]true → histSt .aVal ′[s] := 0

update

[]¬stall ′ ∧ (allocSt ′ = s) ∧ ((op′ = AND) ∨ (op′ = OR))→
histSt .aVal ′[s] := isaRegFile[src1 ′]

module HIST STN BVAL[s]

interface histSt .bVal [s]

“same as HIST STN AVAL[s] with src1 replaced by src2 ”

module HIST STN RESULT [s]

interface histSt .result [s]

external isaRegFile, op, dest , allocSt , stall

atom HIST STN RESULT [i] controls histSt .result [s]

init

[]true → histSt .result ′[s] := 0

update

[]¬stall ′ ∧ (allocSt ′ = s) ∧ ((op′ = AND) ∨ (op′ = OR))→
histSt .result ′[s] := isaRegFile[dest ′]

HIST STN [s] := HIST STN AVAL[s]‖HIST STN BVAL[s]‖HIST STN RESULT [s]

HIST STNS := HIST STN [0]‖HIST STN [1]‖HIST STN [2]‖HIST STN [3]

The abstraction module for the reservation stations and the bus module can now be written
with the help of the corresponding history stations.

module ABS STN AVAL[s]

interface st .aVal .value[s]

external st .aVal .valid [s], histSt .aVal [s]

atom ABS STN AVAL[s] controls st .aVal .value[s]

init update

[]st .valid ′[s] ∧ st .aVal .valid ′[s]→ st .aVal .value ′[s] := histSt .aVal ′[s]

[]default→ st .aVal .value ′[s] := nondet

module ABS STN BVAL[s]
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interface st .bVal .value[s]

external st .bVal .valid [s], histSt .bVal [s]

“ same as ABS STN AVAL[s] with histSt .aVal replaced by histSt .bVal”

ABS STN [s] := ABS STN AVAL[s]‖ABS STN BVAL[s]‖STATION OP‖STATION VALID [s]

ABS STNS := ABS STN [0]‖ABS STN [1]‖ABS STN [2]‖ABS STN [3]

module ABS BUS VAL

interface bus.value

external opSt , bus.valid , histSt .result

atom ABS BUS VAL controls bus.value

update

[]bus.valid ′ → bus.value ′ := histSt .result [opSt′]

[]¬bus.valid ′ → bus.value ′ := nondet

Because of the introduction of history stations in the specification, TOMASULO is no
longer projection comparable with ISA. We make them projection comparable by adding
the history station modules to the implementation also. The various lemmas into which the
proof is decomposed are given below.

ISARegFile‖ABS REGS‖STALL � ISAOut

HIST STNS‖ISARegFile‖
ABS STNS

� ABS BUS VAL

HIST STNS‖ISARegFile‖
ABS BUS VAL‖IMPREG [0]‖STALL

� ABS REG [0]

HIST STNS‖ISARegFile‖STALL‖
ABS BUS VAL‖ABS REGS‖STATION [0]

� ABS STN AVAL[0]

HIST STNS‖ISARegFile‖STALL‖
ABS BUS VAL‖ABS REGS‖STATION [1]

� ABS STN BVAL[0]

STALL � ISAStall

IMPREGS‖STATIONS‖BUS‖
STALL‖ALLOC ST‖OP ST‖

ISARegFile‖HIST STNS

�
ISARegFile‖ISAOut‖ABS REGS‖
ISAStall‖HIST STNS‖
ABS STNS‖ABS BUS VAL

We found that the decomposed lemmas were much easier to deal with in terms of

memory use, than the original proof. All lemmas in the compositional proof were discharged

in a few minutes. In Table 3.1, we list the number of boolean history dependent variables
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Number of latches
Refinement Check 4 regs + 4 stns 8 regs + 8 stns
Monolithic Check 67∗ 155∗

Data Out 12 24
Bus valid bit 0 0
Bus value 32 64
Bus tag 0 0
Register[0] valid bit 4 5
Register[0] tag 4 5
Register[0] value 20 34
Reservation Station[0] valid bit 4 5
Reservation Station[0] aVal valid bit 22 37
Reservation Station[0] aVal tag 10 12
Reservation Station[0] aVal value 35 70∗

Table 3.1: Size of lemmas in the proof of TOMASULO

(latches) in the obligation modules for each of the proof obligations into which the original

proof is decomposed. A superscript of ∗ means that the corresponding model checking run

ran out of memory. The monolithic refinement check ran out of memory, when we used 4

registers and 4 reservation stations. The compositional check was able to complete all the

lemmas in this case. When we raised the number of registers and reservation stations to 8

each, we were able to complete all but one lemma of the compositional proof.

Related work. Damm and Pnueli [DP97] use theorem proving to show that the

Tomasulo’s algorithm refines a nondeterministic generalization of the ISA that executes

instructions preserving only the dataflow dependencies among them. Our proof of Toma-

sulo’s algorithm is inspired by that of McMillan [McM98] that also uses compositional model

checking with proof decomposition being done by an assume-guarantee rule.
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Chapter 4

Assume-Guarantee Reasoning with

Sample

Specifications are typically less detailed than the implementation. For example,

the specification of an adder might simply state that the output is the sum of the two in-

puts, whereas the implementation might be a gate-level adder circuit, which operates at the

detail of individual bits. Nonetheless, common notions of correctness require specifications

to operate in “lock-step” with the implementation: every possible computation step of the

implementation must be matched by an admissible computation step of the specification.

If the natural time scale of the specification is less detailed than that of the implementa-

tion —for example, if the gate-level adder requires several clock cycles to compute a sum—

then the specification often is “slowed down” by stuttering, even for perfectly synchronous

designs. A prominent example of this occurs in pipeline verification, where the Instruction

Set Architecture (ISA) specification usually is slowed down by introducing a nondetermin-

istic stall signal to stretch its time scale to match that of the pipeline [HQR98, McM98].

Instead of slowing down the specification, we pursue the alternative of “speeding up” the

implementation. For this purpose, we use an operator called Sample, which samples the

behavior of the implementation at appropriately defined sampling instants. 1

Our motivation for sampling arose specifically from the attempt of verifying a 64-

processor V(ideo) G(raphics) I(mage) chip designed by the Infopad project at the University

1 The Sample operator is similar, but not identical, to the operator of Reactive Modules [AH96]: while
changes the time scale of a module and its environment, Sample does not constrain the environment, which
therefore may offer multiple inputs between sampling instances.
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of California, Berkeley [STUR98]. There, the specification consists of ISAs for the individual

processors and FIFO buffers that abstract the point-to-point communication protocols,

which interact subtly with the processor pipelines. Since the implementation contains level-

sensitive latches and different parts of the circuit are active at high vs. low phases of the

clock, sampling must be used to match the implementation time scale with the specification

time scale. While the computational advantages of sampling in state-space exploration have

been demonstrated in [AHR98], the VGI is still far beyond the scope of exhaustive search.

Hence, we needed to generalize a compositional verification methodology to accommodate

the Sample operator.

In Chapter 3, we showed how to make refinement checking scalable by making use

of the compositional structure of both implementation and specification, and dividing the

verification task at hand into simpler subtasks. A refinement-checking problem of the form

P1‖P2 � Q1‖Q2 is decomposed into the two proof obligations P1‖Q2 � Q1 and Q1‖P2 � Q2

(the apparent circularity in such proofs is resolved by an induction over time). In this chap-

ter, we generalize the assume-guarantee method to accommodate the sampling operator. If

implementation and specification operate at the same time scale, witness modules generate

values for hidden specification variables at each step. However, if a single macro-step of

the specification corresponds to several micro-steps of the implementation, it is necessary

to provide witness modules that operate at the micro-step level. The purpose of such a

witness is to generate the correct value for the specification signal to be witnessed and to

maintain that value until the next sampling instance. Dually, if implementation and specifi-

cation operate at the same time scale, refinement constraints provide abstract definitions for

implementation variables at each step. If one specification step corresponds to several imple-

mentation steps, then it no longer suffices for the refinement constraints to supply values for

the implementation variables at the rate of the specification —at sampling instances— but

additional constraints need to be provided between sampling instances. Providing different

refinement constraints at the macro and micro levels enables a separation of concerns: while

macro-level constraints (at sampling instances) tend to describe the functional behavior of

an implementation variable, micro-level constraints (between sampling instances) tend to

describe its timing behavior. This separation of functionality and timing is particularly

natural for collections of synchronous blocks that communicate asynchronously.

We develop the theory and methodology to carry out assume-guarantee reasoning

when specifications are abstract in both space (fewer variables/components) and time (fewer
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observation points). The crux of the theory lies in the ability to distribute the Sample

operator over the parallel composition of implementation components using micro-level

refinement constraints. The resulting assume-guarantee proof rule produces refinement

obligations both at the macro level and at the micro level, which are then discharged by

our model checker Mocha [AHM+98]. Working with specifications at an abstract level of

temporal granularity is not new. While a processor pipeline takes several steps to execute

an instruction, its ISA specification executes an instruction atomically in a single step,

and the pipeline state can be related to the ISA state by an abstraction function that

uses the “pipeline flushing” operation [BD94]. Clock abstraction on dynamic switch-level

circuits [JBJ95, KSL95] generates gate-level circuits without clocks to make their verification

easier. Temporal abstraction hierarchies [AHR98] have been used for efficient state space

exploration. However, we are not aware of any compositional refinement checks between

implementations and specifications that operate at different time scales.

We have used this methodology successfully in the verification of VGI, a digital

signal processing chip developed by the Infopad group at the University of California at

Berkeley. VGI is a very large design with 64 compute processors each containing approx-

imately 800 latches and 30,000 gates. Verification of such a large design is clearly beyond

the scope of existing model checkers. In order to handle the proof obligations that are gen-

erated by our new assume-guarantee rule, we extended the model checker Mocha with the

capability for dealing with the sampling operator in refinement checks. We are not aware of

any other model checker that currently offers such a capability. Using the enhanced version

of Mocha we discovered several bugs in the VGI design and fixed them. In this process,

we found it extremely useful to employ Mocha as a debugging tool that supports the con-

current activities of (re)design and formal (re)verification: design insights would suggest

the definition of abstraction modules for model checking, and Mocha would produce error

traces that suggest corrections to the design. In this way, design and formal verification

become a single activity (“formal design”) that involves similar mental processes, rather

than two decoupled activities, one followed by the other with little interaction.

Motivating example. We consider a design that computes the Greatest Com-

mon Divisor (GCD) of two numbers. We will start with a synchronous specification shown

in Figure 4.1(a). Given two inputs a and b, the module GCDSp1 computes the GCD of a

and b and places the result in the output r . The boolean input validin asserts that the in-

puts are valid in the current round and the boolean output validout asserts that the output
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is valid in the current round. Module GCDSp1 operates synchronously, with a delay of one

round. If inputs a and b are given in the current round, then the output is available at r

in the next round.

We refine our specification and add more spatial and temporal detail on how the

GCD is computed. We use Euclid’s algorithm to compute the GCD :

GCD (a,b)

{Given positive non-zero integers a and b, compute GCD(a, b) }
(1) if (a = b) return (a);

(2) if ((a = 1) or (b = 1)) return (1);

(3) small := min(a, b);

(4) big := max(a, b);

(5) return (GCD(small , big − small));

The resulting refinement GCDSp2 shown in Figure 4.1(b) has three modules:

IntfS , DoneS , and CompS . Given two numbers, the DoneS module decides if the GCD is

computed trivially (if the numbers are equal, or one of the numbers is 1). If so, it sends the

result, otherwise, it resends the numbers in increasing order. Suppose small and big are

sent by the DoneS module. The CompS module responds by sending small and big−small .

The IntfS module takes data inputs from both CompS and the environment and feeds the

data to the DoneS module. The modules IntfS , DoneS , and CompS communicate with

each other using point-to-point communication links. Valid bits (valid1, valid2 and valid3)

are used to validate the presence of meaningful data on these links. For instance, if IntfS

wants to send two numbers to DoneS , it places the numbers in aout and bout , and sets

valid1 to true. Each of these communications is assumed to complete in one round.

While GCDSp1 requires only one round to compute the GCD , module GCDSp2

requires multiple rounds depending on the data inputs. We add an additional variable

inprogress in module GCDSp2 and set it to true whenever a GCD computation is in

progress. Using this variable and the Sample operator in Section 4.1, we will formally

state how GCDSp2 refines GCDSp1 .

Our final level of refinement uses a single physical broadcast channel for commu-

nication between the modules. Time-division multiplexed access (TDMA) is used to share

the channel. Communication in the channel is conducted in units called frames. A frame
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is divided, in time, into several time-slots. Each module is allocated one or more time-slots

to send data. There is a beacon module Bc, that signals the beginning of a frame. Each

module has its local counter that is synchronized on the Bc module’s signal. Once the frame

starts, each module sends data in its allocated time-slots. A valid bit sent on the channel

indicates if the data being sent in the current time-slot is valid. The allocation of time-slots

to modules is done statically at configuration time, and stays fixed thereafter. Thus, every

module knows the identity of the sender in each time-slot. Figure 4.2(a) shows the block

diagram of the implementation Impl . In our example, a frame is divided into 6 slots. The

figure also shows the allocation of time-slots within the frame to individual modules —the

first two time-slots are given to the Intf module, the next two to the Done module, and

the last two to the Comp module. The Intf , Done, and Comp modules are intended to

have the same functionality as the specification modules IntfS , DoneS , and CompS from

GCDSp2 . However, while the communication between modules in GCDSp2 happens in a

single round through point-to-point links, the communication between modules in Impl is

through a shared channel, and takes several rounds. Let sync be a variable of the module

Bc that is set to true whenever the Bc module sends the synchronizing signal. We will use

sync and the Sample operator to relate Impl to GCDSp2 in Section 4.1.

4.1 The sample operator

Let A be a transition constraint and ϕ be a predicate on the primed and unprimed

observable variables of A. We define B = (Sample A at ϕ) to be a transition constraint.

The private and observable variables of B are the private and observable variables of A.

The initial predicate of B is equal to the initial predicate of A. The update predicate of B

is true at the pair of states (s, t) iff there is a sequence of states s0, s1, . . . , sn, such that

(1) s = s0, (2) t = sn, (3) si →A si+1 for i = 0, 1, . . . , n− 1, and (4) ϕ(si, si+1) is false for

i = 0, 1, . . . , n − 2 and true for i = n − 1. Informally, B updates from state s to t if there

exists a sequence of rounds of A starting at s and ending at t, such that the final round

satisfies ϕ, and none of the intermediate rounds satisfy ϕ. Given a trajectory of A, we use

the term sampling instants to refer to the instants in the trajectory where ϕ is true.

We note that the Sample operator differs from the operator of [AH96] in two ways:

(1) Sample operates on transition constraints, whereas operates on modules, and (2) Sample

does not constrain the environment between sampling instants, whereas constrains the
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environment to not change between sampling instants. In the rest of this paper, whenever

we write B = (Sample A at ϕ), we assume that ϕ is a predicate on the primed and unprimed

observable variables of A.

Example. The module GCDSp1 in the GCD computation example is the high-

level specification. The intermediate-level specification and implementation modules are

composed as follows:

GCDSp2 = IntfS‖DoneS‖CompS

Impl = Bc‖Ch‖Intf ‖Done‖Comp

We wish to relate the intermediate specification GCDSp2 to the high level spec-

ification GCDSp1 . Recall that GCDSp1 computes GCD in one round, whereas GCDSp2

takes multiple rounds. Also recall that inprogress is a variable of GCDSp2 that is set to

true when GCDSp2 is doing the GCD computation. If we sample the behaviors of GCDSp2

during the instances where inprogress is false, the sampling should conform to the behaviors

allowed by GCDSp1 . Using the Sample operator, we can express this requirement as:

(Sample GCDSp2 at (¬inprogress ′)) � GCDSp1

We also wish to relate GCDSp2 to the final implementation Impl . Recall that every

communication in GCDSp2 happens in a single round, whereas every communication in

Impl takes several rounds (as many rounds it takes to transmit a frame) to complete. Recall

that the Bc module has a variable sync that is set to true when it sends the synchronization

signal. Though Impl and GCDSp2 operate at different time scales, if we consider any trace

of Impl and sample only the instants where sync is true, the resulting subsequence should

be a trace of GCDSp2 . Using the Sample operator, we can express this requirement as:

(Sample Impl at sync′) � GCDSp2

Properties of Sample. The Sample operator has several appealing properties.

First, the refinement relation between two transition constraints is maintained by applica-

tion of Sample, as given by the following theorem.

Theorem 4.1 (Sampled refinement) Consider two transition constraints A and B such

that A � B. If ϕ is a predicate on the observable variables of B, then (Sample A at ϕ) �
(Sample B at ϕ).
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Proof: Consider any trace γ of Sample A at ϕ, with σ = s0, s1, . . . , sn as the witnessing run.

Then there must exist run σ̂ = t0, t1, . . . , tn of A such that σ is equal to the subsequence

of states in σ̂ obtained by including ti if i = 0 or ϕ(ti−1, ti). Since A � B , there must exist

a run σ̂′ = t′0, t
′
1, . . . , t

′
n of B , such that [σ̂]B = [σ̂′]B . Finally, corresponding to σ̂′, there

exists a run σ′ of (Sample B at ϕ) such that [γ]B = [σ]B = [σ′]B .

The converse of the above theorem does not hold. It is easy to create modules A

and B such that A 6� B , but (Sample A at ϕ) � (Sample B at ϕ). The next theorem asserts

the distributivity of Sample with respect to the parallel-composition operator. The follow-

ing theorem asserts the distributivity of Sample with respect to the parallel-composition

operator.

Theorem 4.2 (Distributivity of sample) Let A and B be transition constraints and ϕ

be a predicate on the observable variables common to A and B. Then (Sample (A‖B) at ϕ)

� (Sample A at ϕ) ‖ (Sample B at ϕ).

Proof: Let C = (Sample (A‖B) at ϕ), D = (Sample (A) at ϕ), and E = (Sample (B) at ϕ).

By definition of Sample and ‖ operators, every initial state of C is an initial state of D‖E .

