
A

How Can Automatic Feedback Help Students
Construct Automata?

LORIS D’ANTONI, University of Pennsylvania
DILEEP KINI, University of Illinois at Urbana-Champaign
RAJEEV ALUR, University of Pennsylvania
SUMIT GULWANI, Microsoft Research
MAHESH VISWANATHAN, University of Illinois at Urbana-Champaign
BJÖRN HARTMANN, UC Berkeley

In computer-aided education, the goal of automatic feedback is to provide a meaningful explanation of students’ mistakes.
We focus on providing feedback for constructing a deterministic finite automaton (DFA) that accepts strings that match a
described pattern. Natural choices for feedback are binary feedback (correct/wrong) and a counterexample of a string that is
processed incorrectly. Such feedback is easy to compute but might not provide the student enough help. Our first contribution
is a novel way to automatically compute alternative conceptual hints. Our second contribution is a rigorous evaluation of
feedback with 377 students. We find that providing either counterexamples or hints is judged as helpful, increases student
perseverance, and can improve problem completion time. However, both strategies have particular strengths and weaknesses.
Since our feedback is completely automatic it can be deployed at scale and integrated into existing MOOCs.

Categories and Subject Descriptors: H.5.m. [Information Interfaces and Presentation (e.g. HCI)]: Miscellaneous

General Terms: Human Factors, Experimentation

Additional Key Words and Phrases: Auto-grading, feedback, automata, A/B study

1. INTRODUCTION
Both online and offline, student enrollment in Computer Science courses is rapidly increasing. For
example, enrollment in introductory CS courses has roughly tripled at Berkeley, Stanford and the
University of Washington in the past decade [Patterson 2013]; in addition, Computer Science is the
most frequently taken MOOC subject online [Times 2012; Jordan 2014]. With a thousand students
in a lecture hall, or tens of thousands following a MOOC online, standard approaches to providing
individualized feedback don’t scale. However, students need appropriate guidance through specific
feedback to progress and overcome conceptual difficulties.

Our focus in this paper is on the problem of deterministic finite automata (DFA) construction.
DFAs are a fundamental topic in computer science education. Beside being part of the standardized
computer science curriculum, the concept of DFA is rich in structure and potential applications. It
is useful in diverse settings such as control theory, text editors, lexical analyzers, and models of
software interfaces. We focus on providing feedback for assignments in which a student is asked to
provide a DFA construction corresponding to a regular language description.

One way to provide feedback is to use techniques of statistical machine learning. Using training
data, incorrect solutions are categorized into known classes of mistakes. This method is general,
but requires annotations. For automata, and similar domains, there is an opportunity to use fully
automated and potentially more accurate methods based on formal analysis of the solution. This is
the approach we focus on in this paper. Thanks to the closure and decidability properties of DFAs, it

This research was supported by the NSF Expeditions in Computing award CCF 1138996.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0000-0000/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

is simple to check whether a student solution is a correct one and output a binary (correct/incorrect)
feedback. Going a step further, if the solution is incorrect one can produce a short counterexample
on which the student solution does not perform correctly (e.g., “Your DFA accepts the string ab but
the correct DFA doesn’t”). Such procedures are used for producing feedback in current state of the
art tools [Rodger and Finley 2006]. Although counterexamples are very helpful, they do not suggest
how to fix the student’s solution, and at times, this can lead the student to fix the solution in a wrong
way. In particular the student might treat the counterexample as a special case on which the solution
doesn’t work, rather than try to generalize it to the actual mistake. In many cases the students may
benefit from a hint on how to fix the solution rather than a specific counterexample (e.g., “Check
the transitions out of state 3”).

The first contribution of this paper is a new technique for automatically generating high-level
(conceptual) hints for student DFA constructions. Our new algorithms for generating feedback build
on recent techniques developed for automatic grading [Alur et al. 2013]. These grading algorithms
can identify the type of student mistake; we translate them into readable feedback. In some cases
this is as easy as generating a counterexample, through in other cases it requires more complex
paraphrasing techniques to go from succinct logical representations to English. For example, using
the DFA edit difference proposed in [Alur et al. 2013], we can generate feedback of the form You
need to change the acceptance condition of one state, for a solution in which one final state is miss-
ing, or a sentence like Your solution accepts the language { s | ‘ba’ appears in s at least twice }
for a solution that accepts a different language from the one in the assignment. These new feed-
back techniques can be easily adapted to many other problems in theory of computation, including
nondeterministic finite automata and regular expressions.

At a high level, our approach proposes novel techniques for detecting different types of mistakes
and translating them into explanatory feedback. We distinguish semantic mistakes that are likely due
to a misunderstanding of the problem from syntactic mistakes that are likely due to incorrectly ex-
pressing a semantically correct solution. Accordingly, our system generates different types of hints
that either describe conceptual mistakes of the given solution, or offer pragmatic feedback on what
kind of syntactic edits have to be performed. Similar types of feedback can be applied in many other
domains including programming problems [Singh et al. 2013], and geometric constructions [Gul-
wani et al. 2011; Itzhaky et al. 2013].

The second contribution of the paper is a comprehensive study of the effectiveness of feedback in
the process of learning DFA constructions. We compare two state of the art techniques, binary (cor-
rect/incorrect) and counterexample-based feedback, as well as our new hint-based feedback system.
These techniques could be combined into a comprehensive policy. We separate them in our study to
learn about the utility of each in isolation. Our techniques are embodied in an online tool 1, where
students can submit automata and receive tailored feedback. To understand if feedback techniques
help students become proficient in automata construction, we carried out a field experiment with 377
participants from two introductory Theory of Computation courses. To the best of our knowledge
this is the first study on effectiveness of any kind of feedback in DFA constructions.

Based on our results we conclude that both counterexample-based feedback and our new hint-
based feedback are more effective than binary feedback in the students’ learning process. Students
receiving feedback need less time to solve problems, and persevere longer on optional practice prob-
lems. We thus believe that feedback is effective in learning DFA concepts. At a high level, we did
not observe any significant difference between counterexample-based feedback and our new hint-
ing technique. However, when looking at individual problems we can observe how both techniques
have distinct benefits. While counterexamples are helpful in understanding simple syntactic mis-
takes, our hints are helpful in identifying conceptual mistakes for which a single counterexample is
not sufficient.

Finally, we deployed our tool and made it available online. The tool was used by a third university
not involved in our study. Survey responses show students and the teacher were enthusiastic, and

1Tool available at http://automatatutor.com

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

http://automatatutor.com

A:3

the teacher expressed his interest in using it in future offerings of the course. Other institutes have
adopted the tool in their courses. Since our feedback is completely automatic we believe that our
tool is ready to be deployed at scale and integrated into existing MOOCs so that it can reach tens of
thousands of students.

Beyond the domain of DFAs, this paper provides a classification of different types of feedback
along with examples of how this approach may generalize. Our evaluation design, which combines
required and optional problems to investigate both student performance and perseverance, can also
serve as a template for conducting online experiments on feedback techniques. We hope that these
contributions provide helpful guidelines for evaluating the effectiveness of automated personalized
feedback, which is increasingly used in a wide variety of large online courses.

2. RELATED WORK
2.1. Intelligent Tutoring Systems
Intelligent tutoring systems (ITSs) aim to emulate the efficacy of personal, one-on-one tutoring, a
gold standard of teaching techniques. ITSs often adopt two major functions: first, they guide students
through a curriculum by selecting or suggesting which problems a student should work on; second,
they provide feedback and assessment on individual problems [VanLehn 2006]. This paper focuses
on the task of providing personalized feedback and evaluating how different feedback strategies
(binary, counterexample, and hint) compare to each other in terms of effectiveness. In the following
we describe how our contributions fit with respect to each component of an ITS.

2.1.1. Task Selection. Task selection uses student models that attempt to capture and describe
the knowledge that students have [Koedinger et al. 2006; Mitrovic et al. 2001]. Some ITSs support
automatic problem generation to enrich the pool of tasks to select from. The techniques vary a lot
in this setting and they are often problem specific [Ahmed et al. 2013; Singh et al. 2012; Andersen
et al. 2013].

Our system does not employ any automatic task selection and in this work we do not generate
problems automatically — students decide which problem they work on. Our tool could in principle
generate new problems and solutions, but we decide to concentrate on a set of manually selected
problems in order to better evaluate the feedback techniques without spreading the data over many
different problems.

2.1.2. Feedback and Assessment. In a typical ITS, feedback is provided at each step or even sub-
step produced by the student while attempting a solution. In contrast, in Computer Aided Instruction
(CAI), feedback is only shown after a complete solution has been submitted, by matching against a
set of manually pre-defined answers and associated correction strategies [Conati 2009].

Providing useful hints and feedback requires models specific to each problem domain. ITSs typi-
cally categorize errors beforehand and associate feedback with them — this might be possible to do
for some well-studied procedural problems such as addition or subtraction [Ashlock 1986; VanLehn
1992]. CAIs on the other hand categorize the set of possible solutions rather than the set of possible
mistakes, and then provide feedback on this finite set of solutions.

