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Human Parity in Conversational Speech 
Recognition
• What is Human Parity?

• Humans make mistakes, too. Can ASR make fewer?

• Conversational Speech Recognition
• Humans talking in unplanned way

• Focus on each other, not on a computer

• The result of thirty years of progress
• DARPA / US Government programs

• Conversational Speech Recognition is the latest in a series of increasingly 
difficult tasks.
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Significance: History
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For many years, DARPA drove the field 4



Significance: Community

Building on accumulated knowledge of many institutions! 5



Significance: Technical

• The right tool for the right job

• CNNs, LSTMs!

• Building on lots of past innovations:
• HMM modeling

• Distributed Representations [Hinton ‘84]

• Early CNNs, RNNs, TDNNs [Lang & Hinton ‘88, Waibel 
et al. ‘89, Robinson ’91, Pineda ‘87]

• Hybrid training [Renals et al. ‘91, Bourlard & Morgan ‘94]

• Discriminative modeling

• Speaker adaptation

• System combination

RNNs / CNNs

GMMs
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Outline
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Acoustic Modeling: Hybrid HMM/DNN

[Yu et al., 2010; Dahl et al., 2011]

Record performance in 2011 [Seide et al.]

Hybrid HMM/NN approach standard
But DNN model now obsolete (!)
• Poor spatial/temporal invariance 
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1st pass decoding



Acoustic Modeling: VGG CNN

[Simonyan & Zisserman, 2014; Frossard 2016, 
Saon et al., 2016, Krizhevsky et al., 2012]

Adapted from image processing
Robust to temporal and 
frequency shifts
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Acoustic Modeling: ResNet

[He et al., 2015]

Add a non-linear offset to linear transformation of features
Similar to fMPE in Povey et al., 2005
See also Ghahremani & Droppo, 2016
Our best single model after rescoring
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1st pass decoding



Acoustic Modeling: LACE CNN

[Yu et al., 2016]

Combines batch normalization,  Resnet
jumps, and attention masks in CNN
Tied for 2nd best single model after 
rescoring
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1st pass decoding



CNN Comparison
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Very deep
Many parameters
Small convolution patterns
Processing ~ ½ second per window



Acoustic Modeling: Bidirectional LSTMs

Stable form of recurrent neural net
Robust to temporal shifts
Tied for 2nd best single model

[Hochreiter & Schmidhuber, 1997, 
Graves & Schmidhuber, 2005; Sak et al., 2014]

[Graves & Jaitly ‘14]
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I-vector Adaptation

𝑌(𝑡)

H1

H2

H3

H4

LABELS

Ƹ𝑠(𝑡)

[Dehak et al. 2011; Saon et al., 2013]

5-10% relative improvement for Switchboard
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I-vectors provide a 
fixed-length 
representation of a 
speaker’s voice 
characteristics.



Spatial Regularization

- =

2-D Unrolling Smoothed 2D Hi-Freq

Regularize with L2 norm of Hi-frequency residual

5-10% relative improvement for BLSTM

[Droppo et al. in progress]
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Lattice Free MMI

• Simple brute force MMI

• Avoids need to generate lattices

• Alignments always current
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Traditionally approximated by 
word sequences in lattice (DAG)

Instead LFMMI uses all possible 
word sequences in cyclic FSA

[Chen et al., 2006, McDermott et al., 2914, Povey et al., 2016]
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Denominator GPU computation

• Represent FSA of all possible state 
sequences as a sparse transition matrix A

• Implement exact alpha beta computations

• Execute in straight “for” loops on GPU with 
cusparseDcsrmv and cublasDdgmm

• Beautifully simple
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LFMMI Improvements

• Denominator LM graph has 52k states and 215k transitions
• GPU-side alpha-beta computation is 0.18xRT exclusive of NN evaluation 
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8-14% relative improvement on SWB



Cognitive Toolkit (CNTK) Training

• Flexible

• Multi-GPU

• Multi-Server

• 1-bit SGD

• All AM 
training

• Best LM 
training
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Language Models

• 1st Pass n-gram:
• SRI-LM, 30k vocab, 16M n-grams

• Rescoring n-gram:
• SRI-LM, 145M n-grams

• RNN LM
• CUED Toolkit, two 1000 unit layers
• Relu activations, NCE training

• LSTM LM
• Cognitive Toolkit (CNTK), three 1000 unit layers
• Letter trigram input, no NCE
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LM Training Trick: Self-stabilization

• Learn an overall scaling function for each layer

xWy

Wxy

)(

:becomes     





[Ghahremani & Droppo, 2016]

Applied to the LSTM networks, between layers.
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Language Model Perplexities

Perplexities on the 1997 eval set

LSTM beats RNN

Letter trigram input slightly
better than word input
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Note both forward and 
backward running models
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• Decoding, Rescoring & System Combination