Suppose s→C t. Then we know that there is a sequence of states s0, s1, . . . , sn, such that

(1) s = s0, (2) t = sn, (3) si →A‖B si+1 for i = 0, 1, . . . , n − 1, and (4) ϕ(si, si+1) is false

for i = 0, 1, . . . , n − 2 and true for i = n − 1. Since si →A‖B si+1 implies si →A si+1 and

si →B si+1, we have s→D t and s→E t as well. Thus s→D‖E t.

In practice, the traces of (Sample A at ϕ) ‖ (Sample B at ϕ) form a large superset

of the traces of (Sample (A‖B) at ϕ). It is desirable to constrain the observable variables

of A and B while distributing the Sample operator over parallel composition. We can

strengthen the above theorem in the presence of suitable transition constraints TA and TB

on the observable variables of A and B , respectively. The resulting theorem, given below,

will be used in the next section to carry out assume-guarantee reasoning between different

time scales.

Theorem 4.3 (Constrained distributivity of sample) Let A, B, TA and TB be transi-

tion constraints such that every variable of TA is an observable variable of A and every vari-

able of TB is an observable variable of B. If A‖B � TA‖TB and ϕ is a predicate on the ob-

servable variables common to A and B, then (Sample (A‖B) at ϕ) � (Sample (A‖TA) at ϕ)

‖ (Sample (B‖TB ) at ϕ).
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Proof: The proof is similar in spirit to the proof of Theorem 4.2. Let C = (Sample

(A‖B) at ϕ), D = (Sample (A‖TA) at ϕ), and E = (Sample (B‖TB ) at ϕ). By definition

of Sample and ‖ operators, every initial state of C is an initial state of D‖E . Suppose

s →C t. Then we know that there is a sequence of states s0, s1, . . . , sn, such that (1)

s = s0, (2) t = sn, (3) si →A‖B si+1 for i = 0, 1, . . . , n − 1, and (4) ϕ(si, si+1) is false

for i = 0, 1, . . . , n − 2 and true for i = n − 1. Since every variable of TA is an observable

variable of A, and every variable of TB is an observable variable of B , and A‖B � TA‖TB ,

we have [si]TA‖TB
→TA‖TB

[si+1]TA‖TB
for i = 0, 1, . . . , n − 1. Since si →A‖B si+1 and

[si]TA‖TB
→TA‖TB

[si+1]TA‖TB
imply si →A‖TA

si+1 and si →B‖TB
si+1, we have s→D t and

s→E t as well. Thus s→D‖E t.

4.2 Refinement checking with sample

We generalize the methodology for assume-guarantee style refinement checking

given in Chapter 3 to accommodate the Sample operator.

Sampled witness constraints. Let A and B be transition constraints. Recall

that Bu is the transition constraint obtained by making every private variable of B an

observable variable. We have seen in Chapter 3 that the refinement check can be reduced to

a projection refinement check in the following way. We compose A with a witness constraint

W such that (1) the observable variables of W include the private variables of B , and (2) W

is non-blocking on Obs(W ) ∩ Obs(A). Then Bu is projection refinable by the composition

A‖W and if A‖W � Bu then A � B . If the sample operator needs to be applied to the

implementation to relate it to the specification, the witness could be composed either before

or after applying the Sample operator.

Theorem 4.4 (Sampled witnesses) Consider two transition constraints A and B, and

a predicate ϕ on the variables of A such that B is refinable by A. Let W be a transition

constraint such that (1) W is compatible with A, (2) Priv(B) ⊆ Obs(W ), and (3) W is non-

blocking on Obs(W )∩Obs(A). Then (1) Bu is projection refinable by (Sample (A‖W ) at ϕ),

and (2) (Sample (A‖W ) at ϕ) � Bu implies (Sample A at ϕ) � B.

Proof: The proof is very similar to the proof of Theorem 3.2.

Theorem 4.4 is a generalization of Theorem 3.2. The latter can be obtained by

setting ϕ to true in Theorem 4.4. The witness W could be a module also from the following
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corollary of Theorem 4.4.

Corollary 4.5 Consider two transition constraints A and B, and a predicate ϕ on the

variables of A such that B is refinable by A. Let W be a module such that the interface

variables of W include the private variables of B, and are disjoint from the observable

variables of A. Then (1) Bu is projection refinable by (Sample (A‖C(W )) at ϕ), and

(2) (Sample (A‖C(W )) at ϕ) � Bu implies (Sample A at ϕ) � B.

Assume-guarantee reasoning. Suppose the left side of a refinement relation is

of the form Sample(A‖B) at ϕ. It is not directly possible to apply the assume-guarantee

rule from Theorem 3.3 in such cases. However, we can distribute the Sample operator

with respect to parallel composition using Theorem 4.2. In practice, Theorem 4.2 tends

to provide abstractions that are too coarse to be useful. To see why, imagine A and B as

modules, each constraining the other’s inputs. By distributing the Sample inside the parallel

composition, B is allowed to constrain the inputs to A only at the sampling instants. The

inputs to A are essentially unconstrained between sampling instants. Symmetrically, the

inputs to B are constrained at sampling instants by A and left unconstrained between

sampling instants. In several common situations, the interactions between A and B can be

orthogonalized into (1) functionality, and (2) timing of the communication protocol used

for the interaction. The functionality determines values at the sampling instants, whereas

the timing determines how these values propagate between sampling instants.

Suppose TA and TB are transition constraints that specify how the inputs to A

and B behave between sampling instants. Then, we can use Theorem 4.3 to distribute the

Sample operator, while constraining the inputs to A by TA and the inputs to B by TB .

Thus, we get the following generalization of the assume-guarantee rule, with the Sample

operator.

Theorem 4.6 (Assume-guarantee with sample) Let A = A1‖A2‖ . . . ‖An and B =

B1‖B2‖ . . . ‖Bm be transition constraints. Let Ti be a transition constraint on the ob-

servable variables of Ai, for 1 ≤ i ≤ n. Let ≺ be a well-founded order on the compo-

nents of B, and let T , Z and ZC be defined as follows: T = {T1, . . . ,Tn}, Z (Bi) =

{Bj |Bj≺Bi}, and ZC(Bi) = {Bj |Bj 6∈ Z (Bi)}. For each Bi, let Ci be some composition

of transition constraints from A and Ui be some composition of transition constraints from

T such that if Ci = {Ai1 ,Ai2 , . . . ,Aik} then Ui = {Ti1 ,Ti2 , . . . ,Tik}. Also for each Bi,
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let Di be some composition of transition constraints from Z (Bi) and Ei be some compo-

sition of transition constraints from ZC(Bi). If A � T1‖ . . . ‖Tn, and ψ is any predicate

such that (Sample (Ci‖Ui) at ψ)τ‖Dτ
i ‖E

τ−1
i � Bτ

i for all 1 ≤ i ≤ m and τ ∈ N, then

(Sample A at ψ) � B.

Proof: We know that A = A1‖A2‖ . . . ‖An � C1‖C2‖ . . . ‖Cm. Therefore we have that

Sample A at ψ � Sample (C1‖C2‖ . . . ‖Cm) at ψ. We apply Theorem 3.3 to get

Sample (C1‖U1) at ψ‖ . . . ‖Sample (Cm‖Um) at ψ � B1‖ . . . ‖Bm = B .

From the constrained distributivity of sample (Theorem 4.2), we get that

Sample (C1‖ . . . ‖Cm) at ψ � Sample (C1‖U1) at ψ‖ . . . ‖Sample (Cm‖Um) at ψ.

Combining the three statements above, we get that Sample A at ψ � B .

In the above theorem, note that the antecedent A � T1‖ . . . ‖Tn can itself be

discharged by traditional assume-guarantee rule presented in Theorem 3.3.

Verification of GCD algorithm. Recall the high-level specification GCDSp1 ,

intermediate specification GCDSp2 , and implementation Impl from the previous sections.

As stated in Section 4.1, the refinements we would like to verify are:

(Sample GCDSp2 at (¬inprogress ′)) � GCDSp1

(Sample Impl at sync′) � GCDSp2

In this section, we will focus on how to carry out the second refinement, which re-

lates the intermediate specification GCDSp2 to the implementation Impl . We first observe

that GCDSp2 is not projection refinable by Impl , due to the presence of private variables

in GCDSp2 that represent point-to-point communication channels. The module Impl has a

single channel that is shared by all modules using TDMA. The specification, while more ab-

stract in time, provides individual point-to-point channels for communication. Each round

of GCDSp2 corresponds to multiple rounds of Impl , during which a frame is transmitted.

It is possible to relate the values that appear on the shared implementation channel, at par-

ticular time-slots during the communication of a frame, to values that appear on particular

point-to-point channels in the specification. For instance, the values of the specification

variables aout and bout at the end of each round are expected to be equal to the values

occurring in time-slots 1 and 2 of the frame. We can write a witness module IntfW that
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looks at the implementation channel during the transmission of the frame, collects the val-

ues at time-slots 1 and 2, and assigns them to aout and bout , respectively. If the values in

time-slots 1 and 2 are valid, then valid1 is set to true. Further, the values assigned to aout ,

bout , and valid1 are retained till the end of the frame. Similar witness modules DoneW

and CompW can be written. All these witnesses take inputs from the channel as shown in

Figure 4.2(b). Let ImplW be the module given by

ImplW = Impl‖IntfW ‖DoneW ‖CompW .

Note that the witnesses merely observe the values on the channel without inter-

fering with it. Due to Theorem 4.4, it suffices to check that (Sample ImplW at sync′) �
GCDSp2 . Recall that GCDSp2 = IntfS‖DoneS‖CompS . We apply Theorem 4.6 with the

order DoneS≺CompS≺IntfS . Let us consider the component CompS of GCDSp2 . The

component of Impl that is intended to implement the functionality of CompS is Comp. We

wish to check if:

(Sample Comp at sync′)τ‖DoneS τ � CompS τ .

This check fails because the outputs of module CompS , namely, ain, bin and

valid3 are not present in module Comp. Adding the witness module and appropriately

constraining it, we obtain the obligation:

(Sample (Comp‖CompW ‖Ch‖Bc) at sync′)τ � CompS τ .

This still fails, because we have not constrained the inputs of Comp. In this

obligation, the specification CompS looks at the inputs small , big , and valid2 in every

round and produces corresponding outputs ain, bin and valid3 in the next round. The

implementation Comp anticipates two values at time-slots 3 and 4 (which correspond to

small and big , respectively) of every frame. If these inputs are valid, then Comp generates

values in time-slots 5 and 6 (which correspond to ain and bin respectively) of the next

frame. The module Comp makes the following assumptions: (1)the inputs are available at

time-slots 3 and 4, (2)either both inputs are available at a given frame, or none of the inputs

are available, and (3)if both inputs are available, the first input (from time-slot 3) is smaller

than the second input (from time-slot 4). In our refinement obligation, the inputs to Comp

have to be constrained both at the sampling instants and between sampling instants, in

order to satisfy the above assumptions. The specification component DoneS supplies the
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constraint at sampling instants, which ensures that assumptions 2 and 3 are satisfied. The

timing assumption DoneW constrains the inputs between sampling instants and ensures

that assumption 1 is satisfied. Thus we get the proof obligation

(Sample (Comp‖CompW ‖Ch‖Bc‖DoneW ) at sync′)τ‖DoneS τ � CompS τ .

Similarly, we can verify the correctness of modules Done and Intf separately. The

complete refinement proof, which is a direct application of Theorem 4.6, uses the ordering

DoneS≺CompS≺IntfS :

(Sample (Done‖DoneW ‖Ch‖Bc‖IntfW ) at sync′)τ � DoneS τ

(Sample (Comp‖CompW ‖Ch‖Bc‖DoneW ) at sync′)τ‖DoneS τ � CompS τ

(Sample (Intf ‖IntfW ‖Ch‖Bc‖CompW ) at sync′)τ‖CompS τ‖DoneS τ � IntfS τ

(Sample (ImplW ) at sync′) � GCDSp2

Each of the obligations above the line involves a single implementation compo-

nent, possibly along with specification components, witnesses and abstract constraints to

constrain the inputs. They can be automatically discharged by Mocha. We thus conclude

that (Sample Impl at sync′) � GCDSp2 .

4.3 Verification of VGI

The VGI chip [STUR98] is an array of DSP processors designed to be part of

a system for web-based image processing [SR97]. The VGI chip contains a total of 96

processors and has approximately 6M transistors. Of the 96 processors, 64 are identical 3-

stage pipelined compute processors. Each compute processor has about 30,000 logic gates.

Data is communicated between the processors by means of FIFO queues. No assumption is

made about the relative speeds at which data is produced and consumed in the processors.

Hence, to transfer data reliably an elaborate handshake mechanism is used between the

sender and the receiver. In addition, the interaction between the control of the pipeline

and the control of the communication unit is quite complex. We give a brief summary of

our verification of the VGI chip here; full details can be found in Sriram Rajamani’s thesis

[Raj99].

We focus on the verification of the 64 compute processors and the communica-

tion between them. A single processor is described partly in VHDL and partly in circuit
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schematics. We translated the description into reactive modules which is the input lan-

guage to our model checker Mocha. After a number of discussions with the designers, we

produced a formal specification of the design which embodies the programmer’s view of the

system, also in Reactive Modules. The sheer size of the design together with the well-known

state explosion problem precluded the direct use of model checking techniques to verify the

implementation against the specification. Existing techniques that flatten the design hi-

erarchy and use BDD-based state exploration [BHSV+96] can verify designs with at most

50–100 latches reliably. Clearly, the VGI design, which has about 800 latches per compute

processor, is well beyond the scope of such tools. We demonstrate how model checking

can be scaled up using assume-guarantee reasoning to handle the VGI design. To the best

of our knowledge, the largest design that has been ever verified using model checking has

been reported by Eiŕıksson [Éır98]. Compositional techniques used in that effort for decom-

posing the verification task did not readily apply to the VGI, because the implementation

and specification operate on different time scales (several consecutive implementation steps

realize a single specification step). We used the techniques developed in this chapter to

obtain proof obligations that were small enough to be discharged automatically by Mocha.

In the process, we found several subtle bugs that were unknown to the designers. Three of

these bugs will be explained in the discussion in Section 4.3.3.

A significant part of the verification effort was invested in producing a correct

specification. Only an informal specification of the design existed in the form of English

description and elaborate timing diagrams. The fact that no behavioral description of the

design was available (the datapath was designed directly in schematic) made the task of

producing the specification even more difficult.

A number of features are desirable in the specification for the VGI chip. First,

the specification should be at a level of abstraction such that a high degree of confidence in

its correctness can be established by informal means such as code review. Specifically, the

specification should embody the view that the programmer/compiler has of the VGI chip,

which is that of a dataflow architecture with a set of processing elements connected through

queues. For this high-level view, every processing element behaves as if each instruction is

executed atomically in one step, and the communication between the processors behaves

like FIFO queues. The behavior of a program written with this high-level view should not

depend on the delay in transferring a data token from one processor to another. Such FIFO

queues can be modeled using nondeterministic delay. This makes necessary the availability
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of nondeterminism in the specification language.

Second, the specification should have an operational as well as a mathematical

semantics. Operational semantics permits the execution of specifications; mathematical

semantics permits their formal verification. Executability is especially desirable in the case

of the VGI processor because the design is part of a bigger system. If all essential features

of the design that are necessary for correct interaction with the environment have been

captured by the specification, it can be used in place of the actual design for simulating the

system.

Third, the design itself (the “implementation”) should be describable in the same

language as the specification, and a refinement operator should be available for relating

the implementation and the specification. In our case, the refinement operator must relate

two different time scales. The implementation has a clock signal clk with activity on both

the HIGH and LOW phases in different parts of the design. For instance, in the execute

phase of the pipeline a bus carries an operand when clk is HIGH and the result when clk

is LOW. But the specification does not mention clk at all. In fact, the whole computation

happens in just one step. Thus, one round in the specification is equal to two rounds in

the implementation, one with clk = HIGH and one with clk = LOW. Therefore, our formal

notion of refinement samples the implementation whenever clk is LOW and checks if the

sampled behavior is present in the specification.

Reactive Modules, our modeling language for both specification and implementa-

tion, has all the desirable features mentioned above —mathematical semantics, executabil-

ity, and support for nondeterminism and sampling.

4.3.1 The problem

A compute processor in the VGI chip has an instruction memory, a register file

containing three register pairs, a 3-stage pipelined datapath, a control unit, and three data

output buses and one control output bus for sending tokens to other processors. Each

register pair can be configured either as a queue or as general purpose registers. Each

output bus may or may not be connected to another processor. A processor P can send

data to another processor Q if a data output bus of P is connected to a register pair of Q

that has been configured as a queue. A handshake protocol is used between P and Q for

transferring data reliably. There is a programmable interconnection network that allows
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Figure 4.3: VGI processor configuration with three input and two output queues

any processor to be connected to any other processor. In a typical dataflow computation,

programs are loaded into the instruction memory of some subset of the set of processors,

and the appropriate data connections between the processors are made by programming the

network. Each processor with its own program acts as an “actor” in a data flow network,

consuming tokens from its input and producing tokens at its output. In any network of

compute processors, each processor is in a certain configuration depending on the register

pairs configured as queues, and the output buses connected to downstream processors.

Let CV GI denote this set of 23 × 24 = 128 configurations. Figure 4.3 shows a processor

configuration where the register pair R2–R3 is configured as a queue, and a data and a

control output queue are configured to send out tokens.

Our specification for the processor configuration shown in Figure 4.3 consists of

modules ISA, DataQueue and ControlQueue 2. The module ISA contains other modules

such as program memory, register file, control unit and ALU inside it and is a specification

of the pipelined datapath of processor P1. Every instruction gets executed atomically in

one round in the ISA. The specification for the data output bus of P1 together with the

queue of processor P2 is a 4-place FIFO buffer DataQueue. ControlQueue is identical to

DataQueue except for the data width and is the specification for the control output bus of

P1 together with the queue of processor P3. Performing verification against the composition

2 The dotted rectangle in the lower portion of Figure 4.4 shows abstraction modules. We defer their
description to Section 4.3.2.
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of ISA, DataQueue and ControlQueue will ensure that instructions are executed correctly

and data is transferred reliably from P1 to P2 and P3. We can similarly write specifications

for processors P2 and P3. Then the specification for the network of processors P1, P2 and P3

can be obtained by composing the specifications of the individual processors. In Figure 4.4,

note that the register pair R2-R3 is missing. Since they have been configured as an input

queue, they are part of the distributed output queue of an upstream processor, and will

be specified in that processor. Our verification methodology, described in the next section,

will let us prove that an arbitrary network of compute processors satisfies its specification.