In the case of automata problems (which belong to the conceptual domain, where there is no set
procedure to follow), students can submit infinitely many possible solutions and the categorization
of solutions needs to be done at the error level. Although this can be easily done for binary and
counterexample feedback, the task is harder when dealing with more conceptual feedback. In this
paper we introduce a new automatic feedback technique for the domain of automata construction
that is able to propose personalized hints based on the student mistake. Our system has features of
both ITSs and CAIs. As in CAIs, feedback is generated at submission time and it is solely based
on the current submission, not on a student’s history. On the other hand, the instructor only has to
provide one representative solution. Our system is capable of automatically comparing the student’s
attempt against a larger class of solutions, and provide personalized feedback. In this aspect our
system is closer to an ITS.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

Policies determine how to progress through different types of feedback — importantly the over-
all goal is to get a student to solve problems without aid later on. Giving solutions away does not
contribute to this goal. Our tool tries to produce feedback that is helpful but that does not give away
the solution. In our work, we evaluate different types of feedback independently — binary (cor-
rect/incorrect); pointing out a specific problem (counterexample); and hinting at solutions. These
techniques could be combined into a comprehensive policy. We separate them in our study to learn
about the utility of each in isolation. Similar types of feedback can be applied in many other do-
mains including programming problems [Singh et al. 2013], and geometric constructions [Gulwani
et al. 2011; Itzhaky et al. 2013].

Some prior work has studied the effects of different feedback strategies. For example, in the
context of geometry and algebra problems [Anderson et al. 1995; VanLehn 2011], when feedback
is delayed to a student’s submission, different feedback types do not affect learning in terms of
assessment outcomes, but they affect solution speed and engagement in the course. We observe
similar results in our study in the DFA domain.

Minimal feedback has been shown to cause student frustration [Razzaq and Heffernan 2006;
Gallien and Oomen-Early 2008]. Our study yields a similar result: binary feedback, which is clearly
insufficient in indicating why the student’s attempt is wrong, was judged to be most confusing.

2.1.3. ITS Evaluation. Several guidelines have been proposed for evaluating the effectiveness of
ITSs [Shute and Regian 1993; Mark and Greer 1993] and the evaluation in this paper follows them.
Typically the evaluation is divided in internal (regarding the robustness of the tool) and external
parts (regarding the effectiveness of the tool on learning). In terms of internal evaluation we analyze
which feedback the students perceive as less confusing and more helpful. For external evaluation,
we measure the average grade of students receiving each type of feedback.

2.1.4. Applications. Many tutoring systems have focused on various aspects of computer science,
e.g., LISP programming [Anderson and Reiser 1985], or SQL queries [Mitrovic 1998]. Recent work
on automatic feedback generation for programming assignments in Python [Singh et al. 2013] shares
similarities to our own approach in terms of goals and the use of synthesis techniques for imple-
mentation. We next review prior work specific to automata education.

2.2. Automata Education
There are several strategies for teaching automata and other formalisms in computer science edu-
cation. Our system is the first one to provide students with personalized feedback that differs from
binary and counterexample feedback.

Alur et al. provide a method of auto-grading automata, assigning partial credit based on an anal-
ysis of the type of problem the students’ DFA exhibits [Alur et al. 2013]. Grades by this system are
comparable to those of expert human graders. However, their system does not provide any rationale
for the assigned grade to the student, limiting its utility as a learning tool. We build directly on their
work to generate feedback.

The main other existing tools for teaching DFA constructions are JFLAP, FLUTE, and Gradiance.
JFLAP [Rodger and Finley 2006] allows students to author and simulate automata — it is widely
used in classrooms. Instructors can test student models against a set of input strings and expected
results. Recently JFLAP has been equipped with an interface that allows students to test their so-
lution DFA on problems for which they only have an English description of the language [Shekhar
et al. 2014]. To do this the student writes an imperative program that matches the given language
description and if this program is not equivalent to the student’s DFA JFLAP tries to automatically
produce a counterexample. FLUTE is an intelligent tutoring system for formal languages [Devedzic
and Debenham 1998]. It focuses on guiding students through a set of concepts through an appropri-
ate plan. Gradiance2 is a learning environment for database, programming, and automata concepts.
It focuses on providing tests based on multiple choice questions. These tools either do not support

2http://www.newgradiance.com/

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.newgradiance.com/

A:5

a way for drawing DFAs, or do not have a high-level representation of a problem and can therefore
not provide feedback about the conceptual problems with a student’s submission.

Other tools are available for problems related to DFA constructions. In ProofChecker [Stallmann
et al. 2007], students prove the correctness of a DFA by labelling the language described by each
state: given a DFA the student enters “state conditions” (functions or regular expressions) describ-
ing the language of each individual state. The system generates all strings up to length n + 2 for
an n-state DFA and checks whether the condition of the final state for each string is satisfied. In
DeduceIt [Fast et al. 2013], students are asked to solve assignments on logical derivations. DeduceIt
is able to then grade such assignments and provide incremental feedback. Visualizations such as
animations of algorithms or depictions of transformations between automata and equivalent regular
expressions exist [Braune et al. 2001]. These systems focus on different problems do not support
the problem of constructing DFAs corresponding to a given language.

In general, the number of controlled experiments of automata teaching tools is very limited and, to
the best of our knowledge, no prior work tackles the effectiveness of feedback in learning automata
constructions.

3. TYPES OF FEEDBACK IN AUTOMATA CONSTRUCTIONS
Three general strategies exist for presenting feedback [VanLehn 2006]:

(1) binary feedback that indicates whether a student’s solution is correct or not;
(2) error-specific feedback that points out what is wrong; and
(3) solution-oriented feedback that suggests strategies for addressing an error.

In this section we discuss different approaches to operationalize these feedback strategies for the do-
main of automata construction. Our study later compares the impact of showing feedback associated
with these different approaches.

3.1. Binary Feedback
This is a yes/no message that tells the student whether the DFA does or does not meet the input
specification (type 1).

3.2. Counterexample Feedback
A counterexample is a specific string on which the student DFA does not meet the input specifica-
tion. Counterexamples are one instance of pointing out what is wrong (type 2). For example, the
first attempt DFA in Figure 1 accepts the string ‘ababab’ while the correct solution does not. Most
DFA learning tools in this case would provide a feedback of the form: Your DFA accepts the string
‘ababab’ but the correct DFA does not. Counterexamples enable students to trace the behavior of
their DFA symbol by symbol on this string and can thus help identify the origin of a mistake.

3.3. Descriptive Hint Feedback
A hint is a descriptive message that tries to help the student’s conceptual understanding of a prob-
lem. Hints can either describe how a student’s provided solution is incorrect (type 2); or they may
describe strategies that can be applied to correct mistakes (type 3). Based on a review of common
teachers’ feedback in homework assignments from previous automata courses, we developed three
new types of hint feedback. While counterexamples can be considered a particular type of hint, we
observed that teachers rarely offer counterexamples during grading. We hypothesize that counterex-
amples alone are not sufficient for explaining the rationale behind assigning partial credit — they
don’t provide enough information about the type of a mistake, or the root of the student’s misconcep-
tion. Our techniques for generating feedback build on the work of grading automata constructions
presented in [Alur et al. 2013]. The three hint types are:

Problem Syntactic Mistake: Solution accepts a different, related language. In this type of mistake
the student DFA accepts a language that has a description that is syntactically close but not

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

equal to the correct one. The corresponding feedback is an English description of the language
computed by student DFA. An example is the feedback for first attempt DFA in Figure 1:

Your solution accepts the following set of strings: {s | ‘ba’ appears in s at least twice.}

Similar to counterexamples, these hints point out what is wrong (type 2).

Problem Semantic Mistake: Solution fails to accept some strings. In this type of mistake the stu-
dent DFA is correct on many inputs, but not all the them. The corresponding feedback is an
English description of a subset of misclassified strings. For example, a possible feedback for the
first attempt DFA in Figure 1 would be:

Your DFA is incorrect on the following set of strings: {s | ‘ba’ appears in s more than twice.}

This feedback is a generalization of a particular counterexample – by presenting a description
of a set of incorrect strings, we hypothesize that students can think more holistically about the
behavior of their DFA. These hints again point out what is wrong (type 2).

Solution Syntactic Mistake: DFA has some structural errors. In this type of mistake the student
DFA is syntactically close but not equal to a correct DFA. This means that a small number
of structural changes — e.g., changing a transition or adding or removing a state — can trans-
form the DFA into a correct solution. The corresponding feedback is an English description of
what states and transitions of the DFA should be changed in order to “fix” it. An example is the
feedback of the second attempt DFA in Figure 1:

You need to change the acceptance condition of one state.

This type of hint suggests a strategy for addressing an error (type 3).