• Measuring Human Performance

• Results

• Counterpoint – Letter based CTC

• Conclusions

26



Overall Process

Lattice Generation:
ResNet

Rescoring:
RNNs, LSTMs,

Pron Probs

Lattice Generation:
LACE

Rescoring:
RNNs, LSTMs,

Pron Probs

Lattice Generation:
BLSTM

Rescoring:
RNNs, LSTMs,

Pron Probs

Confusion Network 
Combination & 

Select Best

…
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N-gram Rescoring
500-best Generation

N-gram Rescoring
500-best Generation

N-gram Rescoring
500-best Generation



Greedy System Combination

• Make confusion network from best single system

• Repeat:
• Compute error rate on development data for each possible system addition

• Add the system
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Rescoring Performance

ResNet CNN Acoustic Model (no combination)

One LSTM ~ 0.5% 
better than one RNN.

Multiple LSTMs 
provide further 0.3%
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A First Try

• The 4% rumor

[Lippman, 1997]
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Another Attempt

[Glenn et al., 2010]

Significant variability.

Note the bulk of the 
training data was 
“quick transcribed.”

32



Getting a Positive ID on Actual Test Data

• Skype Translator has a weekly 
transcription contract
• Quality control, training, etc.

• Transcription followed by a 
second checking pass

• One week, we added eval 2000 
to the pile…
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The Results

• Switchoard: 5.9% error rate

• CallHome: 11.3% error rate

• SWB in the 4.1% - 9.6% range 
expected

• CH is difficult for both people 
and machines
• High ASR error not just because 

of mismatched conditions
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The Bottom Line & Comparisons

Single CNN does
remarkably well

Parity with 
professional 
transcribers

Best previous number
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Runtimes

AM Training: Forward, Backward + Update computations
AM eval: Forward probability computation only
Decoding: Mixed GPU/CPU, complete decoding time with open beams

Titan X GPU & Intel Xeon E5-2620 v3 @2.4GhZ, 12 cores
All times are xRT (fraction of real-time required) on Titan X GPU 

GPU 10 to 100x 
faster than CPU

(Multiples of real-time, smaller is better) 
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Error Analysis
Substitutions (~21k words in each test set)

“ums” and “uh-hums” most frequent mistakes 
– but most errors are in the long tail
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Error Analysis

Deletions Insertions

Both people and machines insert “I” and “and” a lot.
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Two Ways to move up field

The Dive The Pass

41



The CTC Alternative

• Wouldn’t it be nice if we could just 
look at the frame-level labels, 

de-dup, 

and read-off the transcription? 

• For example, with a character model,

S – U U – P P P E E - - R G G - - O O – D D

Super Good

• CTC [Graves et al. 2006] can train a model so you can do this!
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Objective Function and Gradient:

t

q

t

qt

q

t

t

tq

p
a

tqt

pqP






  
















 :softmax beforeGradient 

))(( symbolfor   at timeoutput net  neural :P

)|( :function Obj.

t

(t))q(

alignments

))((

alignments

Make the neural-net outputs look like the transcript-constrained  posteriors

43



Defining the Symbols

• Characters:
• Generalize to new words

• No problem with infrequent words

• Couple of issues:
• Double-letters (e.g. “hello”) don’t work with de-duping

• Where to insert spaces to form words (e.g. “darkroom” vs “dark room”)

• Solution: 
• introduce double-letter units (ll, oo, etc.)

• Introduce word-initial letters (capital letters)
Explicit space character
aligns acoustics to nothing.

44



CUDNN RNN
Implementation

• Process full minibatch per 
CUDNN call

• 32 utterances per minibatch

•  computation on CPU
• 8-way parallelization / OMP 

• Best Configuration:
• 9 Relu-RNN layers
• Bidirectional
• 1024 wide
• 0.0058 xRT (!)
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Results: 2000 Hour Training

New record for CTC 
on Switchboard
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Best previous result – ensemble from 
Hannun et al. 2014

Conclusion: Much simpler systems can produce good performance
[Zweig et al., 2016]
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Summary: Human Parity after Twenty Years

5.9% Human 
performance:
Microsoft,
October, 2016
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Concluding Remarks

• Parity – Are we done?
• Cocktail party problem

• Farfield

• Robustness

Cocktail Party Problem
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Concluding Remarks

• Parity – Are we done?
• Cocktail party problem
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• What is interesting?
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• Process Simplification e.g. CTC
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Concluding Remarks

• Parity – Are we done?
• Cocktail party problem

• Farfield

• Robustness

• What is interesting?
• New network structures

• Process Simplification e.g. CTC

• Are we stuck?
• CNNs! LSTMs! Attention & More.

• The future is bright
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Thank You!
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