4.3.2 The proof

Each compute processor in VGI starts a computation in the positive phase of the

clock and finishes it in the negative phase of the clock. We decided to sample at the end of

each computation. Hence, the sampling predicate ϕ is clk = LOW. In the rest of this section,

we use ϕ to refer to clk = LOW. In Section 4.3.1, we showed how to obtain a specification

for an arbitrary network of processors. Our goal is to verify that an arbitrary network

of processors implements its corresponding specification, using refinement checking. Let

P1, P2, . . . , Pn be the compute processors in an arbitrary network, and let Q1, Q2, . . . , Qn

be their respective specifications. For the correct functioning of a processor it is essential

that all input signals change only when clk is HIGH. Let Ti be a module that says that all

external signals of Pi change only when clk is HIGH.
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The verification problem is to check

Sample (P1‖P2‖ . . . ‖Pn) at ϕ � Q1‖Q2‖ . . . ‖Qn

We can apply our new assume-guarantee rule as follows:

Sample (Pi‖Ti) at ϕ � Qi forall 1 ≤ i ≤ n
P1‖P2‖ . . . ‖Pn � T1‖T2‖ . . . ‖Tn

Sample (P1‖P2‖ . . . ‖Pn) at ϕ � Q1‖Q2‖ . . . ‖Qn

The second antecedent says that the inputs of any processor in the network change only

when clk is HIGH. Since any input to a processor has to be the output of some other

processor, this antecedent can be discharged easily by proving that for all 1 ≤ i ≤ n, the

outputs of Pi change only when clk is HIGH. This is an easy proof local to each processor and

computationally trivial. In the first antecedent, there are n symmetric proof obligations, one

for each Pi. For X ∈ CV GI , let Y be its specification and TX be the environment constraint

that says that all inputs change only when clk is HIGH. If we prove Sample (X‖TX) at ϕ � Y
for each X ∈ CV GI , then we have proved that Sample (Pi‖Ti) at ϕ � Qi for all 1 ≤ i ≤ n.

Thus, we have decomposed the proof of an arbitrary network of compute processors to

|CV GI | proofs about individual processor configurations that have 800 latches each. This is

still beyond the scope of monolithic model checking. We show how to discharge this proof

for a single processor configuration, with further applications of the generalized assume-

guarantee rule described earlier. We implemented support for the Sample operator in

Mocha, in order to carry out this refinement check.

We describe the compositional proof for the configuration in Figure 4.3 whose

specification is given in Figure 4.4. We describe a compute processor in more detail. The

processor has a 3-stage pipeline — the fetch stage IF, the execute stage EX, and the com-

municate stage COM, with pipelat latches between IF and EX, and lout latches between EX

and COM. There is feedback from the EX stage to the IF stage. The IF stage is controlled

by mir1reg and fetches data from the input queues, the register file, or the feedback. The

signal stallempty is asserted if an instruction wants to read from an input queue that is

empty. The EX stage contains the ALU and is controlled by mir2reg, a delayed version of

mir1reg. The output of the ALU abus r can be written back to the register file or sent

out on one or more queues. For receiving data/control tokens, the downstream processor

should have a register pair configured as a 2-place queue. Every data or control token
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that is computed is latched into lout. If the first send fails, then the COM stage keeps on

sending the data in lout until the send succeeds. Signals send and sendack are used for

handshake between the sender and the receiver. In the meantime, other instructions might

be executing in the EX stage of the pipeline. The pipeline is stalled and a signal stallpipe

asserted when the COM stage is trying to send a token and the instruction in the EX stage

also wants to send out a token. The invariant that synchronizes the operation of the ISA

and the pipeline is that the instruction being executed by the ISA is the instruction in the

IF stage of the implementation.

To decompose the proof, we wrote abstraction modules for send, sendack, abus r,

stallpipe, and pipelat a s as shown in the dotted rectangle in Figure 4.4. In order to

write abstraction modules for send and stallpipe, we had to add auxiliary history vari-

ables exsend, num, and sendackp. The variable exsend is true whenever the the current

instruction in the EX phase wants to send. The variable num keeps track of the number of

items in the receiver’s 2-place input queue. The variable sendackp predicts the implemen-

tation’s sendack. The abstraction module for abus r is written in terms of the two stall

signals and the output of the ALU in the specification. Using these abstraction modules, the

proof can be decomposed nicely in the reverse direction of the flow of data in the processor.

The following lemmas were verified.

1. The output queue is verified using the abstraction modules for the variables abus r,

send, and stallpipe. Intuitively, this means that data written into the queue is not

lost, no data is written twice, and correct behavior is preserved going into and coming

out of stalls (either stallempty or stallpipe).

2. The abstraction module for send is verified using the abstraction module for sendack.

3. The abstraction module for sendack is verified using the abstraction modules for

stallpipe and send.

4. The abstraction module for stallpipe is verified using abstraction modules for send

and sendack of both the control and data queues.

5. The abstraction module for the variable abus r is verified using the abstraction mod-

ule for the pipelat a s signals, which are inputs to the EX stage. Since the bus is

generated by the data path of the implementation, this proof amounts to verifying
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the correctness of the data path. We have not been able to complete this proof. We

believe that this is essentially a combinational verification problem that is amenable

to existing techniques geared for combinational verification.

6. The abstraction module for pipelat a s is verified using the abstraction module for

abus r. This lemma amounts to verifying the correctness of feedback from the EX

stage to the register file and the pipelat a s registers.

In each lemma described above, the part of the implementation under investigation

was sampled at clk equal to LOW under some timing assumptions on the inputs between

sampling instants. For example, in Lemma 1, it was assumed that the send signal does

not change value when clk changes from LOW to HIGH, and all signals at the receiver end

(such as read and save d) change values only when clk is HIGH. All such assumptions were

discharged separately. Notice the circular dependencies between Lemmas 1, 2, 3, and 4, and

also Lemmas 5 and 6. For Lemmas 2, 3, 4, 5, and 6, we also wrote supporting abstraction

modules for mir1reg and mir2reg. These supporting refinements were verified separately.

In total, about 35 lemmas needed to be proved. In every lemma except Lemma 5, we used

symmetry arguments [McM98] to reduce the datapath width to just 1 bit. In Lemma 5, the

symmetry is broken because of arithmetic operations and hence the full datapath width of 16

bits needs to be considered. Thus, assume-guarantee reasoning provides a clean separation

between the verification of the datapath and control of the processor. It is clear in the

overall proof that the datapath width is irrelevant in verifying the control that is moving

data around. This also suggests that compositional reasoning provides a formal framework

under which combinational verification of the datapath and FSM verification of the control

can coexist. None of the individual lemmas took more than a few minutes on a 625 MHz

DEC Alpha 21164.

4.3.3 Discussion

In this section, we describe the bugs we found in the design. We fixed all the bugs

and verified our fixes with Mocha.

1. If the sending processor writes two successive values into the queue and the receiving

processor waits for one cycle and then does two successive reads, the second read

returns an incorrect value.
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2. Suppose stallempty is asserted in cycle n but released in cycle n+ 1. Also, suppose

send to an output queue fails in cycle n + 1. Then although stallpipe should be

asserted in cycle n + 2, it is not and as a result the instruction in EX stage gets

overwritten.

3. A particular sequence of events involving 4 sends and 4 reads interleaved in a specific

way, with a stall at a precise moment destroys the data in the lout register. This

results in the loss of an output token. The error trace that led to the discovery of this

bug had ten steps.

We now describe the process by which we found these bugs and the insights we

gained about the interaction between design and verification. We found all these bugs while

doing the proof of Lemma 1, the lemma stating the correctness of the data transfer between

the sender and the receiver. Recall that we needed abstraction modules for the environment

signals abus r, send and stallpipe. Initially, we tried to write the abstraction modules

based on the definitions of these signals in the implementation. Since the definition of these

signals in the implementation was buggy, our abstract modules were not strong enough to

satisfy the assumptions of the output queue on its environment. As a result we got error

traces. We then decided to ignore the implementation and defined these signals abstractly

so that we could discharge Lemma 1. At this point, the abstract definitions of the signals

abus r, send, and stallpipe were strong enough to satisfy the environment assumptions

of the output queue. We then reimplemented these signals according to the specification

prescribed by these abstract definitions, and verified that our implementation was correct.

These design fixes were quite complicated and we actually had to do some logic design

ourselves. In this way, Mocha can be used as a debugging tool which tests a proposed

design fix by looking at all possible sequences of events. If an error trace is generated then

it can be examined to further refine the fix. Thus, the distinction between verifying and

designing gets blurred and actually both activities proceed in parallel. We believe that

design and verification are symbiotic activities in the sense that the designer’s intuition

embodied in abstraction modules aids verification and the model checker aids the designer

by testing that a proposed solution is correct under all possible situations. We believe that

the mental processes involved in doing verification exist when the design is being created

and therefore, given the right interface to a verification tool, it is not a big burden to do

“formal design.”
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Our experience with verifying VGI has shown that the assume-guarantee rule needs

to be augmented with rules for dealing with data structures such as bitvectors and arrays,

which abound in hardware designs. Moreover, it is sometimes easier to perform proof

decomposition along non-structural boundaries. For example, in processor verification it

might be easier to do a case analysis on the type of the input instruction. Each instruction

type might result in a different path being taken through the processor and consequently,

for each case a particular path needs to be analyzed rather than the whole design. We

believe that a combination of such rules can make compositional model checking scale to

“real” designs. We also believe that our methodology is general and not just limited to

DSP chips. In our proof, the first step that decomposes the proof obligation on a network

of processors to one on a single processor relies on the symmetry inherent in VGI. But

the second step involving proof decomposition with the aid of abstraction modules is quite

general and applicable to a variety of large and complex designs [Éır98, HQR98, McM98].
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Chapter 5

Verifying Parameterized

Shared-Memory Systems

Shared-memory multiprocessors are an important class of supercomputing sys-

tems. In recent years a number of such systems have been designed in both academia and

industry. The design of a correct and efficient shared memory is one of the most difficult

tasks in the design of such systems. The shared-memory interface is a contract between the

designer and the programmer of the multiprocessor. In general, there is a tradeoff between

the ease of programming and the flexibility of shared-memory semantics necessary for an

efficient implementation. Not surprisingly, a number of abstract shared-memory models

have been developed.

All abstract memory models can be understood in terms of the fundamental serial-

memory model. A serial memory behaves as if there is a centralized memory that services

read and write requests atomically such that a read to a location returns the latest value

written to that location. Coherence1 requires that the global temporal order of events

(reads and writes) at different processors be a trace of serial memory. Sequential consis-

tency [Lam79] ignores the global temporal order and requires only that some interleaving

of the local temporal orders of events at different processors be a trace of serial memory.

Although sequential consistency is a strictly weaker property than coherence, the absence

of a synchronizing global clock between the different processors in a multiprocessor makes

a sequentially consistent memory indistinguishable from a serial memory. Compared to co-

1Implementors of cache-based shared-memory systems have used the notion of cache coherence for a long
time but the definition of coherence as stated here was first given in [ABM93].
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herence, sequential consistency clearly offers more flexibility for an efficient implementation;

yet, most real systems that claim to be sequentially consistent actually end up implement-

ing coherence. In an effort to get more flexibility for implementation, memory models that

relax local temporal order of events at each processor have been developed in recent years.

These models are not sequentially consistent and result in a more complicated programmer’s

interface. These memory models, such as weak ordering, partial store ordering, total store

ordering, and release consistency [AG96], relax the processor order of events in different

ways and provide fence or synchronization operations across which sequentially consistent

behavior is guaranteed.

We focus on the verification of sequential consistency for two reasons. First, the in-

terface provided by sequential consistency is clear, easy to understand, and widely believed

to be the correct tradeoff between implementation flexibility and complexity of the program-

mer’s view of shared memory. In fact, there is a trend of thought [Hil98] that considers the

performance gains achieved by relaxed semantics not worth the added complexity of the

programmer’s interface and advocates sequential consistency as the shared-memory inter-

face for future multiprocessors. Second, even relaxed memory models have fence operations

across which sequentially consistent behavior should be observed. Hence, the techniques

developed in this paper will be useful for their verification also.

High-level descriptions of shared-memory systems are typically parameterized by

the number n of processors, the number m of memory locations, and the number v of

data values that can be written in a memory location. A parameterized memory systems

consists of a central-control part C and a processor part P . Both C and P are functions that

take values for m and v and return a finite-state process. An instantiation of the system

containing n processors, m memory locations, and v data values is constructed by composing

C(m, v) with n copies of P (m, v). We would like to verify sequential consistency for all values

of the parameters. However, sequential consistency is not a local property; correctness for m

processors (locations, values) cannot be deduced by reasoning about individual processors

(locations, values). The following observations about real shared-memory systems, which

we assume in our modeling, are crucial for our results. We assume that the memory system

is monotonic and symmetric with respect to both the set of locations, and the set of data

values. Monotonicity in locations (data values) means that a sequence is a run of the system

with some set of possible locations (data values) if and only if it is a run of the system with

a larger set of locations (data values). Symmetry in locations means that, if σ is a run of
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the memory system, and λl is a permutation on the set of locations, then λl(σ) is also a

run of the memory system. Finally, symmetry in data values means that, if σ is a run of

the memory system, and λv is any function from data values to data values, then λv(σ) is

also a run of the memory system. We also assume that the memory system is projectible

with respect to locations. This means that every run of the system projected onto a subset

of locations is a run of the system with just that subset of locations.

Even for fixed values of the parameters, checking if a memory system is sequentially

consistent is undecidable [AMP96]. The main reason for the problem being undecidable is

that the specification of sequential consistency allows a processor to read the value at a lo-

cation after an unbounded number of succeeding writes to that location by other processors.

In real systems, finite resources such as buffers and queues bound the number of writes that

can be pending. It is sufficient to construct a witness that observes the reads and writes

occurring in the system (without interfering with it) and reorders them while preserving

the order of events in each processor such that a trace of serial memory is obtained. We call

such a witness a serializer. If a finite-state serializer exists, then it can be composed with a

fixed-parameter instantiation of the memory system and the problem of deciding sequential

consistency is reduced to a language-containment check between two finite-state automata

which can be discharged by model checking. In the concrete examples we have looked at

(see below), we have indeed seen that a finite-state serializer exists for fixed values of the

parameters.

However, our goal is to verify sequential consistency for arbitrary values of the

parameters. Towards this end, we develop two novel proof frameworks. The first framework

lets us prove sequential consistency for a fixed number of processors but arbitrary number

of locations and data values. A serializer Ω is location symmetric if for any run σ and

any permutation λl on the set of memory locations λl(Ω(σ)) = Ω(λl(σ)). A serializer Ω

is data symmetric if for any run σ and any function λv from data values to data values

λv(Ω(σ)) = Ω(λv(σ)). A serializer is local if its output on any run σ is an interleaving of

its outputs on σ projected onto each memory location. We show that existence of a local,

location symmetric and data symmetric serializer for a memory system with n processors

and n memory locations and two data values implies that the memory system with n

processors is sequentially consistent for any number of memory locations and data values.

The second framework is based on a novel induction scheme and lets us prove

sequential consistency for arbitrary number of processors, locations and data values. In-
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ductive proofs on parameterized systems [KM89] use an implementation preorder and show

the existence of a process invariant such that the composition of the invariant with an addi-

tional process is smaller than the process invariant in the preorder. The preorders typically

used —for instance, trace containment and simulation— preserve the temporal sequence of

events. Since we check a sufficient condition for sequential consistency by the mechanism

of an serializer that reorders the read/write events of the processors in the system, pre-

orders that preserve the temporal sequence of events do not suffice for our purpose. Our

inductive proof strategy first determines a process invariant I1 of the memory system with

respect to the trace-containment preorder to get a finite-state abstraction that can generate

all sequences of observable actions for any number of processors. We then find a merge

invariant I2 such that (1) the single-processor memory system containing I2 is sequentially

consistent, and (2) there is an witness that maps every run σ of I2‖P that can be produced

in an environment of I1 to a run σ′ of I2, such that the read/write events in σ′ are an inter-

leaving of the read/write events of I2 and P in σ, and the traces obtained from σ and σ′ are

identical. Given a run γ of the memory system with n > 1 processors, we use the witness to

create a run γ′ of the memory system with n−1 processors, such that γ and γ′ are identical

when projected to the events of the first n− 2 processors, and the read/write events of the

(n− 1)-st processor in γ′ are an interleaving of the read/write events of the (n− 1)-st and

n-th processors in γ. By doing this n times, we generate a run of the memory system with

a single processor, which is sequentially consistent by the base case of the induction.

The induction demonstrates sequential consistency for any number of processors,

but given m and v. We would like sufficient conditions under which using fixed values for

m and v lets us conclude sequential consistency for all m and v. To that end, we impose a

few requirements on the process and merge invariants. The requirements of symmetry and

monotonicity on memory locations and data values and projectibility on memory locations

are identical to the corresponding assumptions on the memory system. There are two

other requirements called location independence and data reducibility. A process is location

independent if it has the property that a sequence of events is a run of the process with

m locations if and only if the m sequences obtained by projecting onto individual memory

locations are runs of the process with a single location. A process is data reducible if

whenever a sequence σ is not a run of the process, there is a function λv mapping data

values to just two data values such that λv(σ) is also not a run of the process. We show

that if the two invariants satisfy location symmetry, location monotonicity, and location



CHAPTER 5. VERIFYING PARAMETERIZED SHARED-MEMORY SYSTEMS 101

independence, and the witness is local, location symmetric and data symmetric, then it

suffices to do the induction for three memory locations and two data values. As a result,

the correctness of the memory system can be proved by discharging two finite-state lemmas

using a model checker —one that proves the correctness of the process invariant, and another

that proves the correctness of the merge invariant. We would like to point out that although

the rewards of the inductive framework are greater, so is the effort involved.