3.4. An Example Student Session
We will now describe a typical session of a student solving a DFA construction problem in our
setting: the student, given an English description of a regular language, draws a solution attempt
and receives the corresponding feedback. After receiving the feedback the student can modify the
solution and submit again. This iterative cycle continues until the student submits a correct DFA.
An example of this interaction is shown in Figure 1. For this particular example, we illustrate the
new type of feedback introduced in this paper. However, the interaction is the same for different
types of feedback provided by the tool.

The problem description: The tool shows an English description of the language for which
the student has to construct the corresponding DFA. Here the student is asked to draw a DFA that
accepts all strings containing the substring ′ba′ exactly twice.

A first solution: The student draws a first attempt DFA that she believes accepts the target
language. The student can draw and erase parts of the DFA and hit submit when satisfied with the
attempt.

Personalized feedback: The submitted solution is compared against the problem specification,
producing a personalized feedback. In this case the feedback alerts the student that their solution
accepts a different but related language of strings containing the substring ′ba′ at least twice (instead
of exactly twice — a Problem Syntactic Mistake). As we will describe later this feedback is produced
using formal methods algorithms. The feedback is shown to the student, suggesting that the problem
has been misunderstood.

A revised solution: The student can now revise the solution according to the feedback, and
add two extra states in order to deal with the case where the input string contains more than two
occurrences of ′ba′. The new attempt is submitted.

Personalized feedback: The second student attempt is very close to a correct solution except
that it misses a final state (a Solution Syntactic Mistake). The corresponding feedback message is
shown to the student.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

Correct solution: Finally, the student draws a correct DFA and after submitting receives a con-
firmation that the problem has been solved.

Problem Description

1st Attempt

Feedback

Incorrect!
Your solution accepts the following set of strings:
 { s | ‘ba’ appears in s at least twice }

2nd Attempt

3rd Attempt

Feedback

Correct!

Twice ‘ba’
Construct a DFA A over the alphabet {a,b} such that A accepts the
set of all strings in which ‘ba’ appears exactly twice as a substring.

Feedback

Incorrect!
You need to change the acceptance condition
of one state;

Fig. 1: When solving DFA constructions, a student provides an attempt solution for the target
language. The student receives personalized feedback and keeps refining the solution until finding
a correct one.

3.5. Generalizing Counterexamples and Hints to Other Domains
While it is clear that a binary feedback is applicable to many domains besides automata construc-
tions, in this section we also show how counterexamples and descriptive hints generalize to other
settings. Table I shows some examples.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

Problem Syntactic Mistake
Regular expressions Your solution accepts ab∗ instead of (ab)∗.
Geometric constructions You might have missed that the angles have to be identical.
Algebra problems You might have missed the minus in front of the x.
Programming The description required the list to be in descending order.

Problem Semantic Mistake
Regular expressions Your solution is incorrect on all strings of even length.
Geometric construction Your solution is incorrect when AB and CD are parallel.
Algebra problems Your solution is incorrect when x > 0.
Programming Your solution is incorrect on lists containing a negative numbers.

Solution Syntactic Mistake
Regular expressions If you replace a ∗ with a + your solution will be correct.
Geometric construction The angle ABC is not equal to the angle BCD.
Algebra problems You didn’t flip the sign of y when changing the side of the <.
Programming The inequality in the for-loop should be strict.

Counterexample
Regular expressions Your solution is incorrect on the empty string.
Geometric construction Your solution is incorrect on the rectangle shown in figure.
Algebra problems Your solution is incorrect on the value x = 0.
Programming Your solution is incorrect on the empty list.

Table I: Types of feedback in domains beyond automata constructions.

The feedback for a problem syntactic mistake, which in our case is an English description of the
language accepted by the student DFA, points out what is wrong by characterizing what problem
the student solved instead of the specified one.

The feedback for a problem semantic mistake, for which our hint is an English description of
misclassified strings, points out what is wrong by describing the inputs on which the solutions is
incorrect. Counterexamples fall under this category and are in general easy to produce, however
we have an hypothesis that going beyond a single counterexample to sets of misclassified inputs
is useful. For example, when looking at Table I, in the case of geometric constructions, telling
the student that the solution is incorrect when two segments are parallel is more informative than
showing a particular rectangle as a counterexample.

The feedback for a solution syntactic mistake, which in our case is a hint on how to fix the DFA,
explains what steps are necessary to remedy the error. However, the steps aren’t a recipe — they tell
the student where to look, rather than what to do exactly.

While problem syntactic and problem semantic mistakes might have similar characteristics they
refer to two different types issues with the student solution. The former captures the case in which
the student misunderstood the problem and solved a variation of it, while the latter captures the case
in which the student misclassified a few “corner cases”. If we look again at Table I, in the case of
algebra problems, if the student missed a sign in the problem description, it is more helpful to point
the student to the problem description rather than providing incorrect inputs.

So in summary, counterexamples, and feedback for problem syntactic and semantic mistakes are
similar in that they focus on the notion of pointing out what is wrong. The feedback for solution
syntactic mistakes is very different since it focuses on how to change the solution.

We believe that using our mistake classification one can create a general guideline for designing
feedback systems. In particular for each type of mistake one needs to provide the following two
components:

(1) a technique that given a solution identifies whether it contains this particular type of mistake;
and

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

(2) a technique that given a representation of the mistake produces a hint in English.

For example Singh et al. show how to develop these two components for solution syntactic mistakes
(but not for problem syntactic/semantic mistakes) in the context of introductory programming as-
signments [Singh et al. 2013]. Their technique first finds small edits that can transform the student
solution into a correct program, and then prompts the student with a hint on how to find such a set
of edits.

4. IMPLEMENTING FEEDBACK FOR DFA CONSTRUCTIONS
4.1. Background on DFAs
A deterministic finite automaton (DFA) over an alphabet Σ is a tuple A = (Q, q0, δ, F) where Q
is a finite set of states, q0 ∈ Q is the initial state, δ : Q × Σ 7→ Q is the transition function, and
F ⊆ Q is the set of accepting states. Given q, q′ ∈ Q and a ∈ Σ, if δ(q, a) = q′, we say that A
has a transition t = (q, a, q′) and we call q the source state of t, a the label of t and q′ the target
state of t. We define the transitive closure of δ as, for all a ∈ Σ, s ∈ Σ∗, δ∗(q, as) = δ∗(q′, s), if
δ(q, a) = q′, and δ∗(q, ε) = q. The language accepted by A is L(A) = {s | δ∗(q0, s) ∈ F}. For
example the first DFA in Figure 1 accepts the language of strings over the alphabet {a, b} in which
the string ab appears at least twice as a substring.

4.2. Binary Feedback and Counterexamples
Using DFA closure properties one can check whether the student solution is equivalent to the tar-
get DFA and produce the corresponding binary feedback. If the two DFAs are not equivalent one
can compute a DFA accepting their symmetric difference and produce a counterexample by find-
ing a string accepted by such a DFA. Binary feedback and counterexamples are the two state of
the art techniques for providing feedback for DFA constructions and are found in many existing
tools [Rodger and Finley 2006].

4.3. Descriptive Hints
In this section we briefly recall the techniques introduced in [Alur et al. 2013] for grading DFA
constructions and show how they can be used to generate the three previously described types of
hint feedback. Given a target language LT , and a student DFA As, grading the student solution
corresponds to finding a metric that tells us how farAs is from a LT . In [Alur et al. 2013] the authors
identify three classes of mistakes and investigate three approaches that try to address each class. The
following lists summarizes the three techniques used to compute the grade and the corresponding
feedback from the previous section.

Problem Syntactic Mistake. The student gives a solution for a different language for which the de-
scription is syntactically close to the description of LT .
Technique: synthesize a logic description of As and LT and use tree edit distance [Gao et al.
2010] to compute the difference between two formulas.
Feedback: use logic description of As to produce an English description of As.

Problem Semantic Mistake. The solution is wrong on a small fraction of strings.
Technique: use regular language density to compute the size of the difference LD between LT
and L(As) when viewed as sets.
Feedback: English description of the set LD of misclassified strings, or English description of a
subset L′D ⊆ LD of misclassified strings, or counterexample.

Solution Syntactic Mistake. The student DFA is syntactically close to a correct one.
Technique: use notion of DFA edit distance to capture the smallest number of edits (edit script)
necessary to transform As into a correct DFA; and
Feedback: use the edit script tell the student how to fix As.

