
The Bw-Tree: A B-Tree On Steroids 
 

Justin Levandoski 
David Lomet 

Sudipta Sengupta 



The Bw-Tree: What is it? 

“A Latch-free, Log-structured B-tree for 
Multi-core Machines with Large Main 

Memories and Flash Storage” 

Bw = “Buzz Word” 



The Buzz Words: Attacking Two Trends  
•  Multi-core + large main memories 

–  Latch (lock) free 
•  Worker threads do not set latches for any reason 
•  No latch contention 

–  “Delta” updates 
•  No updates in place 
•  Reduces cache invalidation 

•  Flash storage 
–  Good at random reads and sequential reads/writes 
–  Bad at random writes 
–  Use flash as append log 
–  Implement log-structured storage layer over flash 
–  Must run efficiently on both expensive AND cheap devices 3 



Architecture 

B-Tree 
Layer 

Cache 
Layer 

Flash 
Layer 

•  “CRUD” API 
•  B-tree search/update logic 
•  In-memory pages only 

•  Logical page abstraction for 
B-tree layer 

•  Brings pages from flash to 
RAM as necessary 

•  Sequential writes to log-
structured storage 

•  Flash garbage collection 

Let’s talk about memory first… 



Logical Pages and Mapping Table 

5	
  

PID Physical 
Address 

A 

B 

C 

D 

Mapping Table 

Page B Page D Page C 

Logical pointer 

Physical pointer 

Page A 

•  Logical pages identified by mapping table index 
•  Isolates update to a single page 
•  Important for latch-free behavior and log-structuring 



Delta Updates 

Page P 

PID Physical 
Address 

P 

Mapping Table 

Δ: Insert record 50 

Δ: Delete record 48 

Δ: Update record 35 Δ: Insert Record 60 

•  Each page update produces a new address (the delta). 
•  Install new page address in map using compare-and-swap. 
•  Only one winner on concurrent update to the same address. 
•  Eventually install new consolidate page with deltas applied. 
•  Single-page updates are easy, solved node splits and deletes. 

Consolidated Page P 



Microsoft SQL Server Hekaton 
•  Main-memory optimized OLTP engine 

•  Engine is completely latch-free 
•  Multi-versioned, optimistic concurrency control 

(VLDB 2012) 
•  Bw-tree is the ordered index in Hekaton 

http://research.microsoft.com/main-memory_dbs/  



Architecture 

B-Tree 
Layer 

Cache 
Layer 

Flash 
Layer 

•  API 
•  B-tree search/update logic 
•  In-memory pages only 

•  Logical page abstraction for 
B-tree layer 

•  Brings pages from flash to 
RAM as necessary 

•  Sequential writes to log-
structured storage 

•  Flash garbage collection 



Handling pages located on flash 

9	
  

PID	
   Physical	
  
Address	
  

A	
  

B	
  

C	
  

D	
  

Mapping Table 

Page B 

Page A 

Log Structured Store (LSS) on Flash 

Page C Page X Page Y 

Page D 

1	
  bit	
   63	
  bits	
  

flash/mem	
  
flag	
   address	
  

Memory 

Logical pointer 

Physical pointer 



Flushing pages 

Page P 

PID Physical 
Address 

P 

Mapping Table 

Log Structured Store (LSS) on Flash 

Page X Page F 

Latch-free Write Buffer 

Write ordering in log 

Reservation 

Flush Δ 

Page P Page T Page G 

Page P Page T Page G 

Δ: Insert record 50 

Δ: Delete record 48 

Flush Δ 

ΔP 50 Page E ΔP 48 ΔT 5 

ΔP 50 Page E ΔP 48 ΔT 5 

•  Swapout drops page from memory. 
•  Install LSS offset in mapping table. 
•  Can also perform partial swapout. 
•  May require random read to retrieve page. 



Other items 
•  LSS Garbage Collection 

–  Cleans orphaned data unreachable from mapping table. 
–  Relocates entire pages in sequential blocks (to reduce 

random reads from LSS). 

•  Access Method Recovery 
– Occasionally checkpoint mapping table. 
– Recover by: 

•  Restoring mapping table. 
•  Scan LSS forward from position recorded in checkpoint to 

the end of the log. 
•  End result is latest LSS offset for pages in mapping table. 

11 



12	
  

LLAMA	
  Storage	
  Engine	
  
(Latch-­‐Free,	
  Log-­‐Structured,	
  Access-­‐Method	
  Aware)	
  

Transac6onal	
  Component	
  

Bw-­‐Tree	
  Latch	
  Free	
  
Ordered	
  Index	
  

Latch-­‐Free	
  
Linear	
  Hashing	
  

App	
  Needing	
  
TransacKonal	
  

Key-­‐Value	
  Store	
  

App	
  Needing	
  Atomic	
  
Key-­‐Value	
  Store	
  

App	
  Needing	
  High	
  
Performance	
  Log	
  

Structured	
  “Page”	
  Store	
  

Data	
  Component	
  

The Big Picture 