Our proof framework can be applied to a variety of protocols; in particular, all

cache-coherence protocols described in [AB86] fall into its domain. We demonstrate the

method by verifying a snoopy cache coherence protocol [HP96a]. The correctness of the

snoopy cache coherence protocol is argued informally in [HP96a]. We show that a finite-

state serializer exists for this example. We reduce the proof of the parameterized proto-

col to finite-state lemmas as described above, and discharge them by our model checker

Mocha [AHM+98]. Manual effort is required to construct the process and merge invari-

ants, and the serializer, and to verify that the assumptions on the memory system and the

requirements on the invariants and serializer are indeed satisfied.

Related work. The notion of a serializer is related to work on representative

interleaving sequences [KP92] and timestamping [Lam78, PSCH98]. In a memory system

with n processors, the output of a serializer is an interleaving of the n processor orders

of memory events. It is a convenient or representative interleaving in the sense that it is

a trace of serial memory which can be verified easily. The process whereby a particular

implementation of a serializer arrives at this interleaving is by assigning logical timestamps

ordered by causality (rather than global time) to memory events.

Abstract memory models of parameterized shared-memory systems have been ver-

ified using automatic techniques, mechanical theorem proving and systematic manual proof

techniques. Symbolic methods [MS91, CGH+93, EM95] and symmetry reduction [ID96]

have been used to alleviate the state explosion problem in model checking finite instances

of cache coherence protocols. These papers do not deal with sequential consistency —they

verify coherence— and perform verification for fixed values of the various parameters. The

method in [PD95] uses model checking to prove coherence for an arbitrary number of pro-

cessors but cannot deal with sequential consistency. The “test model checking” approach of

[NGMG98] offers a necessary condition for sequential consistency that can be checked by test

automata monitoring the events at the different processors. A problem with their approach

is that they might miss violations of sequential consistency. They also perform the verifi-
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cation for fixed values of the parameters. Sufficient conditions for sequential consistency

have been formulated in branching temporal logic [Gra94] and as an abstract transition

system [GMG91]. There is no experimental data to assess if these sufficient conditions hold

on practical shared-memory protocols. Mechanical theorem proving [LD92, PD96] and sys-

tematic manual proof methods [LLOR99, PSCH98] have been used to verify shared memory

systems for arbitrary values of parameters. These approaches require a lot of human effort.

In our approach, a large part of the proof is performed automatically with a model checker.

5.1 I/O-processes

We use I/O-processes that synchronize on observable actions to model memory

systems. Formally, an I/O-process A is a 5-tuple 〈Priv(A), Obs(A), S(A), SI(A), T (A)〉
with the following components:

• A set Priv(A) of private actions and a set Obs(A) of observable actions, such that

Priv(A) ∩Obs(A) = ∅. The set Act(A) is the union of Priv(A) and Obs(A). Private

actions are outputs, whereas observable actions can be both inputs and outputs. The

set of extended actions Π(A) is given by Priv(A)× {out} ∪Obs(A)× {in, out}.

• A finite set S(A) of states.

• A set SI(A) ⊆ S(A) of initial states.

• A transition relation T (A) ⊆ S(A)×Π(A)× S(A).

For all π ∈ Π(A), the first component is denoted by First(π) and the second component

by Second(π). If Second(π) = in then π is called an input action. If Second(π) = out

then π is called an output action. The length of a sequence of actions or extended actions

σ = π0, π2, . . . , πk−1 is k and is denoted by |σ|. For all i < |σ|, the ith element πi is denoted

by σ(i). Let ε denote the empty sequence. A sequence σ of extended actions of A is a

run if either σ = ε or σ = π0, π2, . . . , πk−1 and there exist states s0, s1, s2, . . . , sk such that

s0 ∈ SI(A) and 〈si, πi, si+1〉 ∈ T (A) for all 0 ≤ i < k. We say that σ is a run of A leading

to the state sk. The projection operators First and Second are extended to runs in the

natural way. The set of all runs of the I/O-process A is denoted by Σ(A). A run is closed

if Second(πi) = out for all actions πi in the run. A set of runs is closed if all runs in the

set are closed. For any set β ⊆ Act(A), the restriction of the run σ to β is the subsequence
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obtained by considering the elements from β × {in, out} in σ, and is denoted by [σ]β. For

any run σ of I/O-process A, the restriction of σ to Obs(A) is called a trace and is denoted

by trA(σ). The set of all traces of the I/O-process A is denoted by Γ(A).

Let A1 and A2 be two I/O-processes. We say that A1 refines A2, denoted by A1 �
A2, if (1) Obs(A1) ⊆ Obs(A2), and (2) every trace of A1 is a trace of A2. The I/O-processes

A1 and A2 are compatible if (1) Priv(A1) ∩ Act(A2) = ∅ and (2) Priv(A2) ∩ Act(A1) = ∅.
We observe that if A1 and A2 are compatible then Act(A1) ∪ Act(A2) can be partitioned

into three subsets —Obs(A1) ∩ Obs(A2), Act(A1) \ Act(A2) and Act(A2) \ Act(A1). The

composition A = A1‖A2 of two compatible I/O-processes A1 and A2 is the I/O-process A

such that

• Priv(A) = Priv(A1) ∪ Priv(A2), and Obs(A) = Obs(A1) ∪Obs(A2).

• S(A) = S(A1)× S(A2), and SI(A) = SI(A1)× SI(A2).

• (〈s1, s2〉, 〈a, x〉, 〈t1, t2〉) ∈ T (A) iff one of the following three conditions holds:

– a ∈ Obs(A1) ∩Obs(A2) and either

(1) x = in and 〈s1, 〈a, in〉, t1〉 ∈ T (A1) and 〈s2, 〈a, in〉, t2〉 ∈ T (A2), or

(2) x = out and 〈s1, 〈a, out〉, t1〉 ∈ T (A1) and 〈s2, 〈a, in〉, t2〉 ∈ T (A2), or

(3) x = out and 〈s2, 〈a, out〉, t2〉 ∈ T (A2) and 〈s1, 〈a, in〉, t1〉 ∈ T (A1).

– a ∈ Act(A1) \Act(A2) and

〈s1, 〈a, x〉, t1〉 ∈ T (A1) and s2 = t2.

– a ∈ Act(A2) \Act(A1) and

〈s2, 〈a, x〉, t2〉 ∈ T (A2) and s1 = t1.

Suppose that A1 and A2 are compatible I/O-processes. Let σ1 be a sequence of actions in

Π(A1) and σ2 be a sequence of actions in Π(A2). We use the convention that for any set of

actions X and an extended action π, we say that π ∈ X if First(π) ∈ X . We now define

inductively when a sequence σ is a join of sequences σ1 and σ2. We say that σ is a join of

sequences σ1 and σ2 iff one of the following hold:

1. σ = ε and σ1 = σ2 = ε.

2. σ = σ′.〈a, x〉 and one of the following are true.
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• a ∈ Act(A1) \Act(A2),

σ1 = σ′1.〈a, x〉, and σ′ is a join of σ′1 and σ2.

• a ∈ Act(A2) \Act(A1),

σ2 = σ′2.〈a, x〉, and σ′ is a join of σ1 and σ′2.

• a ∈ Obs(A1) ∩Obs(A2),

σ1 = σ′1.π1 and σ2 = σ′2.π2 such that σ is a join of σ′1 and σ′2 and either (1) x = in

and π1 = 〈a, in〉 and π2 = 〈a, in〉, or (2) x = out and π1 = 〈a, out〉 and π2 =

〈a, in〉, or (3) x = out and π1 = 〈a, in〉 and π2 = 〈a, out〉.

A run σ1 of A1 can be closed by A2 if there is a run σ2 of A2 such that a join of σ1 and σ2

is closed.

Theorem 5.1 Let P and Q be two compatible I/O-processes. Then σ is a run of P‖Q
leading to 〈p, q〉 ∈ S(P ) × S(Q) iff there is a run σ1 of P leading to p and a run σ2 of Q

leading to q such that σ is a join of σ1 and σ2.

Proof: (=⇒) We do induction on the prefix partial order ≺ over the set of runs of P‖Q.

Base step: If σ = ε is a run of P‖Q leading to initial state 〈p0, q0〉, then σ1 = ε

is a run of P leading to p0 and σ2 = ε is a run of Q leading to q0.

Inductive step: Let σ = σ′.π be a run of P‖Q leading to 〈p, q〉. Then there is a

state 〈p′, q′〉 of P‖Q such that σ′ is a run leading to 〈p′, q′〉 and 〈〈p′, q′〉, π, 〈p, q〉〉 ∈ T (P‖Q).

Let π = 〈a, x〉. By inductive hypothesis, there is a run σ′1 of P leading to p′ and a run σ′2

of Q leading to q such that σ′ is a join of σ′1 and σ′2.

• a ∈ Obs(P ) ∩Obs(Q)

Case 1. x = in and 〈p′, π, p〉 ∈ T (P ) and 〈q′, π, q〉 ∈ T (Q)

Let σ1 = σ′1.π and σ2 = σ′2.π.

Case 2. x = out and 〈p′, π, p〉 ∈ T (P ) and 〈q′, 〈a, in〉, q〉 ∈ T (Q).

Let σ1 = σ′1.π and σ2 = σ′2.〈a, in〉.

Case 3. x = out and 〈q′, π, q〉 ∈ T (Q) and 〈p′, 〈a, in〉, p〉 ∈ T (P ).

Let σ1 = σ′1.〈a, in〉 and σ2 = σ′2.π.



CHAPTER 5. VERIFYING PARAMETERIZED SHARED-MEMORY SYSTEMS 105

• a ∈ Act(P ) \Act(Q)

We have that 〈p, π, p′〉 ∈ T (P ) and q = q′. Let σ1 = σ′1.π and σ2 = σ′2.

• π ∈ Act(Q) \Act(P )

We have that p = p′ and 〈q, π, q′〉 ∈ T (Q). Let σ1 = σ′1 and σ2 = σ′2.π.

In all cases, we get that σ1 is a run of P and σ2 a run of Q such that σ is a join of σ1 and

σ2.

(⇐=) We do induction on the prefix partial order ≺ over the set of joins of runs

of P and Q. In the following, let σ be a join of a run σ1 of P leading to state p and a run

σ2 of Q leading to state q.

Base step: σ = ε. Then σ1 = σ2 = ε, and p is an initial state of P and q is an

initial state of Q. Clearly ε is a run of P‖Q leading to 〈p, q〉.

Inductive step: Let σ = σ′.π and π = 〈a, x〉. We use the fact that σ is a join of

σ1 and σ2 in the arguments below.

Case 1. a ∈ Obs(P ) ∩Obs(Q).

Then σ1 = σ′1.π1 and σ2 = σ′2.π2. There is a state p′ of P such that σ′1 is a run of

P leading to p′ and 〈p′, π1, p〉 ∈ T (P ), and there is a state q′ of Q such that σ′2 is a

run of Q leading to q′ and 〈q′, π2, q〉 ∈ T (Q). Since σ′ is a join of σ′1 and σ′2, we have

from the induction hypothesis that σ is a run of P‖Q leading to 〈p′, q′〉. Moreover

〈〈p′, q′〉, 〈a, x〉, 〈p, q〉〉 ∈ T (P‖Q). Therefore σ is a run of P‖Q leading to 〈p, q〉.

Case 2. a ∈ Act(P ) \Act(Q).

Then σ1 = σ′1.〈a, x〉. There is a state p′ of P such that σ′1 is a run of P leading to p′

and 〈p′, 〈a, x〉, p〉 ∈ T (P ). Since σ′ is a join of σ′1 and σ2, we have from the induction

hypothesis that σ is a run of P‖Q leading to 〈p′, q〉. Moreover 〈〈p′, q〉, 〈a, x〉, 〈p, q〉〉 ∈
T (P‖Q). Therefore σ is a run of P‖Q leading to 〈p, q〉.

Case 3. a ∈ Act(Q) \Act(P ).

Similar to Case 2.

Corollary 5.2 Let P and Q be two compatible I/O-processes. Then σ is a run of P‖Q iff

there is a run σ1 of P and a run σ2 of Q such that σ is a join of σ1 and σ2.
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Proof: The proof follows trivially from an application of Theorem 5.1.

Theorem 5.3 Let P and Q be two compatible I/O-processes. Suppose σ1 is a run of P

and σ2 be a run of Q. Let τ1 = trP (σ1) and τ2 = trQ(σ2). Then the following statements

are true.

• For all joins σ of σ1 and σ2 there is a join τ of τ1 and τ2 such that τ = trP‖Q(σ).

• For all joins τ of τ1 and τ2 there is a join σ of σ1 and σ2 such that τ = trP‖Q(σ).

Proof:

• We do induction on the prefix partial order ≺ over the set of joins of runs of P and Q.

Let σ be a join of a run σ1 of P and a run σ2 of Q. Let τ = trP‖Q(σ), τ1 = trP (σ1)

and τ2 = trQ(σ2).

Base step: σ = ε. Then σ1 = σ2 = ε. Therefore τ1 = τ2 = ε and τ = ε is a join of τ1

and τ2.

Inductive step: Let σ = σ′.π and π = 〈a, x〉. Let τ ′ = trP‖Q(σ′). We use the fact

that σ is a join of σ1 and σ2 in the arguments below.

Case 1. a ∈ Obs(P ) ∩Obs(Q).

Then σ1 = σ′1.π1 and σ2 = σ′2.π2. Let τ ′1 = trP (σ′1) and τ ′2 = trQ(σ′2). We have

that τ = τ ′.π, τ1 = τ ′1.π1 and τ2 = τ ′2.π2. Since σ′ is a join of σ′1 and σ′2, we have

from the induction hypothesis that τ ′ is a join of τ ′1 and τ ′2. Therefore τ is a join

of τ1 and τ2.

Case 2. a ∈ Act(P ) \Act(Q).

Then σ1 = σ′1.〈a, x〉. Let τ ′1 = trP (σ′1). Since σ′ is a join of σ′1 and σ2, we have

from the induction hypothesis that τ ′ is a join of τ ′1 and τ2. If a 6∈ Obs(P‖Q) we

get that τ = τ ′ and τ1 = τ ′1. Therefore τ is a join of τ1 and τ2. If a ∈ Obs(P‖Q)

we get that τ = τ ′.π and τ1 = τ ′1.π. Again we get that τ is a join of τ1 and τ2.

Case 3. a ∈ Act(Q) \Act(P ).

Same as Case 2.

• We do induction on the prefix partial order ≺ over the set of joins of traces of P and

Q. Let τ be a join of a trace τ1 = trσ1(P ) of P and a trace τ2 = trσ2(Q) of Q.
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Base step: τ = ε. Then τ1 = τ2 = ε and consequently σ1 = σ2 = ε. Therefore σ = ε

is a join of σ1 and σ2 such that τ = trσ(P‖Q).

Inductive step: Let τ = τ ′.π and π = 〈a, x〉. We use the fact that τ is a join of τ1

and τ2 in the arguments below.

Case 1. a ∈ Obs(P ) ∩Obs(Q).

Then τ1 = τ ′1.π1 and τ2 = τ ′2.π2. Let σ′1 be the greatest prefix of σ1 such that

τ ′1 = trσ′1(P ). Then σ1 = σ′1.π1.γ1 where γ1 is a sequence of extended private

actions of P . Let σ′2 be the greatest prefix of σ2 such that τ ′2 = trσ′2(P ). Then

σ2 = σ′2.π2.γ2 where γ2 is a sequence of extended private actions of Q. Since τ ′

is a join of τ ′1 and τ ′2, we have from the induction hypothesis that there is a join

σ′ of σ′1 and σ′2 such that τ ′ = trσ′(P‖Q). Let σ = σ′.π.γ1.γ2. Then σ is a join

of σ1 and σ2 such that τ = trσ(P‖Q).

Case 2. a ∈ Obs(P ) \Obs(Q).

Then τ1 = τ ′1.π. Let σ′1 be the greatest prefix of σ1 such that τ ′1 = trσ′1(P ). Then

σ1 = σ′1.π1.γ1 where γ1 is a sequence of extended private actions of P . Since τ ′

is a join of τ ′1 and τ2, we have from the induction hypothesis that there is a join

σ′ of σ′1 and σ2 such that τ ′ = trσ′(P‖Q). Let σ = σ′.π.γ1. Then σ is a join of

σ1 and σ2 such that τ = trσ(P‖Q).

Case 3. a ∈ Obs(Q) \Obs(P ).

Same as Case 2.

Corollary 5.4 Let P and Q be two compatible I/O-processes. Then τ is a trace of P‖Q
iff there is a trace τ1 of P and a trace τ2 of Q such that τ is a join of τ1 and τ2.

Proof: Suppose τ is a trace of P‖Q. Then there is a run σ of P‖Q such that τ = trP‖Q(σ).

From Theorem 5.1, we have that there are runs σ1 of P and σ2 of Q such that σ is a

join of σ1 and σ2. Let τ1 = trP (σ1) and τ2 = trP (σ2). From Theorem 5.3, we get that

τ = trP‖Q(σ) is a join of a trace τ1 of P and a trace τ2 of Q.

Suppose that τ is a join of a trace τ1 of P and a trace τ2 of Q. Let τ1 = trP (σ1)

and τ2 = trQ(σ2). From Theorem 5.3, there is a join σ of σ1 and σ2 such that τ = trP‖Q(σ).

Therefore τ is a trace of P‖Q.
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Theorem 5.5 Suppose P and Q are I/O-processes and R is a I/O-process compatible with

both P and Q. If P � Q then P‖R � Q‖R.

Proof: Since Obs(P ) ⊆ Obs(Q) we have that Obs(P‖R) = Obs(P ) ∪ Obs(R) ⊆ Obs(Q) ∪
Obs(R) = Obs(Q‖R). Suppose τ is a trace of P‖R. From Corollary 5.4 there is a trace τ1

of P and a trace τ2 of Q such that τ is a join of τ1 and τ2. Since P � Q, we have that τ1 is

a trace of Q as well. Therefore, from Corollary 5.4 we have that τ is a trace of Q‖R.

5.2 Parameterized memory systems

A parameterized memory system M has three parameters —the number n of

processors, the number m of memory locations, and the number v of data values. The

parameterized memory system M is built from two parameterized I/O-processes C and P

which have two parameters —the number m of memory locations, and the number v of data

values. Intuitively, the I/O-process P represents a single processor in the system and C

represents a central controller. The I/O-process M(n,m, v) is built from the I/O-processes

C(m, v) and P (m, v) by composing C(m, v) and n copies of P (m, v). Given n > 0, m > 0,

and v > 0, the memory system M(n,m, v) is an I/O-process that has processors numbered

from 0 . . . n − 1, memory locations numbered from 0 . . .m − 1, and data values numbered

from 0 . . . v − 1.