Next, we formally describe the metrics used for each type of mistake and how each feedback is
computed.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

| |% =

02indOf ‘ ’

a

Fig. 2: Parse tree for φ = |indOf ‘a’|% 2 = 0

Background on MOSEL. In the following we refer to the logic MOSEL introduced in [Alur et al.
2013] without formally defining it. Informally, MOSEL predicates can describe all (and only) regular
languages. The logic contains many high-level constructs that make MOSEL predicates succinct,
human-readable, and very close to natural English descriptions of the regular language. For example
the language Twice ‘ba’ of Figure 1 is captured by the MOSEL predicate |indOf ‘ba’| = 2. This
predicate can be read as the size (| |) of the set of positions containing the string ‘ba’ (indOf ‘ba’)
is 2. We illustrate the main features of MOSEL through some examples of languages:

begWt ‘a’ ∧ |indOf ‘ab’|% 2 = 1. Strings that start with an a and have and odd number of oc-
currences of the substring ab;

|indOf ‘a’| ≥ 2 ∨ |indOf ‘b’| ≥ 2. Strings that contain at least two a’s or at least two b’s;
a@{x | |posLe x|% 2 = 1}. Strings where every odd position ({x | |posLe x|% 2 = 1}) is la-

beled with an a;
begWt ‘ab’ ∧ |all|% 3 6= 0. Strings that start with ab and with length not divisible by 3;
|indOf ‘ab’| = 2. Strings that contain the substring ab exactly twice; and
|indOf ‘aa’| ≥ 1 ∧ endWt ‘ab’. Strings that contain the substring aa at least once and end with
ab.

In [Alur et al. 2013] it is shown that, given a MOSEL predicate ϕ, it is possible to compute a DFA
Aϕ accepting the language described by ϕ, and, given a DFA A it is possible to compute a MOSEL
formula ϕA describing the language accepted by A. However, while the first operation is efficient
in practice, the second one is shown to be slower.

4.3.1. Problem Syntactic Mistake. The following metric captures the case in which the MOSEL
description of the language L(As) corresponding to the student DFA As is close to the MOSEL
description of the target language LT . This metric computes how syntactically close two MOSEL
descriptions are. We consider MOSEL formulas as the ordered trees induced by their parse trees.
See Figure 2 for an example of parse tree. Given a MOSEL formula φ, let Tφ be its parse tree. Given
two ordered trees t1 and t2, their tree edit distance TED(t1, t2) is defined as the minimum number
of edits that can transform t1 into t2. Given a tree t, an edit is one of the following operations:

Relabel. change the value of a node n;
Node deletion. given a node n with parent n′, 1) remove n, 2) place the children of n as children of
n′, inserting them in the “place” left by n; and

Node insertion. given a node n, 1) replace a consecutive subsequence C of children of n with a
new node n′, and 2) let C be the children of n′.

The distance TED can be computed using the algorithm in [Gao et al. 2010]. The distance D(φ1, φ2)
between two formulas φ1 and φ2 is then defined as TED(Tφ1

, Tφ2
). Finally, such distance is weighted

to the size of the target formula WTED(φ1, φ2)
def
= D(φ1,φ2)

|Tφ2 |
, where |T| is the number of nodes of a

tree T. In this way, for the same number of edits, less points are deducted for languages with a bigger
description.

The feedback corresponding to this kind of mistake is the English description of the student DFA
As. Such a description is computed in two steps. First, we use the synthesis algorithm in [Alur et al.
2013] to find a MOSEL formula φAs corresponding to As. Next, we inductively produce an English
description of the formula φAs . In order to avoid a “robotic” English we use deep pattern matching.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

Classical pattern matching consists in reading one node of the tree at a time in a top-down manner.
On the other hand, deep pattern matching consists in reading multiple adjacent nodes in a single
step, always in a top-down manner. This technique is often used in translations for natural language
processing [Maletti 2008].

Consider for example the formula φ def
= |indOf ‘ab’|% 2 = 1. The following are possible rules

for classical pattern matching of φ: 1) t(|φ′|% n = m) = when dividing by n the size of t(φ′) we
obtain remainder m; and 2) t(indOf ‘α’) = the set of ‘α’ in ‘s’. A mechanical translation of φ
using the above rules would yield a description such as when dividing by 2 the size of the set of
occurrences of ‘ab’ in ‘s’ we obtain remainder 1. Deep pattern matching, on the other hand, would
use the rule

t(|indOf ‘α’|% 2 = 1) = ‘s’ contains an odd number of ‘α’

and produce the description ’s’ contains an odd number of ‘ab’.
Since for each language there exist infinitely many MOSEL formulas describing it, we set a time-

out in the synthesis procedure and only consider the formulas discovered in such time span. We then
output the formula describing L(As) that has smallest tree edit distance from the smallest formula
describing LT . Using the information in the tree edit script, we can also highlight the difference
between the descriptions of L(As) and LT . An example of such a technique is shown in the first
feedback of Figure 1 where the words at least are highlighted.

4.3.2. Problem Semantic Mistake. The following metric captures the case in which the DFA As
behaves correctly on most inputs, by computing what percentage of the input strings is correctly
accepted/rejected by As. Given two languages L1 and L2, their density difference is defined as

DEN-DIF(L1, L2)
def
= lim
n→+∞

|((L1 \ L2) ∪ (L2 \ L1)) ∩ Σn|
max(|L2 ∩ Σn|, 1)

, where Σn denotes the set of strings in Σ∗ of length n. Informally, for every n, the expression E(n)
inside the limit computes the number of strings of length n that are misclassified by L1 divided by
the number of strings of length n in L2. The max in the denominator is used to avoid divisions by
0. Unfortunately, as shown in [Alur et al. 2013] the density difference is not always defined, as the
limit may not exist, therefore in practice this quantity is approximated to a finite value of n.

Similar notions of density have been proposed in the literature [Kozik 2005]. The density DEN(L)
of a regular language L over the alphabet Σ is defined as the limit

DEN(L)
def
= lim
n→+∞

|L ∩ Σn|
|Σn|

When this limit is defined it is also computable [Bodirsky et al. 2004] . The conditional language
density DEN(L1|L2) of a given language L1 in a given language L2, such that L1 ⊆ L2, is the limit

DEN(L1|L2)
def
= lim
n→+∞

|L1 ∩ Σn|
|L2 ∩ Σn|

Again, there are languages for which these densities are not defined, but when they are, they can
also be computed [Kozik 2005]. These definitions have good theoretical foundations, but, unlike the
metric presented in [Alur et al. 2013], they are undefined for most DFAs.

The feedback corresponding to this type of mistake aims at describing the set LD = (L1 \L2) ∪
(L2 \L1) of misclassified strings. The feedback is produced using the same technique we presented
for the problem syntactic mistake. The algorithm for computing the feedback proceeds as follows:

(1) try to synthesize a MOSEL description φ of LD; if a description is found within 2 seconds, output
the English description of φ, otherwise

(2) try to synthesize a MOSEL description φ′ of some subset of LD′ ⊆ LD; if a description is found
within 2 seconds, output the English description of φ′, otherwise

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

(3) output a counterexample α ∈ D.

This algorithm outputs the English description of the language difference LD. However, when fail-
ing, the algorithms tries to first compute an under-approximation L′D of LD, and if it still fails it
simply outputs a counterexample.

The under-approximation φ′ is computed using a similar synthesis technique as the one in [Alur
et al. 2013]. The synthesis algorithm in [Alur et al. 2013] simply enumerates all possible MOSEL
predicates and checks for equivalence with the target language. The enumeration is sped up using
static techniques and approximate equivalence. When looking for an under-approximation, instead
of checking for equivalence, the synthesis procedure will check for language containment. In order
to speed up this procedure, before checking for containment, each formula is tested on a set of
negative examples (not accepted by D) which are generated using the algorithm for approximate
equivalence shown in Section 2.4 of [Alur et al. 2013].

Of all the under-approximations generated in a given timeout, we output the English description
of the smallest one. Finally, if no formula is found, we simply output the shortest counterexample.

4.3.3. Solution Syntactic Mistake. The following metric captures the case in which the student
DFAAs is syntactically close to a correct one, by computing how many edits are needed to transform
As to make it accept the correct languageLT . The following notion of DFA edit difference is defined
in [Alur et al. 2013]. Given two DFAs A1, A2, the edit difference DFA-D(A1, A2) is the minimum
number of edits that can transform A1 into some DFA A′1 such that L(A′1) = L(A2). Given a DFA
A, an edit is one of the following operations:

Transition redirection. given a state q and a symbol a ∈ Σ, update δ(q, a) = q′ to δ(q, a) = q′′

where q′ 6= q′′;
State insertion. insert a new disconnected state q, with δ(q, a) = q for every a ∈ Σ; and
State relabeling. given a state q, add it or remove it from the set of final states.

Notice that, since the final goal is to find a DFA that is language equivalent instead of syntactic
equivalent toA2, the operation of node deletion is not necessary in order for two automata to always
admit a finite edit difference. For example, a DFA A1 may be language equivalent to a DFA A2, but
it may contain an extra state that is unreachable. To take into consideration the severity of a mistake
based on the difficulty of the problem, one can use the weighted metric

WDFA-D(A1, A2)
def
=

DFA-D(A1, A2)

k + t

where k and t are, respectively, the number of states and transitions ofA2. A similar distance notion
is graph edit distance [Bille 2005]. However this metric does not take into account the language
accepted by the DFA.