We now formally define a parameterized memory system. Let N be the set of all

non-negative integers. Let N+ be the set of all positive integers. For any k > 0, let Nk

denote the set of all non-negative integers less than k. A parameterized I/O-process is a

tuple 〈PrivNamesA,ObsNamesA, A〉 such that

1. PrivNamesA and ObsNamesA are sets disjoint from each other, and

2. A is a function that maps N+×N+ to I/O-processes such that for all m > 0 and v > 0,

we have that Priv(A(m, v)) = PrivNamesA × Nm × (Nv ∪ {⊥}) and Obs(A(m, v)) =

ObsNamesA × Nm × (Nv ∪ {⊥}).

A parameterized memory system is a pair 〈C,P 〉 of parameterized I/O-processes

satisfying the following properties.

1. PrivNamesC ∩ ((ObsNamesP ∪ PrivNamesP )× N+) = ∅, and

ObsNamesC ∩ (PrivNamesP × N+) = ∅.
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2. R ∈ PrivNamesP and W ∈ PrivNamesP .

The functions name, loc, and val are defined on Act(C(m, v)) ∪Act(P (m, v)), and extract

respectively the first, second, and third components of the actions. Given some m and v,

let RdWr(m, v) be the union of the set of read actions {〈R, j, k〉|j < m and k < v} and the

set of write actions {〈W, j, k〉|j < m and k < v}.
For all m, v > 0, and for all k ≥ 0, let Pk(m, v) denote the I/O-process that is ob-

tained from P (m, v) by renaming every private action a to action a′, such that (1) name(a′)

is the pair 〈name(a), k〉, (2) loc(a′) = loc(a), and (3) val(a′) = val(a). A parameterized

memory system defines a function that maps N× N+ × N+ to I/O-processes as follows:

M(0,m, v) = C(m, v)

M(n+ 1,m, v) = M(n,m, v)‖Pn(m, v)

For particular n,m, v, we say that M(n,m, v) is a memory system. Note that M(n,m, v)

is compatible with Pn(m, v), due to the renaming of private actions in Pn(m, v), and the

conditions on the names of private and observable actions of C and P described above. The

observable actions of M(n,m, v) are the same for all n > 0 and given by Obs(C(m, v)) ∪
Obs(P (m, v)). We use ObsM to denote the set

⋃
m,v Obs(C(m, v))∪Obs(P (m, v)). We define

a function proc on the set of actions
⋃
k,m,v Priv(Pk(m, v)) such that if a ∈ Priv(Pk(m, v)),

then proc(a) = k.

In order to reduce the proof of sequential consistency of the parameterized memory

system to finite state model checking obligations, we make some assumptions about memory

systems. We first state a few additional definitions. Let σ be a run of the memory system

M(n,m, v). Let R ⊆ Nm. We denote by σ|R the run σ restricted to the memory locations

in R. Formally, we have σ|R = [σ]β, where β = {a | a ∈ Act(M(n,m, v)) and loc(a) ∈
R}. For j < m, we write σ|j for σ|{j}. A function λ : Nk → Nk is called a k-map.

A one-one k-map is called a k-permutation. A function λ : Nk ∪ {⊥} −→ Nk ∪ {⊥}
such that λ restricted to Nk is a k-map and λ(⊥) =⊥ is called a ⊥-extended k-map.

Let M(n,m, v) be a memory system. If λ is a m-permutation then locλ is defined to be

a function from Act(M(n,m, v)) to Act(M(n,m, v)) such that if a = 〈name, j, k〉 then

locλ(a) = 〈name, λ(j), k〉. If λ is a ⊥-extended v-map then valλ is defined to be a function

from Act(M(n,m, v)) to Act(M(n,m, v)) such that if a = 〈name, j, k〉 then valλ(a) =

〈name, j, λ(k)〉. locλ and valλ can be extended to action sequences, extended actions and

extended action sequences in the natural way.
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Assumption 5.1 (Location projectibility)

1. If σ ∈ Σ(C(m, v)), then for all j ≤ m, we have σ|Nj ∈ Σ(C(j, v)).

2. If σ ∈ Σ(P (m, v)), then for all j ≤ m, we have σ|Nj ∈ Σ(P (j, v)).

Assumption 5.2 (Location symmetry) Let λ be an m-permutation. Then

1. for all σ ∈ Σ(C(m, v)), we have that locλ(σ) ∈ Σ(C(m, v)), and

2. for all σ ∈ Σ(P (m, v)), we have that locλ(σ) ∈ Σ(P (m, v)).

Assumption 5.3 (Location monotonicity) For all n, v, m1, m2, if m1 ≤ m2, then

1. for all σ ∈ Act(C(m1, v))∗, we have σ ∈ Σ(C(m1, v)) iff σ ∈ Σ(C(m2, v)), and

2. for all σ ∈ Act(P (m1, v))∗, we have σ ∈ Σ(P (m1, v)) iff σ ∈ Σ(P (m2, v)).

Assumption 5.4 (Data symmetry) Let λ be a ⊥-extended v-map. Then

1. for all σ ∈ Σ(C(m, v)), we have that valλ(σ) ∈ Σ(C(m, v)), and

2. for all σ ∈ Σ(P (m, v)), we have that valλ(σ) ∈ Σ(P (m, v)).

Assumption 5.5 (Data monotonicity) For all m, n, v1, v2, if v1 ≤ v2, then

1. for all σ ∈ Act(C(m, v1))∗, we have σ ∈ Σ(C(m, v1)) iff σ ∈ Σ(C(m, v2)), and

2. for all σ ∈ Act(P (m, v1))∗, we have σ ∈ Σ(P (m, v1)) iff σ ∈ Σ(P (m, v2)).

5.3 Sequential consistency

Let K be a set. Let G = 〈K,E〉 be a directed graph over K and P ⊆ K.

The P -restriction of G is the directed graph 〈P,E ∩ P × P 〉 and is denoted by G|P . Let

G = 〈K,E〉 be a graph over K and G′ = 〈K ′, E′〉 be a graph over K ′. We say that G is

isomorphic to G′ if there is a one-one onto function f : K → K ′ such that for all x, y ∈ K,

we have that 〈x, y〉 ∈ E iff 〈f(x), f(y)〉 ∈ E′. We write G ≈ G′ if G is isomorphic to G′.

If K = K ′, we define the union of G and G′ to be 〈K,E ∪ E′〉. We write G ∪ G′ for the
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union of G and G′. Let G1 and G2 be graphs over K and let P ⊆ K. Then we have

that (G1 ∪G2)|P = G1|P ∪G2|P . Suppose G′1 and G′2 are graphs over K ′, and G1 and G2

are isomorphic to G′1 and G′2 respectively. Then we have that G1 ∪ G2 is isomorphic to

G′1∪G′2. Suppose G = 〈K,E〉 is an acyclic directed graph over K. Then we can obtain total

orderings of the vertices in G that respect the dependencies specified by its edges. Since the

edges form a partial order, several such total orders may exist. Formally, a one-one function

f : K → N|K| is a good order of G if for all x, y ∈ K, if 〈x, y〉 ∈ E then f(x) < f(y).

A function F from Nr to P(K) is an r-partition of K if (1)
⋃
i<r F (i) = K, and

(2) for all i, j < r, we have that F (i) and F (j) are disjoint. Let F be an r-partition of

K and let R ⊆ Nr. Then A is the function such that A(F,R) =
⋃
i∈R F (i). Let T be a

function from Nr to P(K × K). The tuple 〈F, T 〉 is called an ordered r-partition of K if

(1) F is an r-partition of K, and (2) for all i < r, we have that T (i) ⊆ F (i) × F (i) and

T (i) is a total order of F (i). For any R ⊆ Nr, let A(〈F, T 〉, R) = A(F,R). If 〈F, T 〉 is an

ordered r-partition of K then G(〈F, T 〉) is defined to be the directed graph 〈K,
⋃
i<r T (i)〉.

Let Memop(n,m, v) be the union of the sets {〈〈R, i〉, j, k〉|i < n and j < m and k <

v} and {〈〈W, i〉, j, k〉|i < n and j < m and k < v}. Thus Memop(n,m, v) denotes the set

of read and write operations of M(n,m, v). The functions name, loc, and val, which

were originally defined on actions of P (m, v) and C(m, v), can be defined analogously on

actions of M(n,m, v). Thus, the four functions name, loc, val, and proc are defined on

all members of Memop(n,m, v). We use Memop to denote the set
⋃
n,m,v Memop(n,m, v).

Let σ = π0, π1, . . . , πk−1 be a sequence in Memop(n,m, v)∗, the set of finite sequences with

elements from Memop(n,m, v). Define h′ to be the function where h′(σ) is an ordered

n-partition 〈F, T 〉 of Nk such that for all i < n, (1) F (i) = {x < k|proc(πx) = i}, and

(2) for all x, y ∈ F (i), we have that 〈x, y〉 ∈ T (i) iff x < y. We extend h′ to operate on

arbitrary sequences σ by first restricting it to actions in Memop. Formally, for any σ, we

have that h′(σ) = h′([σ]Memop). We extend h′ to operate on sequences of extended actions

by operating it on the first component of each extended action. Formally, if σ is a sequence

of extended actions, then h′(σ) = h′(First(σ)). We observe that for all runs σ of M(n,m, v),

the directed graph G(h′(σ)) is acyclic.

We are interested in defining which sequences from Memop∗ are serial. Intuitively,

a sequence from Memop∗ is serial if it can be produced by serial memory where each read

from a location returns the value written by the last write to that location. We state

this formally below. Let σ = π0, π2, . . . , πk−1 be a sequence in Memop∗. We define lwσ
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as a function that associates with each position i in σ, the position j in σ where the

most recent write to the location loc(πi) was done. Let WSσ(j) be the set of numbers

i such that πi is a write event to the location of the event πj . Formally, we have that

WSσ(j) = {i ≤ j|loc(πi) = loc(πj) and ∃n1.name(πi) = 〈W,n1〉}. Then lwσ is a mapping

from the set {0, 1, ..., k − 1} to {0, 1, ..., k − 1} ∪ {⊥} defined as follows.

lwσ(j) =

 max(WSσ(j)), if WSσ(j) 6= ∅
⊥, otherwise.

The sequence σ is serial if the following conditions are satisfied.

1. For all i < k and j < k, if lwσ(i) = lwσ(j) =⊥, then val(πi) = val(πj).

2. For all i < k, if lwσ(i) 6=⊥, then val(πi) = val(πlwσ(i)).

Let σ = π0, π1, . . . , πk−1 be a sequence in Memop∗. If f is a k-permutation

then πf(0), πf(1), . . . , πf(k−1) is called a permutation of σ. If f is a good order of G(h′(σ))

then the sequence πf−1(0), πf−1(1), . . . , πf−1(k−1) is called a linearization of σ. Let M be a

parameterized memory system and define ΣM to be
⋃
n,m,v Σ(M(n,m, v)). A function Ω

from ΣM to Memop∗ is called an observer for M if Ω(σ) is a permutation of [σ]Memop for

all σ ∈ ΣM .

Definition 5.1 (Serializer) Let M be a parameterized memory system and let Ω be an

observer for M . Then Ω is a serializer for M(n,m, v) if for every run σ ∈ Σ(M(n,m, v)),

the sequence Ω(σ) is both serial and a linearization of σ.

Definition 5.2 (Sequential consistency [Lam79]) Let M be a parameterized memory

system. The memory system M(n,m, v) is sequentially consistent if it has a serializer.

The parameterized memory system M is sequentially consistent if M(n,m, v) is sequentially

consistent for all n > 0, m > 0, and v > 0.

We define below three restrictions on an observer Ω.

• Ω is local on M(n,m, v) if for all σ ∈ Σ(M(n,m, v)) and for all j < m, we have that

Ω(σ|j) = Ω(σ)|j . We say that Ω is local if Ω is local on M(n,m, v) for all n, m and v.

• Ω is location symmetric on M(n,m, v) if for all σ ∈ Σ(M(n,m, v)) and for every

m-permutation λ, we have that Ω(locλ(σ)) = locλ(Ω(σ)). We say that Ω is location

symmetric if Ω is location symmetric on M(n,m, v) for all n, m and v.
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• Ω is data symmetric on M(n,m, v) if for all σ ∈ Σ(M(n,m, v)) and for every ⊥-

extended v-map λ, we have that Ω(valλ(σ)) = valλ(Ω(σ)). We say that Ω is data

symmetric if Ω is data symmetric on M(n,m, v) for all n, m and v.

We now prove a theorem about directed graphs that is essential for the results in

Sections 5.4 and 5.5.

Theorem 5.6 Let K be a set. Let 〈F, T 〉 be an ordered r-partition and 〈F ′, T ′〉 be an

ordered s-partition of K for some r and s. Suppose for all R ⊆ Nr such that |R| ≤ s the

A(F,R)-restriction of G(〈F, T 〉) ∪ G(〈F ′, T ′〉) is acyclic. Then G(〈F, T 〉) ∪ G(〈F ′, T ′〉) is

acyclic.

Proof: Let G be the graph G(〈F, T 〉) ∪ G(〈F ′, T ′〉). We will prove that G is acyclic.

Suppose r ≤ s. Since Nr ⊆ Nr and |Nr| = r ≤ s, we get that the A(F,Nr)-

restriction of G is acyclic. But A(F,Nr) = K and the K-restriction of G is the same as G.

Therefore G is acyclic.

Suppose r > s. Let R = {i0, i1, . . . , ik−1} ⊆ Nr. Let ⊕ and 	 denote addition

modulo-k and subtraction modulo-k respectively. We define the notion of an R-cycle of the

graph G. The sequence x0, y0, x1, y1, . . . , xk−1, yk−1 of vertices in the graph G is said to be

an R-cycle of G if for all j < k we have that (1) 〈xj , yj〉 ∈ T (ij), and (2) 〈yj , xj⊕1〉 ∈ T ′(p)
for some p < s. It is not too hard to see that if G has a cycle then it has an R-cycle for

some R ⊆ Nr. First, we show that G does not have an R-cycle for any |R| ≤ s. If it does

then the A(F,R)-restriction of G has a cycle too, which is a contradiction. Second, we show

that if G has an R-cycle then it has an R′-cycle for some R′ ⊂ R. Let R = {i0, i1, . . . , ik−1}
be such that |R| = k > s, and suppose G has an R-cycle x0, y0, x1, y1, . . . , xk−1, yk−1. Since

k > s there is some p < s and a, b < k such that (1) xa ∈ F ′(p), (2) yb ∈ F ′(p), and

(3) a < b < a+ s. We have that 〈yb, xa〉 6∈ T ′(p) otherwise G has an R-cycle where |R| ≤ s,
which is a contradiction. Since T ′(p) is a total order on F ′(p), we get that 〈xa, yb〉 ∈ T ′(p).
Moreover 〈ya	1, xa〉 ∈ T ′(p) and 〈yb, xb⊕1〉 ∈ T ′(p). Since T ′(p) is transitive we have that

〈ya	1, xb⊕1〉 ∈ T ′(p). Let R′ = R \ {ia, . . . , ib}. We can now short-circuit the R-cycle to

get the R′-cycle 〈x0, y0〉, . . . , 〈xa	1, ya	1〉, 〈xb⊕1, yb⊕1〉, . . . , 〈xk−1, yk−1〉. A simple induction

will show that G does not have an R-cycle for any R ⊆ Nr. Therefore G is acyclic.
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5.4 Parameterized memory systems with fixed number of

processors

In this section, we are concerned with parameterized shared memory systems in

which the number of processors is fixed, for example at n. We will show that demonstrating

sequential consistency by means of a local, location symmetric and data symmetric observer

for n memory locations and 2 data values is sufficient to prove sequential consistency for

any number of locations and values.

Let Ω be an observer for the parameterized memory system M . Let σ be a run

of M(n,m, v) and let [σ]Memop(n,m,v) = π0, . . . , πk−1. Let Ω(σ) = πf−1(0), . . . , πf−1(k−1)

for some k-permutation f . Let hΩ be the function where hΩ(σ) is an ordered m-partition

〈F ′, T ′〉 of Nk such that for all j < m, (1) F ′(j) = {x ∈ K|loc(πx) = j}, and (2) for

all x, y ∈ F (i), we have that 〈x, y〉 ∈ T ′(i) iff f(x) < f(y). Let ΛΩ be the function on

Σ(M(n,m, v)) such that ΛΩ(σ) = G(h′(σ)) ∪ G(hΩ(σ)).

Lemma 5.7 Let Ω be a local observer for the parameterized memory system M . Let σ be a

run of M(n,m, v) and R be a subset of Nm. Then ΛΩ(σ|R) is isomorphic to ΛΩ(σ)|A(hΩ(σ),R).

Proof: Let [σ]Memop(n,m,v) = π0, π1, . . . , πa−1, Then G(h′(σ)) = 〈Na, E1〉 and G(hΩ(σ)) =

〈Na, E2〉 for some E1, E2 ⊆ Na × Na. We have that [σ|R]Memop(n,m,v) = ([σ]Memop(n,m,v))|R.

Let i0 < i1 < . . . < ib−1 < a be such that

[σ|R]Memop(n,m,v) = ([σ]Memop(n,m,v))|R = πi0 , πi1 , . . . , πib−1
.

Then G(h′(σ|R)) = 〈Nb, F1〉 and G(hΩ(σ|R)) = 〈Nb, F2〉 for some F1, F2 ⊆ Nb × Nb. Also

A(hΩ(σ), R) = {i0, i1, . . . , ib−1}. Therefore, we have that

G(h′(σ))|A(hΩ(σ),R) = 〈A(hΩ(σ), R), E1 ∩ A(hΩ(σ), R)×A(hΩ(σ), R)〉, and

G(hΩ(σ))|A(hΩ(σ),R) = 〈A(hΩ(σ), R), E2 ∩ A(hΩ(σ), R)×A(hΩ(σ), R)〉.

Let α : Nb → A(hΩ(σ), R) be the one-one strictly monotonic function such that α(j) = ij

for all j < b. Then [σ|R]Memop(n,m,v) = πα(0), πα(1), . . . , πα(b−1).

Let Ω(σ) = πf−1(0), πf−1(1), . . . , πf−1(a−1) for some a-permutation f . Let Ω(σ|R) =

πα(g−1(0)), πα(g−1(1)), . . . , πα(g−1(b−1)) for some b-permutation g. Let p be a memory location

in R. Since Ω is local, we have that Ω(σ)|p = Ω(σ|p) = Ω((σ|R)|p) = Ω(σR)|p. Suppose
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Ω(σ|R)|p = πα(g−1(x0)), πα(g−1(x1)), . . . , πα(g−1(xk−1)), where x0 < x1 < . . . < xk−1 < b.

Suppose Ω(σ)|p = πf−1(y0), πf−1(y1), . . . , πf−1(xk−1), where y0 < y1 < . . . < yk−1 < a. Then

α(g−1(xi)) = f−1(yi) for all i < k. In other words, we have that yi = f(α(g−1(xi))) for all

i < k. Moreover, for all r, s < k we have that xr < xs iff yr < ys. Let x, y < b be such

that loc(πα(x)) = loc(πα(y)) = p. We show that g(x) < g(y) iff f(α(x)) < f(α(y)). Suppose

x = g−1(xr) and y = g−1(xs) for some xr, xs < b. Then g(x) < g(y) iff xr < xs iff yr < ys

iff f(α(g−1(xr))) < f(α(g−1(xs))) iff f(α(x)) < f(α(y)).

For all x ∈ Na, we have that x ∈ Nb iff α(x) ∈ A(hΩ(σ), R). We have that

〈x, y〉 ∈ F1 iff proc(πα(x)) = proc(πα(y)) and g(x) < g(y) iff proc(πα(x)) = proc(πα(y))

and f(α(x)) < f(α(y)) iff 〈α(x), α(y)〉 ∈ E1 ∩ A(hΩ(σ), R) × A(hΩ(σ), R). Therefore α

is an isomorphism from G(h′(σ|R)) to G(h′(σ))|A(hΩ(σ),R). We have that 〈x, y〉 ∈ F2 iff

loc(πα(x)) = loc(πα(y)) and g(x) < g(y) iff loc(πα(x)) = loc(πα(y)) and f(α(x)) < f(α(y))

iff 〈α(x), α(y)〉 ∈ E2 ∩ A(hΩ(σ), R) × A(hΩ(σ), R). Therefore α is an isomorphism from

G(h(σ|R)) to G(h(σ))|A(hΩ(σ),R). We get that

ΛΩ(σ)|A(hΩ(σ),R)

= (G(h′(σ)) ∪ G(hΩ(σ)))|A(hΩ(σ),R)

= G(h′(σ))|A(hΩ(σ),R) ∪ G(hΩ(σ))|A(hΩ(σ),R)

≈ G(h′(σ|R)) ∪ G(h(Ω(σ|R)))

= ΛΩ(σ|R).

Thus ΛΩ(σ)|A(hΩ(σ),R) is isomorphic to ΛΩ(σ|R).

Lemma 5.8 Let Ω be a location symmetric observer for the parameterized memory system

M . Let σ be a run of M(n,m, v), R be a subset of Nm and λ be an m-permutation. Then

ΛΩ(locλ(σ))|A(hΩ(locλ(σ)),λ(R)) is isomorphic to ΛΩ(σ)|A(hΩ(σ),R).

Proof: Let [σ]Memop(n,m,v) = π0, π1, . . . , πa−1. Then G(h′(σ)) = 〈Na, E1〉 and G(hΩ(σ)) =

〈Na, E2〉 for some E1, E2 ⊆ Na × Na. Let π′i = locλ(πi). Therefore [locλ(σ)]Memop(n,m,v) =

π′0, π
′
1, . . . , π

′
a−1. Then G(h′(locλ(σ))) = 〈Na, F1〉 and G(hΩ(locλ(σ))) = 〈Na, F2〉 for some

F1, F2 ⊆ Na×Na. Then x ∈ A(h(Ω(σ)), R) iff loc(πx) ∈ R iff loc(locλ(πx)) = loc(π′x) ∈ λ(R)

iff x ∈ A(h(Ω(locλ(σ))), λ(R)). Therefore A(h(Ω(σ)), R) = A(h(Ω(locλ(σ))), λ(R)). We
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denote the set A(h(Ω(σ)), R) by K. Therefore, we have that

G(h′(σ))|A(hΩ(σ),R) = 〈K,E1 ∩K ×K〉,

G(hΩ(σ))|A(hΩ(σ),R) = 〈K,E2 ∩K ×K〉,

G(h′(locλ(σ)))|A(hΩ(locλ(σ)),λ(R)) = 〈K,F1 ∩K ×K〉, and

G(hΩ(locλ(σ)))|A(hΩ(locλ(σ)),λ(R)) = 〈K,F2 ∩K ×K〉.

Let Ω(σ) = πf−1(0), . . . , πf−1(a−1) for some a-permutation f . Then locλ(Ω(σ)) =

π′f−1(0), . . . , π
′
f−1(a−1). Let Ω(locλ(σ)) = π′g−1(0), . . . , π

′
g−1(a−1) for some a-permutation g.

Since Ω is location symmetric Ω(locλ(σ)) = locλ(Ω(σ)). We get that f−1(i) = g−1(i) for all

i < a. Since f and g are one-one functions, we get that f(i) = g(i) for all i < a.

Let x, y ∈ K. We have that 〈x, y〉 ∈ F1 ∩ K × K iff proc(πx) = proc(πy) and

g(x) < g(y) iff proc(πx) = proc(πy) and f(x) < f(y) iff 〈x, y〉 ∈ E1 ∩K ×K. Therefore the

identity function from K to K is an isomorphism from G(h′(locλ(σ)))|A(hΩ(locλ(σ)),λ(R)) to

G(h′(σ))|A(hΩ(σ),R). We also have that 〈x, y〉 ∈ F2 iff loc(πx) = loc(πy) and g(x) < g(y)

iff loc(πx) = loc(πy) and f(x) < f(y) iff 〈x, y〉 ∈ E2 ∩ K × K. Therefore the iden-

tity function from K to K is an isomorphism from G(hΩ(locλ(σ)))|A(hΩ(locλ(σ)),λ(R)) to

G(hΩ(σ))|A(hΩ(σ),R). We get that

ΛΩ(locλ(σ))A(hΩ(locλ(σ)),λ(R))

= (G(h′(locλ(σ))) ∪ G(hΩ(locλ(σ))))A(hΩ(locλ(σ)),λ(R))

= G(h′(locλ(σ)))A(hΩ(locλ(σ)),λ(R)) ∪ G(hΩ(locλ(σ)))A(hΩ(locλ(σ)),λ(R))

≈ G(h′(σ))|A(hΩ(σ),R) ∪ G(hΩ(σ))|A(hΩ(σ),R)

= ΛΩ(σ)|A(hΩ(σ),R).

Thus ΛΩ(locλ(σ))A(hΩ(locλ(σ)),λ(R)) is isomorphic to ΛΩ(σ)|A(hΩ(σ),R).

Lemma 5.9 Suppose the parameterized memory system M = 〈C,P 〉 satisfies Assump-

tions 5.1, 5.2 and 5.3. For all n > 0 and v > 0, if there is a local and location symmetric

serializer for M(n, n, v). then for all m > 0, there is a serializer for M(n,m, v).

Proof: Fix some n > 0 and v > 0. Suppose Ω is a local and location symmetric serializer

for M(n, n, v). Fix some m > 0. We now show how to define a serializer Ω′ for M(n,m, v).

Let σ ∈ Σ(M(n,m, v)).

Fix p < m and let λ be the m-permutation such that λ(p) = 0, λ(0) = p, and

λ(j) = j if j is neither 0 nor p. We show that Ω(σ)|p is serial. We have that locλ(σ)|0 is a
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run of M(n, 1, v) and therefore of M(n, n, v). Since Ω is a serializer for M(n, n, v), we have

that Ω(locλ(σ)|0) is serial.

Ω(locλ(σ)|0) = Ω(locλ(σ))|0 since Ω is local,

= locλ(Ω(σ))|0 since Ω is location symmetric,

= locλ(Ω(σ)|p) since locλ(γ)|0 = locλ(γ|p) for all γ.

Since Ω(locλ(σ)|0) is serial, we have that locλ−1(Ω(locλ(σ)|0)) is serial. Thus we get that

locλ−1(Ω(locλ(σ)|0)) = locλ−1(locλ(Ω(σ)|p)) = Ω(σ)|p is serial.

Suppose σ is a run of M(n, n, v). Since Ω is a serializer for M(n, n, v) we have

that Ω(σ) is a linearization of ΛΩ(σ). Therefore ΛΩ(σ) is acyclic.

We show that ΛΩ(σ) is acyclic. Let R ⊆ Nm such that |R| ≤ n. We argue that

the graph ΛΩ(σ)|A(h(Ω(σ)),R) is acyclic. Let λ be an m-permutation that maps R one-one

onto N|R| and Nm \ R one-one onto Nm \ N|R|. Since σ is a run of M(n,m, v), we have

that locλ(σ)|N|R| is a run of M(n, n, v) using Assumptions 5.1, 5.2 and 5.3. Therefore

ΛΩ(locλ(σ)|N|R|) is acyclic.

ΛΩ(locλ(σ)|N|R|) = ΛΩ(locλ(σ))|A(hΩ(locλ(σ)),N|R|)
from Lemma 5.7,

= ΛΩ(locλ(σ))|A(hΩ(locλ(σ)),λ(R)) since λ(R) = N|R|,

= ΛΩ(σ)|A(hΩ(σ),R) from Lemma 5.8.

Thus we get that the A(hΩ(σ), R)-restriction of ΛΩ(σ) is acyclic. We use Theorem 5.6

to conclude that ΛΩ(σ) is acyclic. Let Ω′(σ) be a linearization of ΛΩ(σ). Notice that

Ω′(σ)|p = Ω(σ)|p for any p < m. Therefore Ω′(σ) is serial. Moreover Ω′(σ) is a linearization

of σ.

Lemma 5.10 Suppose the parameterized memory system M satisfies Assumptions 5.4 and

5.5. Let Ω be a data symmetric observer for M . For all n > 0 and m > 0, if Ω is a

serializer for M(n,m, 2) then for all v > 0, we have that Ω is a serializer for M(n,m, v).

Proof: Consider any v > 0. Let σ ∈ Σ(M(n,m, v)). Since Ω is an observer for M , we have

that Ω(σ) is a linearization of σ. Suppose Ω(σ) = π1, π2, . . . , πk is not serial.

Case 1. There are i ≤ k and j ≤ k such that lwσ(i) = lwσ(j) =⊥ and val(πi) 6= val(πj).

Case 2. For some i ≤ k, there is a j < i such that lwσ(i) = j and val(πi) 6= val(πj).
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In both cases, we can define a function ⊥-extended v-map λ such that

λ(x) =


⊥, if x =⊥
1, if x = val(πi)

0, otherwise

Then valλ(σ) is a run ofM(n,m, 2). It is easy to see that λ(Ω(σ)) is not serial. Consequently

Ω(λ(σ)) = λ(Ω(σ)) is not serial which is a contradiction. Therefore we get that Ω(σ) is

serial.

Proposition 5.11 Suppose the parameterized memory system M satisfies Assumptions 1–

5. For all n > 0, if there is a local, location symmetric and data symmetric serializer for

M(n, n, 2) then for all m > 0 and v > 0, there is a serializer for M(n,m, v).

Proof: Let Ω : ΣM → Memop∗ be a local, location symmetric and data symmetric serializer

for M(n, n, 2). Consider any v > 0. From Lemma 5.10, we have that Ω is a serializer for

M(n, n, v). Now consider any m > 0. From Lemma 5.9, we have that there is a serializer

for M(n,m, v).

5.5 Parameterized memory systems with arbitrary number

of processors

In Section 5.4, we showed how to prove sequential consistency for fixed number of

processors but arbitrary number of memory locations and data values. Since our objective

is to prove sequential consistency for an arbitrary number of processors, we now give a

method based on induction over the number of processors.

5.5.1 Induction on the set of processors

We show how to check sequential consistency of M(n,m, v) for all n > 0 by

induction over the number of processors. We do not need any of the Assumptions 1–5 for

the results in this section. We would like to analyze a processor in an environment consisting

of an arbitrary number of processors. Hence, we would like an upper bound on the trace set

Γ(M(n,m, v)) for all n. A sufficient condition for this upper bound is captured by process

invariants [KM89].
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A parameterized I/O-process 〈PrivNamesI1 ,ObsNamesI1 , I1〉 is a possible process

invariant for the parameterized memory system M = 〈C,P 〉 if

1. ObsNamesI1 = ObsNamesC ∪ObsNamesP , and

2. PrivNamesI1 ∩ PrivNamesP = ∅.

Definition 5.3 (Process invariant) Suppose that 〈privNamesI1 ,ObsNamesI1 , I1〉 is a

possible process invariant for the parameterized memory system M . Suppose the follow-

ing condition is true for all m and v:

[AI1(m, v)] 1. C(m, v) � I1(m, v)

2. I1(m, v)‖P (m, v) � I1(m, v)

Then 〈privNamesI1 ,ObsNamesI1 , I1〉 is a process invariant of M .

Proposition 5.12 Suppose 〈PrivNamesI1 ,ObsNamesI1 , I1〉 is a process invariant of the

parameterized memory system M . Then, for all n > 0, m > 0, and v > 0, we have that

M(n,m, v) � I1(m, v).

Proof: We prove this by induction over n.

Base Case: Fix m and v. From the definition of M , we have that M(0,m, v) =

C(m, v). C(m, v) � I1(m, v) from the first property of I1. Therefore M(0,m, v) � I1(m, v).

Inductive Case: Suppose M(i,m, v) � I1(m, v) for all m and v. Fix some m

and v. Since M(i,m, v) � I1(m, v), we have from Theorem 5.5 that M(i,m, v)‖P (m, v) �
I1(m, v)‖P (m, v). From the definition of M , we get M(i + 1,m, v) = M(i,m, v)‖P (m, v).

Therefore M(i + 1,m, v) � I1(m, v)‖P (m, v). But I1(m, v)‖P (m, v) � I1(m, v) from the

second property of I1. Therefore M(i+ 1,m, v) � I1(m, v).

If the parameterized memory system M is sequentially consistent, then by our

definition, there exists an observer Ω for M such that for every sequence σ of memory

operations of M(n,m, v), the function Ω produces a rearranged sequence σ′ of memory

operations such that (1) σ′ is serial, and (2) σ and σ′ agree on the ordering of the memory

operations of each individual processor. We wish to provide an inductive construction that

produces such an observer for arbitrary n. The construction uses the notion of a generalized
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processor called a merge invariant, and a witness function that works like an observer for a

two-processor system consisting of the merge invariant and P (m, v).

A parameterized I/O-process 〈PrivNamesI2 ,ObsNamesI2 , I2〉 is a possible merge

invariant for the parameterized memory system M if

1. ObsNamesI2 = ObsNamesP ,

2. {R′,W ′} ⊆ PrivNamesI2 and {R,W} ∩ PrivNamesI2 = ∅, and

3. PrivNamesI2 ∩ PrivNamesC = ∅ and PrivNamesI2 ∩ PrivNamesP = ∅.

Let Rd ′(m, v) = {〈R′, j, k〉|j < m and k < v}, and let Wr ′(m, v) = {〈W ′, j, k〉|j <
m and k < v}. Let RdWr ′(m, v) denote the union of Rd ′(m, v) and Wr ′(m, v). We define

the function prime on RdWr(m, v) by prime(〈R, j, k〉) = 〈R′, j, k〉 and prime(〈W, j, k〉) =

〈W ′, j, k〉. We define the function unprime on RdWr ′(m, v) by unprime(〈R′, j, k〉) = 〈R, j, k〉
and unprime(〈W ′, j, k〉) = 〈W, j, k〉. We extend prime and unprime to sequences of actions

in the natural way.

Consider the memory system I2(m, v)||P (m, v) for some value of m and v. No-

tice that Obs(I2(m, v)||P (m, v)) = Obs(I2(m, v)) = Obs(P (m, v)). Let Υ(m, v) denote

RdWr ′(m, v) ∪ Obs(I2(m, v)), the set of memory and observable actions of I2(m, v). Let

σ = π0, π1, . . . , πk−1 be a sequence in (RdWr(m, v) ∪ Υ(m, v))∗. Define h′ to be the func-

tion where h′(σ) is an ordered 3-partition 〈F, T 〉 of Nk such that for all i < n, (1) F (0) =

{x < k|πx ∈ RdWr(m, v)}, (2) F (1) = {x < k|πx ∈ RdWr ′(m, v)}, (3) F (2) = {x < k|πx ∈
Obs(I2(m, v))}, and (4) for all x, y ∈ F (i), we have that 〈x, y〉 ∈ T (i) iff x < y. We extend h′

to operate on arbitrary sequences σ by first restricting it to actions in RdWr(m, v)∪Υ(m, v).

Formally, for any σ, we have that h′(σ) = h′([σ]RdWr(m,v)∪Υ(m,v)). We extend h′ to operate

on sequences of extended actions by operating it on the first component of each extended

action. Formally, if σ is a sequence of extended actions, then h′(σ) = h′(First(σ)). We

observe that for all runs σ of P (m, v)‖I2(m, v), the directed graph G(h′(σ)) is acyclic.

Let π0, π1, . . . , πk−1 be a sequence in RdWr(m, v) ∪ Υ(m, v)∗ and f be a k-

permutation. Then prime(πf(0), πf(1), . . . , πf(k−1)) is called a permutation of σ. If f is

a good order of G(h′(σ)) then the sequence prime(πf−1(0), πf−1(1), . . . , πf−1(k−1)) is called

a linearization of σ. Let σ be a run of I2(m, v)‖P (m, v). A sequence β ∈ Υ(m, v)∗

is a permutation of σ if β is a permutation of [σ]RdWr(m,v)∪Υ(m,v). A sequence β ∈
Υ(m, v)∗ is a linearization of σ if β is a linearization of [σ]RdWr(m,v)∪Υ(m,v). Let ΣI2‖P =
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⋃
m,v Σ(I2(m, v)||P (m, v)) and Υ =

⋃
m,v Υ(m, v). A function Θ from ΣI2‖P to Υ is a merg-

ing function if for all m and v and for all σ ∈ Σ(I2(m, v)‖P (m, v)), we have that Θ(σ) is

a permutation of σ. For any run σ of I2(m, v), we define tr ′(σ) as the restriction of σ to

Υ(m, v). Let Γ′(I2(m, v)) be the set {tr ′(σ)|σ ∈ Σ(I2(m, v))}.