In this case the corresponding feedback is a hint that uses the edit script to help the student to fix
the DFA. An edit script produces the following outputs:

n state insertions. “You need to add n states.”
1 state relabeling. “You need to change the acceptance condition of one state.”
n > 1 state relabelings. “You need to change the set of final states.”
transition redirection. for each state q such that there exists a transition redirection from q, output

“Check the transitions out of state q.”

It might happen that there exist more than one minimal edit script for a particular DFA. When this
is the case our enumeration technique simply prompts the student with the description of the first
edit script encountered in the search.

4.3.4. Selecting the Feedback. The aforementioned approaches need to be combined in order to
compute the final feedback. The first decision to take into account is How much feedback do we
want to provide? Since we do not want the student to be overwhelmed by the amount of feedback,

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

we decide to only output one feedback statement. The next question is Which statement do we pick?
Again, we decide to opt for Occam’s razor and select the statement corresponding to the metric
that captures the highest similarity between the student DFAs and the solution. The intuition behind
this choice is that such a metric identifies the simplest explanation of the student’s mistake. In few
instances this approach will cause the tool to output a feedback that is not necessarily the most
natural one.

5. EVALUATION
Our evaluation of feedback has two major goals: first, to determine if feedback can improve how
students learn DFA constructions; and second, to identify particular strengths and shortcomings of
different feedback types. We compare the following three types of feedback:

Binary Feedback. Shows if the solution is correct or not.
Counterexample. Shows if the solution is correct or not, and in the latter case provides a counterex-

ample.
Hints. Shows if the solution is correct or not, and in the latter case shows different kinds of descrip-

tive hints based on the type of mistake.

Binary feedback acts as a baseline for our study; counterexamples are used by other tools (e.g.,
JFLAP) [Rodger and Finley 2006], but the effectiveness has not been evaluated; while hints are
novel to our work.

5.1. Participants
We recruited 377 students attending two undergraduate introductory Theory of Computation courses
at two large universities in the United States. The students ages ranged from 18 to 22. 309 were male,
68 female.

5.2. Method
All participants used the tool website as part of a one week long homework assignment. The home-
work was divided into two parts:3

Part A. this was a set containing the following four problems that students could attempt as many
times as they wish and in the order they prefer, while receiving feedback on incorrect solutions:
A1. {s | the number of a’s in s is not divisible by 3}
A2. {s | s contains exactly two occurrences of ’ba’}
A3. {s | s contains at least 2 a’s or at most 2 b’s}
A4. {s | s does not end with ’b’ if it starts with ’a’}

Part B. a single DFA construction for which each student has only one attempt. It contained the
following problem:
B. {s | s contains at least 2 a’s and it ends with ’ab’}

Participants in this between-subjects experiment were randomly assigned to one of three feedback
conditions, in which they either receive Binary feedback, Counterexamples, or Hints (which may
include counterexamples). Feedback was shown for problems in part A, as well as for 18 practice
problems that were available in the system, but that were not included in the homework assignment.

After submitting the problem set, participants also completed an online survey that collects data
about the quality of the interface, the usability of the tool, and the effectiveness of the feedback
they received. Participants in the Hint condition also received an additional survey that presents two
concrete examples of incorrect DFAs with counterexample and hint feedback (like the one shown
in Figure 3). The survey elicited feedback preference as well as a rationale for their choice. We
distributed these questions only to the students in the Hint condition since they saw both kinds of
feedback during their homework.

3The questions reflect prior questions assigned in past offerings of the course.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

Incorrect:
Check the transitions out of state 3.

Conditional Ending:
{ s | if s starts with an a, then s does not end with a b }

FEEDBACK A

Incorrect:
Your DFA accepts the string ‘abb’ but
the correct solution does not.

FEEDBACK B

Fig. 3: Concrete example from survey on feedback preference.

5.3. Measures
Our dependent variables aim to capture student performance and learning over the course of the
assignment. Our problem-specific analysis measures performance of the entire cohort for particular
problems. We also perform a submission-specific analysis which groups students who submitted a
common incorrect solution to a particular problem and traces their ultimate outcomes.

5.3.1. Problem-specific analysis. For each feedback group, we measure:

— number of attempts before solving part A problems;
— time taken after the first submission until a problem in part A is solved;
— improvement in grade4 for part A problems after the initial feedback is received;
— the average final grade on part B of the homework; and
— the number of students giving up before solving a homework or practice problem.

5.3.2. Submission-specific analysis. Let a popular solution be an incorrect DFA construction that
has been drawn by more than 20 students. For each popular solution P , we call SiP the set of
immediately subsequent student attempts (the solutions drawn right after receiving the feedback)
from group i. For each popular solution P and for each group i we measure

— average grade in SiP ;
— percentage of students giving up in SiP (students leaving the homework page); and
— percentage of correct solutions in SiP .

5.3.3. Surveys. For the post-test survey, we use Likert scales to measure participant perception
if: the feedback is overall useful; if it is helpful in understanding mistakes; if it is helpful for getting
to the correct DFA; and, conversely, if the feedback is confusing. In addition, we measure whether
students in the hint feedback group prefer the counterexample feedback or the hint feedback.

5.4. Hypotheses
We have the following expected outcomes:

H1 – Attempts. In multiple-submission problems (part A), students in the Binary condition will
need more attempts than students in Counterexample or Hints, and students in Counterexample
will need more attempts than students in Hints.

4The grades we consider are those generated by the technique proposed in [Alur et al. 2013].

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

H1:
Attempts

H2:
Time

H3:
Grade Improv.

Binary
Counterexample

Hint
0 1 2 3 4

2.49
2.56
2.28

Binary
Counterexample

Hint
0 100 200 300 400

264
245
394

Binary
Counterexample

Hint
1 2 3 4

3.5
3.7
3.3

seconds

grade
points

attempts

*
*

Significance: * = 0.05

Fig. 4: Quantitative data for number of attempts, time taken, and grade improvement in our study.
Error bars show 95% CI.

H2 – Time . In multiple-submission problems (part A), students in the Binary condition will need
more time than students in Counterexample or Hints.

H3 – Grade Improvement. In multiple-submission problems (part A), students in the Binary condi-
tion will improve less after receiving feedback than student in Counterexample or Hints.

H4 – Single-Submission Grade. In the single-submission problem (part B), students in the Binary
condition will receive lower scores than students in Counterexample or Hints.

H5 – Drop-Outs. Students in the Binary condition will abandon more problems before correctly
solving them than students in Counterexample or Hints.

H6 – Preference. Students will prefer hint feedback to counterexample feedback, and both to binary
feedback.

H7 – Specificity. There will be cases in which the counterexample based feedback will be consid-
erably more effective than the hint feedback and vice-versa.

5.5. Results
In aggregate, after removing the cases in which students solved a problem in a single attempt (and
received no feedback), students submitted 3085 solution attempts for the four problems in part A
(an average of 3.53 per student per problem). Students performed well overall, receiving an average
grade of 9.78/10 points for the homework. Surprisingly, many students also attempted additional,
unscored practice problems: we received 4209 such submissions by 293 students.

5.5.1. Attempts. Students took a mean of 3.3 attempts to correctly solve a problem in Binary;
3.7 in Counterexample; and 3.5 in Hint (Figure 4, top). Using a two-way ANOVA with prob-
lem and feedback type as independent variables, we find a significant main effect for problem
(F (3, 862) = 14.57, p < 0.001) but not for feedback type. We did not find a significant inter-
action effect. Therefore, H1 is not supported.

5.5.2. Time. Students were slower in the Binary condition (mean: 394 sec) than in Hint (mean:
264 sec) and Counterexample (mean: 245 sec) (Figure 4, middle). Using a two-way ANOVA,
we find significant main effects for feedback type (F (2, 820) = 4.17, p < 0.05) and problem
(F (3, 820) = 12.71, p < 0.001). We did not find a significant interaction effect. Pairwise compar-
isons with Welch Two Sample t-tests show a significant difference between Binary and Counterex-
ample (t(401.9) = 2.26, p < 0.05); and between Binary and Hint (t(364.4) = 2.04, p < 0.05); but
not between Counterexample and Hint. H2 is supported – Binary is significantly slower.

5.5.3. Grade Improvement. Figure 4, bottom, shows students’ improvement in grade after a first
incorrect submission. Students had a mean grade improvement of 2.28 points after a first incorrect
submission in Binary; 2.56 points in Counterexample; and 2.49 points in Hint. Using a two-way

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

ANOVA, we find a significant main effect for problem (F (3, 853) = 30.64, p < 0.001) but not for
feedback type. We did not find a significant interaction effect. H3 is thus not supported.

5.5.4. Single-Submission Grade. Almost all students received perfect scores on part B (means:
9.67, 9.71, and 9.67 out of 10). This question was likely too easy, or students achieved mastery in
part A. H4 is not supported.