Definition 5.4 (Merge invariant) Let 〈PrivNamesI1 ,ObsNamesI1 , I1〉 be a process in-

variant and let 〈PrivNamesI2 ,ObsNamesI2 , I2〉 be a possible merge invariant for the param-

eterized memory system M . Then 〈PrivNamesI2 ,ObsNamesI2 , I2〉 is a merge invariant of

M with respect to 〈PrivNamesI1 ,ObsNamesI1 , I1〉 if there exists a merging function Θ such

that the following two conditions are true for all m and v:

[B0I1,I2(m, v)] For every closed trace 〈a1, out〉, 〈a2, out〉, . . . of I1(m, v), we have that the

sequence 〈a1, in〉, 〈a2, in〉, . . . is a run of I2(m, v).

[B1I2(m, v)] For every closed run σ of I2(m, v)||C(m, v), the sequence

unprime([σ]RdWr ′(m,v)) is serial.

[B2I2,I1,Θ(m, v)] For every run σ of I2(m, v)‖P (m, v) that can be closed by I1(m, v), we

have that Θ(σ) ∈ Σ(I2(m, v)) and Θ(σ) is a linearization of σ.

We define the following restrictions on the merging function Θ.

• We say that Θ is local on I2(m, v)||P (m, v) if for all σ ∈ Σ(I2(m, v)‖P (m, v)) and

j < m, we have that Θ(σ|j) = Θ(σ)|j . We say that Θ is local if Θ is local on

I2(m, v)||P (m, v) for all m and v.

• We say that Θ is location symmetric on I2(m, v)||P (m, v) if for every m-permutation

λ and for all σ ∈ Σ(I2(m, v)||P (m, v)), we have that Θ(locλ(σ)) = locλ(Θ(σ)). We

say that Θ is location symmetric if Θ is location symmetric on I2(m, v)||P (m, v) for

all m and v.

• We say that Θ is data symmetric on I2(m, v)||P (m, v) if for every ⊥-extended v-map

λ and for all σ ∈ Σ(I2(m, v)||P (m, v)), we have that Θ(valλ(σ)) = valλ(Θ(σ)). We

say that Θ is data symmetric if Θ is data symmetric on I2(m, v)||P (m, v) for all m

and v.
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Theorem 5.13 Let 〈PrivNamesI1 ,ObsNamesI1 , I1〉 be a process invariant for a parame-

terized memory system M . Let 〈PrivNamesI2 ,ObsNamesI2 , I2〉 be a merge invariant of M

with respect to 〈PrivNamesI1 ,ObsNamesI1 , I1〉. Then M is sequentially consistent.

Proof: Since I2 is a merge invariant of M , there is a merging function Θ such that

B1I2(m, v) and B2I2,I1,Θ(m, v) are true for some m and v. We prove by induction on n that

the memory system M(n,m, v)‖I2(m, v) is sequentially consistent for all n, m and v. Since

M(n,m, v) � I1(m, v), we have from B0I1,I2(m, v) that every closed trace of M(n,m, v)

is a run of I2(m, v). Therefore, every run of M(n,m, v) is a run of M(n,m, v)‖I2(m, v).

Therefore M(n,m, v) is sequentially consistent for all n, m and v. In the following, fix m

and v.

Base Case: From the definition of M , we have that M(0,m, v) = C(m, v). There-

fore M(0,m, v)‖I2(m, v) is sequentially consistent from B1I2(m, v).

Inductive Case: Suppose M(i,m, v)‖I2(m, v) is sequentially consistent. Con-

sider a closed run σ of M(i + 1,m, v)‖I2(m, v) = M(i,m, v)‖Pi+1(m, v)‖I2(m, v). From

Theorem 5.1, there is a run σ1 of M(i,m, v) and a run σ2 of Pi+1(m, v)‖I2(m, v) such that

σ is a join of σ1 and σ2. We get that σ2 can be closed by M(i,m, v). Since I1 is a pro-

cess invariant of M , we have that M(i,m, v) � I1(m, v). Therefore σ2 can be closed by

I1(m, v) also. From B2I1,I2,Θ(m, v), we get that Θ(σ2) ∈ Σ(I2(m, v)) rearranges σ2. Let

τ1 = trM(i,m,v)(σ1) and τ2 = trPi+1(m,v)‖I2(m,v)(σ2). From the first part of Theorem 5.3, we

have that τ1 and τ2 are joinable. We have that τ2 = trPi+1(m,v)‖I2(m,v)(σ2) = tr I2(m,v)(Θ(σ2))

from the property of Θ. Using the second part of Theorem 5.3, we have that there is a

join σ′ of σ1 and Θ(σ2). From Theorem 5.1, we get that σ′ is a run of M(i,m, v)‖I2(m, v).

Moreover, it is easy to see that σ′ is closed. Hence σ′ is sequentially consistent from the

induction hypothesis. Therefore, there is a linearization of σ′ that is serial. Since any lin-

earization of σ′ is also a linearization of σ, we have a linearization of σ that is serial. Hence

σ is sequentially consistent.

Suppose that we manage to come up with possible invariants I1 and I2, and a

merging function Θ. How do we verify for all m and v that AI1(m, v), B1I2(m, v), and

B2I2,I1,Θ(m, v) hold? In the following section, we describe sufficient conditions whereby

proving these obligations for fixed values of m and v will let us conclude that they hold for

all m and v.
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5.5.2 Reduction to a fixed number of memory locations and data values

In this section, we use Assumptions 5.1, 5.2 and 5.3 on the parameterized memory

system M . Further, we impose requirements on the process and merge invariants and the

merging function that will reduce the verification problem to one on a fixed number of

memory locations.

Requirement 5.1 (Location projectibility) We require for the possible process invari-

ant I1 and the possible merge invariant I2 that

1. if σ ∈ Σ(I1(m, v)) then for all j ≤ m, we have σ|Nj ∈ Σ(I1(j, v)), and

2. if σ ∈ Σ(I2(m, v)) then for all j ≤ m, we have σ|Nj ∈ Σ(I2(j, v)).

Requirement 5.2 (Location symmetry) Let λ be an m-permutation. We require for

the possible process invariant I1 and the possible merge invariant I2 that

1. for all σ ∈ Σ(I1(m, v)), we have that locλ(σ) ∈ Σ(I1(m, v)), and

2. for all σ ∈ Σ(I2(m, v)), we have that locλ(σ) ∈ Σ(I2(m, v)).

Requirement 5.3 (Location monotonicity) For all n, v, m1, m2, if m1 ≤ m2, then

1. for all σ ∈ Act(I1(m1, v))∗, we have σ ∈ Σ(I1(m1, v)) iff σ ∈ Σ(I1(m2, v)), and

2. for all σ ∈ Act(I2(m1, v))∗, we have σ ∈ Σ(I2(m1, v)) iff σ ∈ Σ(I2(m2, v)).

Requirement 5.4 (Location independence) We require for the possible process invari-

ant I1 and the possible merge invariant I2 that

1. σ ∈ Γ(I1(m, v)) if σ ∈ Act(I1(m, v))∗, and for all j < m, we have σ|j ∈ Γ(I1(m, v)),

and

2. σ ∈ Γ′I2(m, v) if σ ∈ Act(I2(m, v))∗, and for all j < m, we have σ|j ∈ Γ′I2(m, v).

Requirement 5.5 (Data symmetry) Let λ be an ⊥-extended v-map. We require for the

possible process invariant I1 and the possible merge invariant I2 that
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1. for all σ ∈ Σ(I1(m, v)), we have that valλ(σ) ∈ Σ(I1(m, v)), and

2. for all σ ∈ Σ(I2(m, v)), we have that valλ(σ) ∈ Σ(I2(m, v)).

Requirement 5.6 (Data monotonicity) For all n, m, v1, v2, if v1 ≤ v2, then

1. for all σ ∈ Act(I1(m, v1))∗, we have σ ∈ Σ(I1(m, v1)) iff σ ∈ Σ(I1(m, v2)), and

2. for all σ ∈ Act(I2(m, v1))∗, we have σ ∈ Σ(I2(m, v1)) iff σ ∈ Σ(I2(m, v2)).

Requirement 5.7 (Data reducibility) We require for the possible process invariant I1

and the possible merge invariant I2 that

1. if σ 6∈ Γ(I1(m, v)) then there is a ⊥-extended v-map with range {0, 1,⊥} such that

valλ(σ) 6∈ Γ(I1(m, v)).

2. if σ 6∈ Γ′(I2(m, v)) then there is a ⊥-extended v-map with range {0, 1,⊥} such that

valλ(σ) 6∈ Γ′(I2(m, v)).

Lemma 5.14 Let M be a parameterized memory system satisfying Assumptions 5.1, 5.2

and 5.3. Let I1 be a possible process invariant satisfying Requirements 5.1, 5.2, 5.3 and 5.4.

Then for all m > 0 and v > 0, if AI1(1, 2) is true then AI1(m, v) is true.

Proof: Fix m > 0 and v > 0.

1. Given C(1, 2) � I1(1, 2), we show that C(m, v) � I1(m, v). Let σ be a trace of

C(m, v). Fix p < m and let λ be the m-permutation such that λ(p) = 0, λ(0) = p,

and λ(j) = j if j is neither 0 nor p. Then σ|p = locλ−1(locλ(σ)|0). We have that

locλ(σ)|0 is a trace of C(1, v) from Assumptions 5.1, 5.2 and 5.3. If locλ(σ)|0 is not

a trace of I1(1, v) then from Requirement 5.7 there is a ⊥-extended v-map λ with

range {0, 1,⊥} such that valλ(locλ(σ)|0) is not a trace of I1(1, v). Consequently, it

is not a trace of I1(1, 2) from Requirement 5.6. But this is a contradiction since

valλ(locλ(σ)|0) is a trace of C(1, 2). Therefore locλ(σ)|0 is a trace of I1(1, v). Thus

we get that σ|p = locλ−1(locλ(σ)|0) is a trace of I1(m, v) by Requirements 5.3 and 5.2.

From Requirement 5.4, we get that σ is a trace of I1(m, v).
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2. Given I1(1, 2)‖P (1, 2) � I1(1, 2), we show that I1(m, v)‖P (m, v) � I1(m, v). Let σ

be a trace of I1(m, v)‖P (m, v). Fix p < m and let λ be the m-permutation such that

λ(p) = 0, λ(0) = p, and λ(j) = j if j is neither 0 nor p. Then σ|p = locλ−1(locλ(σ)|0).

We have that locλ(σ)|0 is a trace of I1(1, v)‖P (1, v) from Assumptions 5.1, 5.2 and

5.3, and Requirements 5.1, 5.2 and 5.3. If locλ(σ)|0 is not a trace of I1(1, v) then

from Requirement 5.7 there is a ⊥-extended v-map λ with range {0, 1,⊥} such that

valλ(locλ(σ)|0) in not a trace of I1(1, v). Consequently valλ(locλ(σ)|0) is not a trace

of I1(1, 2) from Requirement 5.6. But this is a contradiction since valλ(locλ(σ)|0) is

a trace of I1(1, 2)‖P (1, 2). Therefore locλ(σ)|0 is a trace of I1(1, v). Thus we get

that σ|p = locλ−1(locλ(σ)|0) is a trace of I1(m, v) by Requirements 5.3 and 5.2. From

Requirement 5.4, we get that σ is a trace of I1(m, v).

Lemma 5.15 Let M be a parameterized memory system satisfying Assumptions 5.1, 5.2

and 5.3. Let I2 be a possible merge invariant satisfying Requirements 5.1, 5.2 and 5.3. Then

for all m > 0 and v > 0,

1. if B0I2(1, 2) is true then B0I2(m, v) is true, and

2. if B1I2(1, 2) is true then B1I2(m, v) is true.

Proof: The proof runs exactly along the lines of the proof of Lemma 5.14.

Let Θ be a merging function. Let σ ∈ Σ(I2(m, v)‖P (m, v) and [σ]Υ(m,v) =

π0, π1, . . . , πk−1. Let Θ(σ) = πf−1(0), πf−1(1), . . . , πf−1(k−1) for some k-permutation f . Let

hΘ be the function where hΘ(σ) is an ordered m-partition 〈F ′, T ′〉 of Nk such that for

all j < m, (1) F ′(j) = {x ∈ K|loc(πx) = j}, and (2) for all x, y ∈ F (i), we have that

〈x, y〉 ∈ T ′(i) iff f(x) < f(y). Let ΛΘ be the function on Σ(I2(m, v)‖P (m, v)) such that

ΛΘ(σ) = G(h′(σ)) ∪ G(hΘ(σ)).

Lemma 5.16 Let Θ be a local merging function. Let σ be a run of I2(m, v)‖P (m, v) and

R be a subset of Nm. Then ΛΘ(σ|R) is isomorphic to ΛΘ(σ)|A(hΘ(σ),R).

Lemma 5.17 Suppose we are given a location symmetric merging function Θ, an m-

permutation λ, a run σ of I2(m, v)‖P (m, v), and a set R ⊆ Nm. Then we have that

ΛΘ(locλ(σ))|A(hΘ(locλ(σ)),λ(R)) is isomorphic to ΛΘ(σ)|A(hΘ(σ),R).
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Lemma 5.18 Let M be a parameterized memory system satisfying Assumptions 1, 2 and

3. Let I1 be a possible process invariant and let I2 be a possible merge invariant for M

satisfying Requirements 1–4. Then for all v > 0, if there is a local and location symmetric

merging function Θ satisfying B2I2,I1,Θ(3, v) then for all m > 0, there is a merging function

Θ′ satisfying B2I2,I1,Θ′(m, v).

Proof: Fix some v > 0. Suppose Θ is a local and location symmetric merging function

satisfying B2I2,I1,Θ(3, v). Fix some m > 0. We now show how to define a merging function

Θ′ satisfying B2I2,I1,Θ′(m, v). Let σ ∈ Σ(I2(m, v)‖P (m, v)).

Fix p < m and let λ be the m-permutation such that λ(p) = 0, λ(0) = p, and

λ(j) = j if j is neither 0 nor p. We show that Θ(σ)|p ∈ Γ′(I2(m, v)). We have that locλ(σ)|0
is a run of I2(1, v)‖P (1, v) and therefore of I2(3, v)‖P (3, v). Since Θ is a merging function

for I2(3, v)‖P (3, v), we have that Θ(locλ(σ)|0) ∈ Γ′(I2(3, v)).

Θ(locλ(σ)|0) = Θ(locλ(σ))|0 since Θ is local,

= locλ(Θ(σ))|0 since Θ is location symmetric,

= locλ(Θ(σ)|p) since locλ(γ)|0 = locλ(γ|p) for all γ.

Since Θ(locλ(σ)|0) ∈ Γ′(I2(3, v)), we have that locλ−1(Θ(locλ(σ)|0)) ∈ Γ′(I2(3, v)). Thus

we get that locλ−1(Θ(locλ(σ)|0)) = locλ−1(locλ(Θ(σ)|p)) = Θ(σ)|p ∈ Γ′(I2(3, v)). Therefore

Θ(locλ(σ)|0) ∈ Γ′(I2(m, v)).

Suppose σ is a run of I2(3, v)‖P (3, v). Since Θ is a serializer for I2(3, v)‖P (3, v),

we have that Θ(σ) is a linearization of ΛΘ(σ). Therefore ΛΘ(σ) is acyclic.

We show that ΛΘ(σ) is acyclic. Let R ⊆ Nm such that |R| ≤ 3. We argue that

the graph ΛΘ(σ)|A(h(Θ(σ)),R) is acyclic. Let λ be an m-permutation that maps R one-one

onto N|R| and Nm \R one-one onto Nm \N|R|. Since σ is a run of I2(3, v)‖P (3, v), we have

that locλ(σ)|N|R| is a run of I2(3, v)‖P (3, v) using Assumptions 5.1, 5.2 and 5.3. Therefore

ΛΘ(locλ(σ)|N|R|) is acyclic.

ΛΘ(locλ(σ)|N|R|) = ΛΘ(locλ(σ))|A(hΘ(locλ(σ)),N|R|)
from Lemma 5.16,

= ΛΘ(locλ(σ))|A(hΘ(locλ(σ)),λ(R)) since λ(R) = N|R|,

= ΛΘ(σ)|A(hΘ(σ),R) from Lemma 5.17.

Thus we get that the A(hΘ(σ), R)-restriction of ΛΘ(σ) is acyclic. We use Theorem 5.6

to conclude that ΛΘ(σ) is acyclic. Let Θ′(σ) be a linearization of ΛΘ(σ). Notice that



CHAPTER 5. VERIFYING PARAMETERIZED SHARED-MEMORY SYSTEMS 127

Θ′(σ)|p = Θ(σ)|p for any p < m. Therefore Θ′(σ) ∈ Γ′(I2(m, v)) from Requirement 5.4.

Moreover Θ′(σ) is a linearization of σ.

Lemma 5.19 Let M be a parameterized memory system satisfying Assumptions 5.4 and

5.5. Let I1 be a possible process invariant and let I2 be a possible merge invariant for

M satisfying Requirements 1–4. Then for all m > 0, if Θ is a data symmetric merging

function satisfying B2I2,I1,Θ(m, 2) then for all v > 0, Θ is a merging function satisfying

B2I2,I1,Θ(m, v).

Proof: Consider any v > 0. Let σ ∈ Σ(I2(m, v)‖P (m, v)). Suppose Θ(σ) does not satisfy

B2I2,I1,Θ(m, v).

Case 1. Θ(σ) is not a linearization of σ. Let λ be a ⊥-extended v-map such that λ(k) = 0

for all k < v. Then valλ(σ) is a run of Σ(I2(m, 1)‖P (m, 1)) from Assumptions 5.4

and 5.5, and Requirements 5.5 and 5.6. But Θ(valλ(σ)) = valλ(Θ(σ)) because Θ is

value symmetric. Therefore Θ(valλ(σ)) is also not a linearization of valλ(σ) which is

a contradiction.