5.5.5. Drop-Outs. While almost all students successfully completed all assigned homework prob-
lems, we observed interesting differences in their perseverance on practice problems. In the Binary
condition, students gave up on 44% of attempted practice problems without solving them success-
fully, while they gave up on only 27% of problems in Counterexample, and 33% in Hint. The differ-
ence between Binary and any of the other two feedback types is significant (X2(2, N = 2246) =
48.43, p < 0.001). So students persevere more when provided with richer feedback and H5 is
supported.

5.5.6. Preference. 122 students submitted post-test surveys (33 from condition Binary, 46 from
Counterexample, 43 from Feedback). Respondents found Binary feedback less useful than other
feedback. The median usefulness of feedback on a five-point Likert scale was Md = 3 (neutral) for
Binary, 5 (strongly agree) for Counterexample, and 4 for Hint. While Likert data is best understood
as ordinal, we also show means in Figure 5. We found a significant effect of condition for pairs
Binary and Counterexample (Wilcoxon rank sum Z = −4.49, p < 0.001) and Binary and Hint
(Z = −3.62, p < 0.001), but not Counterexample and Hint.

Students found Counterexamples most helpful for understanding mistakes (Md = 4), followed
by Hints (Md = 4) and then Binary (Md = 2) feedback. We found significant effects of condition
for pairs Binary–Counterexample (Z = −6.15, p < 0.001) and Binary–Hint (Z = −5.43, p <
0.001) and Counterexample–Hint (Z = 2.05, p = 0.04).

Students found Binary feedback less helpful for understanding how to correct their DFA (Md =
2); compared to Md = 4 for Counterexample, and Md = 4 for Hint. We found a significant effect

Binary
Counterexample

Hint

1 2 3 4 5

2.51
1.9
3.14

Strongly 	

Disagree

Netural	
 Strongly 	

Agree

Binary
Counterexample

Hint 4
4.14
2.29

Binary
Counterexample

Hint 4
4.41
2.18

Binary
Counterexample

Hint 4.07
4.41
2.91

*

**

significance

*** 0.001

** 0.01

* 0.05

. 0.1

Feedback is useful overall:

Feedback is helpful for understanding mistakes:

Feedback is helpful for getting to correct DFA:

Feedback is confusing (lower is better):

Fig. 5: Likert Scale ratings from the post-test survey.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

of condition for pairs Binary and Counterexample (Z = −5.08, p < 0.001) and Binary and Hint
(Z = −4.85, p < 0.001).

Finally, students found Binary feedback most confusing (Md = 3), and Hints (Md = 2)
more confusing than Counterexamples (Md = 2). We found significant effects of condition for
pairs Binary–Counterexample (Z = 4.61, p < 0.001), Binary–Hint (Z = 2.44, p < 0.05) and
Counterexample–Hint (Z = −2.82, p < 0.01).

Twelve additional participants from the hint feedback group responded to our questions about
preference between Counterexamples and Hints. The results were evenly split: 5 preferred coun-
terexamples, 5 preferred hints, and 2 were undecided.

In aggregate, the quantitative survey responses show that Binary feedback is least preferred along
all dimensions, but that Hints are not preferred over Counterexamples. Therefore, H6 is only par-
tially supported.

Descrip(ve*Feedback*Be1er*

PROBLEM:!strings!that!
contain!‘ba’!exactly!twice!

Group* Tot.*Students* %*Giveup* %*Full*Score* %*Avg*Score*
Correct/Incorrect! 27! 22%! 45%! 7.77!
Counterexample! 22! 10%! 45%! 7.20!

Hint! 24! !!4%! 50%! 7.82!

COUNTEREXAMPLE*FEEDBACK:*
Your!DFA!accepts!the!string!‘bababa’!
but!the!correct!answer!does!not.!

HINT*FEEDBACK:*
Your!DFA!accepts!the!following!set!of!strings:!

{!s!|!‘ba’!appears!in!s$at*least*twice!}!

Counterexample*Feedback*Be1er*

PROBLEM:!strings!that!don’t!!
end!with!b!if!they!start!with!a$

Group* Tot.*Students* %*Giveup* %*Full*Score* %*Avg*Score*
Correct/Incorrect! 28! 21%! 25%! 6.32!
Counterexample! 11! !!!9%! 81%! 9.00!

Hint! 11! 27%! 27%! 6.62!

COUNTEREXAMPLE*FEEDBACK:*
Your!DFA!rejects!the!string!‘bab’!but!
the!correct!answer!does!not.!

HINT*FEEDBACK:*
Your!DFA!accepts!the!following!set!of!strings:!

{!s!|!every!symbol!aSer!!
the!last!occurrence!of!a!is!an!a!}!

Fig. 6: Two examples demonstrate that hints and counterexamples are useful for different types of
problems.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

Submission-Specific Analysis. Figure 6 shows two representative examples of the analyses we
performed on particular problems. The example on the left shows a case in which the hint feedback
performs better than the counterexample one, while the example on the right shows the opposite
situation. For each group, the figure shows the percentage of give ups (students leaving the page),
the percentage of full score submissions, and the average score in the immediately subsequent sub-
mission.

In the instance on the left, we can see how students that receive the hint feedback, when submit-
ting a new attempt are less likely to give up (4% with hint feedback vs 22% and 10% with binary
and counterexample feedback respectively), receive better scores, and are more likely to find the
correct DFA (5% more correct solutions than with binary and counterexample and feedback).

On the other hand in the instance on the right of the figure we can see how students that receive
the counterexample feedback, when submitting a new attempt are less likely to give up (9% with
counterexample feedback vs 21% and 27% with binary and hint feedback respectively), receive
better scores (average score of 9 with counterexample feedback vs 6.32 and 6.62 with binary and
hint feedback respectively), and are more likely to find the correct DFA (12% more correct solutions
than with hint feedback, and 18% more correct solutions than with binary feedback). Thus different
feedback strategies appear to work for different problems, which we interpret as support for H7.
We attempt to characterize this difference through our analysis of qualitative survey results.

Qualitative Results. In open-ended questions, we elicited reasons why students liked or disliked
the feedback they received. Few students in the Binary feedback condition responded.

For Counterexample students, the main perceived benefit was that the counterexample served as
a specific test case that they could examine step-by-step in their DFA: “I could trace the path of the
string which was mentioned in the feedback on my DFA and correct it”; this was sufficient for some
students as it “pretty much diagnosed the problem in the DFA perfectly.” However, several students
wished for multiple strings to diagnose bigger problems.

Students who saw Hints appreciated that they received “a general idea of what was wrong”,
which “provided a launching point to think about the problem differently.” In particular, it was
helpful to see a characterization of the incorrect solution they provided in the language of the prob-
lem statement: “I liked when it told me what my DFA did instead of what I thought it did.” However,
at times the generated hints confused students because they were either too vague or too compli-
cated: “Sometimes the languages described were so confusing and convoluted that I couldn’t draw
any connections from them.”

In the additional questions sent to Hint participants, we explicitly asked for a comparison be-
tween counterexamples and other types of hints. Students noted that a counterexample may be more
concrete than a hint: “it proves indisputably that the [student’s DFA] is wrong”. In comparison,
hints offered “a clearer explanation than [counterexamples]” and “explain the broader problem”
by offer information “about the specific mistake that you are making”. By staying on a conceptual
level, hints leave students with more work to translate the type of problem into concrete solution
steps. Some students disliked this aspect — “By keeping it on the bigger scale, it’s harder to target
the state that’s causing the problem”; while other appreciated that they had to reason through the
problem: “While [a hint] is more ambiguous and difficult to interpret, it does a better job of guiding
you towards the solution rather than just giving it away.”

5.6. Deployment in the Wild
After our study concluded, an instructor of a Discrete Mathematics course in Iceland asked us to use
AutomataTutor. Using the lessons learnt from our user study we improved the tool’s hint feedback.
In particular, during our study, we observed in some cases the tool provided overly complex hints
such as:

— Your solution accepts the following set of strings: {s | if s ends with an a, the symbol before the
last symbol is a b};

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

— Check the transitions out of states 2 and 4, and you need to change the acceptance condition of
one state.

After manually inspecting numerous hints we defined a hint to be too complex if:

— it contains an English description with a parse tree that contains more than 7 nodes; or
— it is an edit script proposing more than two edits to the student DFA.

We revised the tool to simply output a counterexample whenever a hint was too complex.
As part of the course students were given an optional homework assignment in AutomataTutor

where they were required to solve 8 DFA construction problems. Each student had unlimited num-
ber of attempts to solve each problem and the final grade for the assignment was the sum of the
maximum score on each of the 8 problems. All students were given the upgraded hint feedback.

The course had 252 students and 204 completed the homework. A total of 10710 attempts were
submitted, and 8166 were incorrect solutions for which the student received feedback. On average
each student required 5 incorrect solutions before solving each problem. The professor reported
that in the subsequent two optional homework assignments only 136 and 120 students respectively
completed the assignments. These homework were pen and paper assignments and didn’t involve
the use of AutomataTutor.

The students were asked to complete the same post-test survey that we used for our main experi-
ment and 35 students completed it. The feedback was overall considered useful, not confusing, and
helped the students understand their mistakes. The values of the survey data were in line with those
observed for counterexample feedback in our main study.

Question Mean Median Std. Error
Feedback is useful overall 4.40 5 0.16
Feedback is helpful for understanding feedback 4.31 5 0.15
Feedback is helpful for getting to correct DFA 4.34 5 0.15
Feedback is confusing 2.09 2 0.18

In the open-ended questions the students showed great enthusiasm for the tool and, when asked
what they liked about the feedback, they explicitly mentioned both counterexamples and hints. Only
a couple of students found the feedback at times verbose and believed it was too informative, and
almost giving away the solution. Students appreciated the overall value of the tool for learning
the concepts (“I didn’t understand Automata when I started these exercise. I do now. Hands on
experience like this is way way better than my Discreet Math textbook and/or any lectures.”)

In the fall of 2014, AutomataTutor has been used during undergraduate level courses at the Uni-
versity of Pennsylvania, the École polytechnique fédérale de Lausanne, the University of California
San Diego.

6. DISCUSSION
The quantitative results show that, on average, students receiving feedback are able to solve DFA
constructions 35% faster than their non-feedback peers. We were not able to show that students
receiving feedback need fewer attempts to solve a problem and we believe this is due to the fact that
students who don’t receive feedback need to spend more time thinking about the problem without
necessarily querying the tool. In terms of scoring we did not observe significant differences among
different groups and we believe this is partially due to the fact that the homework problems were not
hard. One of the most interesting results of the quantitative analysis is that students with feedback
are much less likely to give up on an a practice problem than students who don’t receive feedback.
This shows how feedback causes students to be more engaged in learning DFA concepts.

The general outcome of the quantitative analysis is that both counterexample and hint feedback
help student learning DFA construction faster, and with more perseverance than without feedback.

Overall, counterexamples slightly outperform feedback comprised of hints; however we can ob-
serve that both types of feedback are useful in practice, for different types of problems (see Fig-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

ure 6). Particularly, in some cases the hint feedback is able to help the students to clearly identify
their mistake.

Both the surveys confirm how both counterexample and hint feedback are appreciated by students.
An interesting results from the survey is how students are split evenly when asked which feedback
they prefer. This result together with that of Figure 6 reinforces our hypothesis that both types of
feedback are useful and perhaps, for the same problem, different students learn better with different
types of feedback.

We can also observe that counterexample feedback is a more robust technique and hint feedback
might be confusing in some cases. We believe that the confusion in the hint feedback is mainly due
to the fact that this was a first implementation and, despite the fact that the tool was tested inten-
sively before our experiment, the deployment to hundreds of students with thousands of submissions
exercised corner cases we had not previously anticipated. The post-test survey of our deployment in
the wild shows that we were able to identify and address most of these sources of confusion.

We also observed some types of hints are easier to understand than others. We thus far focused
on developing techniques that can generate such hints in the first place, but we have not yet sys-
tematically investigated what kind of hints are readily understood and what kind of hints might be
confusing (and why). While we have taken a first step at iteratively improving our hints, a more
detailed study of hint types would be valuable future work.

Instructor’s Perspective. We summarize the key (subjective) observations by the three instructors
who have taught Theory of Computation courses multiple times before, and used our tutoring soft-
ware for the experiment and subsequent deployment described in this paper. While students did not
use interactive tools such as JFLAP in earlier years despite encouragement, the requirement that the
homework has to be submitted using the tutoring tool ensured students’ participation. Once the stu-
dents started interacting with the software, they were very much engaged with the course material.
This positive experience during the first week of the course is extremely valuable for pedagogical
reasons. Second, providing even the basic binary (correct vs incorrect) feedback seems valuable.
The average number of practice problems (not required for the homework) solved by the students is
surprisingly high. Third, based on personal conversations with the students, they seemed to appreci-
ate both the counterexamples and hints. A valuable side-effect was that a number of (academically
stronger) students wanted to know how the feedback was computed contributing to their increased
interest in the course. Fourth, the average grade on this homework turned out to be above 9.7 (out
of 10) for all the three groups. The average grade on a very similar homework in the previous year
is 8.1 out of 10. Finally, the teaching assistants were very happy that the tool did the grading for
them. One concern about the feedback tool is that a confusing feedback should be avoided, and this
should be fixed in the future revision of the tool. In summary, all the instructors agreed that the tool
adds value to teaching and that they will use it in future offerings of the course.

7. CONCLUSION AND FUTURE WORK
This paper studies the effectiveness of feedback in the process of learning DFA constructions. We
analyze the two state of the art techniques, binary and counterexample based feedback, and our new
hint feedback system introduced in this paper. To the best of our knowledge this is the first study
on effectiveness of any kind of feedback in DFA constructions. Based on our results we are able to
conclude that both counterexample based feedback and hint feedback are more effective than binary
feedback in the students’ learning process. Moreover, when looking at individual problems we can
observe how both techniques have their benefits. This was the first run of the feedback tool and we
believe we now know how to better combine the features of counterexample and hint feedback in
order to improve learning and avoid student’s confusion. In particular the main sources of confusion
were long language descriptions and badly worded hints on how to fix DFAs. Long descriptions
can be replaced by counterexamples, while the wording of the hints can be improved. We applied
these changes and based on the students’ feedback we observed that the upgraded tool is generally

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

liked by its users. Moreover the tool is being used to teach finite automata in many institutes in both
Europe and US.

8. ACKNOWLEDGMENTS
We thank Luca Aceto for using our tool in his course and helping us collecting feedback from his
students.

REFERENCES
Umair Z. Ahmed, Sumit Gulwani, and Amey Karkare. 2013. Automatically Generating Problems and Solutions for Natural

Deduction. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI’13).
AAAI Press, 1968–1975. http://dl.acm.org/citation.cfm?id=2540128.2540411

Rajeev Alur, Loris D’Antoni, Sumit Gulwani, Dileep Kini, and Mahesh Viswanathan. 2013. Automated Grading of DFA
Constructions. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI’13).
AAAI Press, 1976–1982. http://dl.acm.org/citation.cfm?id=2540128.2540412

Erik Andersen, Sumit Gulwani, and Zoran Popovic. 2013. A trace-based framework for analyzing and syn-
thesizing educational progressions. In Proceedings of CHI. ACM, New York, NY, USA, 773–782.
DOI:http://dx.doi.org/10.1145/2470654.2470764

J. R. Anderson, A. T. Corbett, K. R. Koedinger, and R. Pelletier. 1995. Cognitive Tutors: Lessons learned. The Journal of
the Learning Sciences 4, 2 (1995), 167–207.

John R. Anderson and Brian J. Reiser. 1985. The LISP tutor: it approaches the effectiveness of a human tutor. BYTE 10, 4
(April 1985), 159–175. http://dl.acm.org/citation.cfm?id=3351.3354

Robert B. Ashlock. 1986. Error Patterns in Computation: A Semi-Programmed Approach. Merrill Publishing Company.
Philip Bille. 2005. A survey on tree edit distance and related problems. Theor. Comput. Sci. 337, 1-3 (June 2005), 217–239.

DOI:http://dx.doi.org/10.1016/j.tcs.2004.12.030
Manuel Bodirsky, Tobias Grtner, Timo von Oertzen, and Jan Schwinghammer. 2004. Effciently Computing the

Density of Regular Languages. In In Proceedings of the 6th Latin American Symposium, Buenos Aires, Ar-
gentina, 2004 (Lecture Notes in Computer Science), Martin Farach-Colton (Ed.), Vol. 2976. Springer, 262–270.
DOI:http://dx.doi.org/openurl.asp?genre=article&issn=0302-9743&volume=2976&spage=262

Beatrix Braune, Stephan Diehl, Andreas Kerren, and Reinhard Wilhelm. 2001. Animation of the Generation and Computation
of Finite Automata for Learning Software. In Automata Implementation, Oliver Boldt and Helmut Jrgensen (Eds.).
Number 2214 in Lecture Notes in Computer Science. Springer Berlin Heidelberg, 39–47.

Cristina Conati. 2009. Intelligent Tutoring Systems: New Challenges and Directions. In Proceedings of the 21st International
Jont Conference on Artifical Intelligence (IJCAI’09). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2–7.
http://dl.acm.org/citation.cfm?id=1661445.1661447

Vladan Devedzic and John Debenham. 1998. An Intelligent Tutoring System for Teaching Formal Languages. In Intelligent
Tutoring Systems, Barry P. Goettl, Henry M. Halff, Carol L. Redfield, and Valerie J. Shute (Eds.). Lecture Notes in
Computer Science, Vol. 1452. Springer Berlin Heidelberg, 514–523. DOI:http://dx.doi.org/10.1007/3-540-68716-5 57

Ethan Fast, Colleen Lee, Alex Aiken, Michael Bernstein, Daphne Koller, and Eric Smith. 2013. Crowd-scale Interactive
Formal Reasoning and Analytics. In Proceedings of UIST’13.