Case 2. Θ(σ) 6∈ Σ′(I2(m, v)). From Requirement 5.7, we have that there is a ⊥-extended

v-map with range {0, 1,⊥} such that valλ(Θ(σ)) 6∈ Σ′(I2(m, v)). But valλ(Θ(σ)) =

Θ(valλ(σ)). because Θ is value symmetric. Moreover valλ(σ) ∈ Σ(I2(m, 1)‖P (m, 1))

from Assumptions 5.4 and 5.5, and Requirements 5.5 and 5.6. Therefore we get that

Θ(valλ(σ)) 6∈ Σ′(I2(m, 2)) which is a contradiction.

Theorem 5.20 Let M be a parameterized memory system satisfying Assumptions 1–5. Let

I1 be a possible process invariant and let I2 be a possible merge invariant for M satisfy-

ing Requirements 1–4. Let Θ be a local, location symmetric and data symmetric merging

function. Suppose AI1(1, 2), B0I1,I2(1, 2) and B1I2(1, 2) are true, and Θ is a witness for

B2I2,I1,Θ(3, 2). Then M(n,m, v) is sequentially consistent for all n > 0, m > 0, and v > 0;

that is, M is sequentially consistent.

Proof: Fix m > 0 and v > 0. From Lemma 5.14, we have that AI1(m, v) is true. From

Lemma 5.15, we have that B0I2(m, v) and B1I2(m, v) are true. From Lemma 5.19, we have

that Θ is a witness for B2I2,I1,Θ′(3, v). From Lemma 5.18, we have that there is a witness Θ′

for B2I2,I1,Θ′(m, v). From Theorem 5.13, we have that M(n,m, v) is sequentially consistent

for all n.
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INVRS ,0 RS ,1

WX ,1

〈RB , j, 0, in〉 〈RB , j, 1, in〉

〈RB , j, 0, out〉 〈RB , j, 1, out〉

〈WB , j, 0, in〉 〈WB , j, 1, in〉

〈R, j, 1, out〉

WX ,0

〈WB , j, 1, out〉

〈W, j, 1, out〉〈W, j, 0, out〉

〈WB , j, 0, out〉

〈R, j, 0, out〉
〈RB , j, 0, in〉

〈R, j, 1, out〉
〈RB , j, 1, in〉

〈WB , j, 0, in〉 〈WB , j, 1, in〉

〈WB , j,−, in〉

〈W, j, 0, out〉

〈W, j, 1, out〉

〈R, j, 0, out〉
〈W, j, 0, out〉 〈W, j, 1, out〉

〈RB , j,−, in〉

Figure 5.1: Snoopy cache coherence

5.6 Verification of a snoopy cache coherence protocol

We show how the theory developed in the previous section can be used to verify

sequential consistency of memory systems with an arbitrary number of processors, locations

and data values using a model checker. We consider a simplified snoopy cache coherence

protocol from [HP96a]. Each processor has a cache for fast access to the main memory.

There is a single bus for communication between the cache controllers. In each cache

controller, corresponding to each location there is a I/O-process with five states. The I/O-

process for the controller is obtained by composing the I/O-processes for the locations.

Figure 5.1 shows the I/O-process for location j. A location could be in one of three modes

—invalid, shared, or exclusive. If a location is in the shared mode, then the processor can

read its value but cannot modify it. If a location is in exclusive mode, then the processor

can both read and write it. If a location is in the invalid mode, the processor can neither

read nor write it. These modes are denoted by INV for invalid, RS for shared and WX for

exclusive. If the processor wants to access the location, it synchronizes over the bus with

other caches that have the latest value stored in the location, and makes a transition to

either the shared or the exclusive mode. For simplicity we assume that all the caches in

various processors are of the same size as the main memory, and every location is initialized

to the same value in the shared mode. Consequently, we do not model the main memory.
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The protocol is described by the parameterized memory system 〈C,P 〉, where

P (m, v) models one processor with a local cache and C(m, v) models the memory con-

troller. Since we are not modeling the memory controller in this example for simplicity, we

can think of C(m, v) as an I/O-process with a single state with self-loops on all possible

input actions. For the parameterized I/O-process P , we have that PrivNamesP = {R,W}
and ObsNamesP = {RB ,WB}. The actions R and W stand for read and write respec-

tively, while RB and WB stand for read synchronize and write synchronize (over the bus)

respectively. Figure 5.1 shows the cache controller machine for a single location j in which

two data values can be stored. It is easy to see how it can be extended to v data values

for an arbitrary v. In each state the actions that can be taken label the outgoing arcs.

Each action of the I/O-process for the j th location with two data values is a 4-tuple from

the set {R,W,RB ,WB} × {j} × {0, 1} × {in, out}. The last component denotes whether

the action is an input or an output action. Recall that private actions can be only output

actions, while observable actions can be either input or output. A − in the action name is

a wild card and means several actions that can be obtained by substituting values for −.

The names of the states are self-explanatory. For example, the state labeled 〈RS , 0〉 means

that the location is in shared mode and the current value for the location in the cache is

0. The I/O-process P (m, 2) is the parallel composition of m of these I/O-processes, one for

each location.

We will now give an inductive proof using merge and process invariants. For this

example, the process invariant I1 and the merge invariant I2 are identical. We refer to

the two together as I. The invariant I(m, v) is the parallel composition of m I/O-processes

where the jth I/O-process is given in Figure 5.2. We will not concern ourselves with proving

formally that Assumptions 5.1–5.5 are satisfied by the protocol. A complete proof would use

a theorem prover to discharge these assumptions.2 We also convince ourselves informally

that I satisfies Requirements 5.1–5.7.

We give some intuition behind our construction of the invariant. The invariant I is

such that for all m and v, we have that I(m, v) is a generalization of the processor P (m, v).

The processor is generalized so that it can make a read request on the bus for a location

even if it already has the location in shared mode. In addition, it can make a read or a

write request on the bus even if the location is in exclusive mode. Thus, the I/O-process

2It is not too hard to convince ourselves informally that the protocol satisfies Assumptions 5.1–5.5.
Indeed, we encourage the reader to go through this exercise.
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INVRS ,0 RS ,1

WX ,1

〈RB , j, 0,−〉 〈RB , j, 1,−〉

〈RB , j, 0, out〉 〈RB , j, 1, out〉

〈WB , j, 0, in〉 〈WB , j, 1, in〉

〈R, j, 0, out〉 〈R, j, 1, out〉

WX ,0

〈WB , j, 1, out〉

〈W, j, 1, out〉〈W, j, 0, out〉

〈WB , j, 0, out〉

〈R, j, 0, out〉
〈RB , j, 0,−〉

〈R, j, 1, out〉
〈RB , j, 1,−〉

〈WB , j, 0, in〉 〈WB , j, 1, in〉

〈WB , j,−, in〉

〈W, j, 0, out〉

〈W, j, 1, out〉

〈W, j, 0, out〉
〈WB , j, 0, out〉 〈WB , j, 1, out〉

〈W, j, 1, out〉

〈RB , j,−, in〉

Figure 5.2: Snoopy cache coherence invariant

for the invariant in Figure 5.2 has more actions than the I/O-process in Figure 5.1. For

example, the additional actions that can be taken are 〈RB , j, 0, out〉 from states 〈RS , 0〉
and 〈WX , 0〉 and 〈WB , j, 0, out〉 from the state 〈WX , 0〉. The merging function Θ is the

identity function.3 It is easy to see that the merging function is local, location symmetric

and data symmetric. We used Mocha to verify the proof obligations AI(1, 2), B0I,I(1, 2),

B1I(1, 2) and B2I,I(3, 2). Mocha required a few minutes to check these obligations.

3This simple merging works because the snoopy protocol implements coherence.
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Chapter 6

Conclusions

The fundamental obstacle to the use of model checking for formal verification of

reactive systems designed in the industry is the state explosion problem. In this dissertation,

we have presented several techniques for combating this problem. In Chapters 2, 3 and 4,

we presented novel techniques to make model checking scale to larger designs. In Chapter 5,

we have extended model checking to a domain where it could not be directly applied before

—the domain of parameterized shared-memory multiprocessor protocols. We summarize

our technical contributions below and point out interesting directions for future research.

In Chapter 2, we showed that all linear properties expressible by Büchi automata,

which includes linear temporal logic (LTL) properties, can be translated to query post-µ

calculus, the logic of of emptiness queries over the state sets represented by post-µ calculus

sentences. The translated formula is linear in the size of the automaton and has an alterna-

tion depth of two. Since the translation of LTL formulas to Büchi automata is exponential

in the worst case, our translation from LTL formulas to post-µ queries has exponential

worst-case complexity. The complexity and alternation depth of the translation match

the standard translation to pre-µ calculus queries. We also gave a translation to post-µ

queries of linear size and alternation depth one for co-Büchi automata. Again, the transla-

tion matches the corresponding translation to pre-µ calculus queries. Finally, we translated

safety automata to post-µ queries which yields a symbolic algorithm for detecting violations

of all safety properties as soon as possible. We compared forward reasoning to backward

reasoning on an example —the sliding window protocol— and obtained encouraging results.

The exact characterization of the intersection of the two logics, query pre-µ calculus

and query post-µ calculus, remains open. The notion of equi-linear properties has been
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defined [GK94] to be those properties that cannot distinguish between two Kripke structures

with the same language. We conjecture that a pre-µ query ϕ is expressible as a post-µ query

iff ϕ is equi-linear. While the intersection identifies the queries that can be model checked

by both forward and backward symbolic state traversal, it is the union that identifies the

queries that can be model checked at all symbolically, by mixed forward and backward state

traversal. A mix of both approaches could potentially be more efficient than either one in

isolation. Hence, there is a need for further investigation into the efficacy of mixed symbolic

forward and backward reasoning as a heuristic for efficient model checking.

In Chapter 3, we presented a compositional verification methodology based on

an assume-guarantee proof decomposition rule. We focused on refinement checking and

showed that if the specification is suitably enriched to provide specifications of signals

present in the environment of implementation components, the verification problem can

be decomposed into a set of smaller verification problems. Each of these sub-problems

involves an implementation that typically has a much smaller state space than the original

implementation. We illustrated this methodology by using the assume-guarantee rule to

prove that a simple three-stage pipeline refines its Instruction Set Architecture (ISA). We

then demonstrated the effectiveness of the proof framework by carrying out a proof of an

implementation of Tomasulo’s algorithm for out-of-order execution in a microprocessor. In

Chapter 4, we generalized the assume-guarantee rule of Chapter 3 to deal with the notion

of refinement where several steps of the implementation correspond to a single step of the

specification. We used the generalized assume-guarantee rule to verify VGI, a chip for digital

signal processing designed by the Infopad group at the University of California at Berkeley.

The part of chip that we verified contained 64 compute processors. Each processor had

approximately 30,000 logic gates and 800 latches.

We would like to pursue the concept of “formal design” described in Chapter 4. In

“formal design,” design and verification activities proceed in parallel and help each other.

The designer’s intuition embodied in abstraction modules aids verification and the model

checker aids the designer by testing that a proposed solution is correct under all possible

situations. There are several requirements for making “formal design” a reality. First, our

experience with VGI has shown that we need other proof decomposition techniques apart

from the assume-guarantee rule. Second, we need design idioms that are general so that

realistic designs can be constructed out of combinations and structured so that a library

of proof decomposition techniques can be applied. Third, we need tools with a tighter
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integration between design and testing 1.

In Chapter 5, we showed how to use model checking to verify sequential consis-

tency of parameterized shared-memory multiprocessor systems for any number of processors,

memory locations, and data values. We introduced the notion of a serializer that reorders

the memory events occurring in the system, without interfering with the system, to produce

a trace of serial memory. We presented two model checking proof methods based on rea-

sonable assumptions on the memory system. The first method lets us prove the correctness

of a system with fixed number of processors for any number of memory locations and data

values. We showed that for all n > 0, if a local, location symmetric, and data symmetric

serializer exists for a memory system with n processors, n memory locations and 2 data

values, then the memory system with n processors is sequentially consistent for any number

of memory locations and data values. Moreover if the serializer is finite-state, then it can be

composed with the memory system and the composition can be model checked against the

serial memory specification. The second method lets us prove sequential consistency for any

number of processors, memory locations and data values, although it requires more human

effort than the first method. It is based on a novel induction scheme involving two invariant

processes —a process invariant and a merge invariant— and a serializer-like witness for the

merge invariant. The verifier has to construct these invariants and the witness manually.

We show that if the invariants satisfy a set of requirements then it suffices to perform the

inductive proof for three memory locations and two data values. We used the inductive

method to verify a snoopy cache coherence protocol.

There are several interesting directions to pursue in this area. We have found the

inductive proof method based on process and merge invariants quite difficult to apply in

practice. For instance, it could not be directly applied as described in Chapter 5 to the

lazy caching protocol [ABM93]. We had to weaken one of the requirements on the merge

invariant mentioned in Section 5.5.2. The first framework described above which can prove

sequential consistency for a fixed number of processors is easier to use in practice. With that

method, there are two obstacles to achieving the holy grail of fully automatic verification

—the manual construction of the serializer and the state explosion problem as the number

of processors increases. We believe that the first problem cannot be solved completely.

The verifier has to provide some input to describe the serializer. But we would like to

1The author biased suggestion would be that the testing should be exhaustive and performed by model
checking.
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make it easier to describe it. One interesting direction is to construct and model check the

serializer for a single location against the serial memory specification. As a second step,

it can be checked that such identically constructed serializers for the various locations can

work together, that is, their outputs can be interleaved together preserving the processor

order of events. This would not only simplify the construction of the serializer, but partition

the model checking problem into two sub-problems as well. For each of these problems, we

would like to do a further proof decomposition to avoid the state explosion problem due

to increase in the number of processors. We would like to investigate special compositional

proof strategies that make use of the fact that the processors in the system are identical to

each other.
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Appendix A

Sliding window protocol

In this appendix, we give the reactive modules description of the sliding window

protocol referred to in Section 2.4.3.

#define WINDOW 1

#define MSGSIZE 2

#define SEQSIZE 2

type msgType: (0..MSGSIZE -1)

type seqType: (0..SEQSIZE -1)

type winType: (0..WINDOW -1)

type windowType: (0..WINDOW )

type msgWinArray : array winType of msgType

type boolWinArray : array winType of bool

module SlidingWindowProtocol

interface seqX , seq , index , ackX , ack : seqType; msgP , msgX , msgC : msgType;

msgValid , ackValid : bool ; sndStore, recStore: msgWinArray ;

busy , recvd : boolWinArray ; window : windowType

lazy atom controls msgP , seq reads msgP , seq , window

init

[]true → seq ′ := 0
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update

[]window < WINDOW → msgP ′ := nondet ; seq ′ := seq + 1

endatom

atom controls sndStore reads seq , sndStore awaits seq , msgP

init

[]true → forall i sndStore ′[i] := 0

update

[]seq ′ = seq + 1→
forall i sndStore ′[i] := if (seq%WINDOW = i) then msgP ′ else sndStore[i] fi

endatom

atom

controls msgX , seqX , msgValid

reads index , seq , msgX , seqX , msgValid , seq

awaits sndStore, seq , busy , index

init

[]true → msgValid ′ := false

update

[]seq ′ = seq + 1→ msgX ′ := sndStore ′[seq%WINDOW ]; msgValid ′ := true; seqX ′ := seq

[]busy ′[index%WINDOW ]→
msgX ′ := sndStore ′[index%WINDOW ]; msgValid ′ := true; seqX ′ := index

[]true → msgValid ′ := false; msgX ′ := nondet ; seqX ′ := nondet

endatom

atom controls index reads index , window awaits busy

init

[]true → index ′ := 0

update

[] busy ′[index%WINDOW ] ∧ window > 0→ index ′ := index + 1

endatom
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atom controls window reads window , index , seq awaits index , seq

init

[]true → window ′ := 0

update

[](seq ′ = seq + 1) ∧ (index ′ = index + 1)→ window ′ := window + 1

[] (seq ′ = seq + 1) ∧ (index ′ = index + 1)→ window ′ := window − 1

endatom

#foreach j = (0..WINDOW -1)

atom controls busy [$j] reads seq , ackX , ackValid , busy [$j], seq , ackX awaits seq

init

[]true → busy ′[$j] := false

update

[]seq ′ = seq + 1 ∧ (seq%WINDOW = $j)→ busy ′[$j] := true

[] (seq ′ = seq + 1) ∧ ackValid ∧ (ackX %WINDOW = $j)→ busy ′[$j] := false

endatom

#endforeach

lazy atom controls ack , msgC reads ack , recvd , msgC , recStore

init

[]true → ack ′ := 0

update

[]recvd [ack%WINDOW ]→ msgC ′ := recStore[ack%WINDOW ]; ack ′ := ack + 1

endatom

#foreach j = (0..WINDOW -1)

atom controls recvd [$j] reads recvd [$j], ack awaits seqX , msgValid , ack

init

[]true → recvd ′[$j] := false

update

[]msgValid ′ ∧ (seqX ′ − ack ′ < WINDOW ) ∧ (seqX ′%WINDOW = $j)→ recvd ′[$j] := true

[]ack ′ = ack + 1 ∧ (ack%WINDOW = $j)→ recvd ′[$j] := false
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endatom

#endforeach

atom controls recStore reads recvd , recStore awaits msgX , msgValid , seqX , ack

init

[]true → forallirecStore ′[i] := 0

update

[]msgValid ′ ∧ (seqX ′ − ack ′ < WINDOW )→
forall i recStore ′[i] := if (seqX ′%WINDOW = i) then msgX ′ else recStore[i] fi

endatom

atom controls ackX , ackValid reads ack , ackX , ackValid awaits ack , seqX , msgValid

init

[]true → ackValid ′ := false

update

[]ack ′ = ack + 1→ ackX ′ := ack ; ackValid ′ := true

[]msgValid ′ ∧ (ack ′ − seqX ′ > 0) ∧ (ack ′ − seqX ′ <= WINDOW )→
ackX ′ := seqX ′; ackValid ′ := true

[]true → ackValid ′ := false; ackX ′ := nondet

endatom

endmodule
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