Tara Gallien and Jody Oomen-Early. 2008. Personalized Versus Collective Instructor Feedback in the Online Courseroom:
Does Type of Feedback Affect Student Satisfaction, Academic Performance and Perceived Connectedness With the
Instructor? International Journal on E-Learning 7, 3 (July 2008), 463–476. http://www.editlib.org/p/23582

Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. 2010. A survey of graph edit distance. Pattern Analysis and Applica-
tions 13, 1 (Jan. 2010), 113–129.

Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. 2011. Synthesizing Geometry Constructions. SIGPLAN Not.
46, 6 (June 2011), 50–61. DOI:http://dx.doi.org/10.1145/1993316.1993505

Shachar Itzhaky, Sumit Gulwani, Neil Immerman, and Mooly Sagiv. 2013. Solving Geometry Problems Using a Combi-
nation of Symbolic and Numerical Reasoning. In Logic for Programming, Artificial Intelligence, and Reasoning, Ken
McMillan, Aart Middeldorp, and Andrei Voronkov (Eds.). Lecture Notes in Computer Science, Vol. 8312. Springer
Berlin Heidelberg, 457–472. DOI:http://dx.doi.org/10.1007/978-3-642-45221-5 31

Katy Jordan. 2014. MOOC Completion Rates: The Data. (2014). http://www.katyjordan.com/MOOCproject.html
Kenneth R Koedinger, Albert T Corbett, and others. 2006. Cognitive tutors: Technology bringing learning science to the

classroom. The Cambridge handbook of the learning sciences (2006), 61–78.
Jakub Kozik. 2005. Conditional Densities of Regular Languages. Electronic Notes in Theoretical Computer Science 140

(Nov. 2005), 67–79. DOI:http://dx.doi.org/10.1016/j.entcs.2005.06.023
Andreas Maletti. 2008. The power of extended top-down tree transducers. SIAM J. COMPUT (2008).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dl.acm.org/citation.cfm?id=2540128.2540411
http://dl.acm.org/citation.cfm?id=2540128.2540412
http://dx.doi.org/10.1145/2470654.2470764
http://dl.acm.org/citation.cfm?id=3351.3354
http://dx.doi.org/10.1016/j.tcs.2004.12.030
http://dx.doi.org/openurl.asp?genre=article&issn=0302-9743&volume=2976&spage=262
http://dl.acm.org/citation.cfm?id=1661445.1661447
http://dx.doi.org/10.1007/3-540-68716-5_57
http://www.editlib.org/p/23582
http://dx.doi.org/10.1145/1993316.1993505
http://dx.doi.org/10.1007/978-3-642-45221-5_31
http://www.katyjordan.com/MOOCproject.html
http://dx.doi.org/10.1016/j.entcs.2005.06.023

A:22

Mary A. Mark and Jim E. Greer. 1993. Evaluation Methodologies for Intelligent Tutoring Systems. Journal of Artificial
Intelligence in Education 4 (1993), 129–153.

Antonija Mitrovic. 1998. Learning SQL with a computerized tutor. In Proceedings of SIGCSE’98. ACM, New York, NY,
USA, 307–311. DOI:http://dx.doi.org/10.1145/273133.274318

Antonija Mitrovic, Michael Mayo, Pramuditha Suraweera, and Brent Martin. 2001. Constraint-Based Tutors: A Success
Story. In Proceedings of IEA/AIE ’01. Springer-Verlag, London, UK, 931–940. http://dl.acm.org/citation.cfm?id=
646863.707788

David Patterson. 2013. Why are English majors studying computer science? (2013). http://blogs.berkeley.edu/2013/11/26/
why-are-english-majors-studying-computer-science/

Leena Razzaq and Neil T. Heffernan. 2006. Scaffolding vs. Hints in the Assistment System. In Proceedings of the 8th
International Conference on Intelligent Tutoring Systems. Springer-Verlag, 635–644.

Susan H. Rodger and Thomas Finley. 2006. JFLAP - An Interactive Formal Languages and Automata Package. Jones and
Bartlett.

V.S. Shekhar, A. Agarwalla, A. Agarwal, B. Nitish, and V. Kumar. 2014. Enhancing JFLAP with automata construction
problems and automated feedback. In Contemporary Computing (IC3), 2014 Seventh International Conference on.
19–23. DOI:http://dx.doi.org/10.1109/IC3.2014.6897141

Valerie J. Shute and J. Wesley Regian. 1993. Principles for evaluating intelligent tutoring systems. Journal of Artificial
Intelligence in Education 4, 2-3 (1993), 245–271.

Rohit Singh, Sumit Gulwani, and Sriram K. Rajamani. 2012. Automatically Generating Algebra Problems. In AAAI, Jörg
Hoffmann and Bart Selman (Eds.). AAAI Press.

Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated feedback generation for in-
troductory programming assignments. In Proceedings of PLDI’13. ACM, New York, NY, USA, 15–26.
DOI:http://dx.doi.org/10.1145/2462156.2462195

Matthias F. Stallmann, Suzanne P. Balik, Robert D. Rodman, Sina Bahram, Michael C. Grace, and Susan D. High. 2007.
ProofChecker: an accessible environment for automata theory correctness proofs. SIGCSE Bull. 39, 3 (June 2007),
48–52. DOI:http://dx.doi.org/10.1145/1269900.1268801

New York Times. 2012. Instruction for Masses Knocks Down Campus Walls. (2012). http://www.nytimes.com/2012/03/05/
education/moocs-large-courses-open-to-all-topple-campus-walls.html?pagewanted=all

Kurt VanLehn. 1992. Mind Bugs: The Origins of Procedural Misconceptions. Artif. Intell. 52, 3 (1992), 329–340.
Kurt VanLehn. 2006. The Behavior of Tutoring Systems. Int. J. Artif. Intell. Ed. 16, 3 (Aug. 2006), 227–265. http://dl.acm.

org/citation.cfm?id=1435351.1435353
Kurt VanLehn. 2011. The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other Tutoring

Systems. Educational Psychologist 46, 4 (2011), 197–221. DOI:http://dx.doi.org/10.1080/00461520.2011.611369

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1145/273133.274318
http://dl.acm.org/citation.cfm?id=646863.707788
http://dl.acm.org/citation.cfm?id=646863.707788
http://blogs.berkeley.edu/2013/11/26/why-are-english-majors-studying-computer-science/
http://blogs.berkeley.edu/2013/11/26/why-are-english-majors-studying-computer-science/
http://dx.doi.org/10.1109/IC3.2014.6897141
http://dx.doi.org/10.1145/2462156.2462195
http://dx.doi.org/10.1145/1269900.1268801
http://www.nytimes.com/2012/03/05/education/moocs-large-courses-open-to-all-topple-campus-walls.html?pagewanted=all
http://www.nytimes.com/2012/03/05/education/moocs-large-courses-open-to-all-topple-campus-walls.html?pagewanted=all
http://dl.acm.org/citation.cfm?id=1435351.1435353
http://dl.acm.org/citation.cfm?id=1435351.1435353
http://dx.doi.org/10.1080/00461520.2011.611369

	1 Introduction
	2 Related Work
	2.1 Intelligent Tutoring Systems
	2.1.1 Task Selection
	2.1.2 Feedback and Assessment
	2.1.3 ITS Evaluation
	2.1.4 Applications

	2.2 Automata Education

	3 Types of Feedback in Automata Constructions
	3.1 Binary Feedback
	3.2 Counterexample Feedback
	3.3 Descriptive Hint Feedback
	3.4 An Example Student Session
	3.5 Generalizing Counterexamples and Hints to Other Domains

	4 Implementing Feedback for DFA Constructions
	4.1 Background on DFAs
	4.2 Binary Feedback and Counterexamples
	4.3 Descriptive Hints
	4.3.1 Problem Syntactic Mistake
	4.3.2 Problem Semantic Mistake
	4.3.3 Solution Syntactic Mistake
	4.3.4 Selecting the Feedback

	5 Evaluation
	5.1 Participants
	5.2 Method
	5.3 Measures
	5.3.1 Problem-specific analysis
	5.3.2 Submission-specific analysis
	5.3.3 Surveys

	5.4 Hypotheses
	5.5 Results
	5.5.1 Attempts
	5.5.2 Time
	5.5.3 Grade Improvement
	5.5.4 Single-Submission Grade
	5.5.5 Drop-Outs
	5.5.6 Preference

	5.6 Deployment in the Wild

	6 Discussion
	7 Conclusion and Future Work
	8 Acknowledgments

