Achieving Human Parity in Conversational Speech Recognition

Speech & Dialog Research Group

AI & Research

Acknowledgements

ACHIEVING HUMAN PARITY IN CONVERSATIONAL SPEECH RECOGNITION

W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu and G. Zweig

Microsoft Research Technical Report MSR-TR-2016-71

ABSTRACT

Conversational speech recognition has served as a flagship speech recognition task since the release of the DARPA Switchboard corpus in the 1990s. In this paper, we measure the human error rate on the widely used NIST 2000 test set, and find that our latest automated system has reached human parity. The error rate of professional transcriptionists is 5.9% for the Switchboard portion of the data, in which newly acquainted pairs of people discuss an assigned topic, and 11.3% collections of the 1990s and early 2000s provide what is to date the largest and best studied of the conversational corpora. The history of work in this area includes key contributions by institutions such as IBM [12], BBN [13], SRI [14], AT&T [15], LIMSI [16], Cambridge University [17], Microsoft [18] and numerous others.

In the past, human performance on this task has been widely cited as being 4% [19]. However, the error rate estimate in [19] is attributed to a "personal communication,"

Human Parity in Conversational Speech Recognition

- What is Human Parity?
 - Humans make mistakes, too. Can ASR make fewer?
- Conversational Speech Recognition
 - Humans talking in unplanned way
 - Focus on each other, not on a computer
- The result of thirty years of progress
 - DARPA / US Government programs
 - Conversational Speech Recognition is the latest in a series of increasingly difficult tasks.

Significance: History

DARPA Speech Recognition Benchmark Tests 100% Switchboard Conversational . foreign Speed Read mandarin Speech WSJ Switchbo D. cellular arabic WORD ERROR RATE Broadcas Spontaneous Varied 20k Speech switchboard Speech Microphone foreign ATIS NAB 10% 5K Noisy Resource Management Courtesy NIST 1999 DARPA HUB-4 Report, Pallett et al. & new updates from DARPA 1%

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

For many years, DARPA drove the field

Significance: Community

Building on accumulated knowledge of many institutions!

Columbia

Significance: Technical

- The right tool for the right job
- CNNs, LSTMs!
- Building on lots of past innovations:
 - HMM modeling
 - Distributed Representations [Hinton '84]
 - Early CNNs, RNNs, TDNNs [Lang & Hinton '88, Waibel et al. '89, Robinson '91, Pineda '87]
 - Hybrid training [Renals et al. '91, Bourlard & Morgan '94]
 - Discriminative modeling
 - Speaker adaptation
 - System combination

GMMs

Outline

- Acoustic Modeling
- Language Modeling
- Decoding, Rescoring & System Combination
- Measuring Human Performance
- Results
- Counterpoint Letter based CTC
- Conclusions

Outline

- Acoustic Modeling
 - Model Structures
- Language Modeling
- Decoding, Rescoring & System Combination
- Measuring Human Performance
- Results
- Counterpoint Letter based CTC
- Conclusions

Acoustic Modeling: Hybrid HMM/DNN

	CallHome	Switchboard		
DNN	21.9%	13.4%		
1 st				

1st pass decoding

Record performance in 2011 [Seide et al.]

Hybrid HMM/NN approach standard But DNN model now obsolete (!)

Poor spatial/temporal invariance

Acoustic Modeling: VGG CNN

[Simonyan & Zisserman, 2014; Frossard 2016, Saon et al., 2016, Krizhevsky et al., 2012]

Adapted from image processing Robust to temporal and frequency shifts

Acoustic Modeling: ResNet

Add a non-linear offset to linear transformation of features Similar to fMPE in Povey et al., 2005 See also Ghahremani & Droppo, 2016 **Our best single model after rescoring**

	CallHome	Switchboard
DNN	21.9%	13.4%
ResNet	17.3%	11.1%

1st pass decoding

[He et al., 2015]

Acoustic Modeling: LACE CNN

	CallHome	Switchboard
DNN	21.9%	13.4%
ResNet	17.3%	11.1%
LACE	16.9%	10.4%

1st pass decoding

Combines batch normalization, Resnet jumps, and attention masks in CNN Tied for 2nd best single model after rescoring

CNN Comparison

VGG Net (85M Parameters)	Residual-Net (38M Parameters)	LACE (65M Parameters)
14 weight layers	49 weight layers	22 weight layers
40x41 input	40x41 input	40x61 input
3 – conv 3x3, 96	3 – [conv 1x1, 64 conv 3x3, 64 conv 1x1, 256]	5 – conv 3x3, 128
Max pool	4 – [conv 1x1, 128 conv 3x3, 128 conv 1x1, 512]	5 – conv 3x3, 256
4 – conv 3x3, 192	6 – [conv 1x1, 256 conv 3x3, 256 conv 1x1, 1024]	5 – conv 3x3, 512
Max pool	3 – [conv 1x1, 512 conv 3x3, 512 conv 1x1, 2048]	5 – conv 3x3, 1024
4 – conv 3x3, 384	Average pool	1 – conv 3x4, 1
Max pool	Softmax (9000)	Softmax (9000)
2 - FC - 4096		
Softmax (9000)		

Very deep Many parameters Small convolution patterns Processing ~ ½ second per window

Acoustic Modeling: Bidirectional LSTMs

	CallHome	Switchboard
DNN	21.9%	13.4%
ResNet	17.3%	11.1%
LACE	16.9%	10.4%
BLSTM	17.3%	10.3%

Stable form of recurrent neural net Robust to temporal shifts **Tied for 2nd best single model**

[Hochreiter & Schmidhuber, 1997, Graves & Schmidhuber, 2005; Sak et al., 2014]

[Graves & Jaitly '14]

Outline

- Acoustic Modeling
 - Training Techniques
- Language Modeling
- Decoding, Rescoring & System Combination
- Measuring Human Performance
- Results
- Counterpoint Letter based CTC
- Conclusions

I-vector Adaptation

5-10% relative improvement for Switchboard

Configuration	ResNet		LACE		BLSTM	
Configuration	СН	SWB	СН	SWB	СН	SWB
Baseline	17.5	11.1	16.9	10.4	17.3	10.3
i-vector	16.6	10.0	16.4	9.3	17.6	9.9

I-vectors provide a fixed-length representation of a speaker's voice characteristics.

[Dehak et al. 2011; Saon et al., 2013]

Spatial Regularization

[Droppo et al. in progress]

Regularize with L2 norm of Hi-frequency residual

2-D Unrolling

Smoothed 2D Hi-Freq

Senones	CallHom	e WER (%)	SWB WER (%)		
Scholies	Baseline	Smoothing	Baseline	Smoothing	
9000	21.4	19.2	9.9	9.3	
27000	20.5	19.5	10.6	9.2	

5-10% relative improvement for BLSTM

Lattice Free MMI

- Simple brute force MMI
- Avoids need to generate lattices
- Alignments always current

[Chen et al., 2006, McDermott et al., 2914, Povey et al., 2016]

Denominator GPU computation

- Represent FSA of all possible state sequences as a sparse transition matrix A
- Implement exact alpha beta computations

$$\alpha_{t} = (\mathbf{A}\alpha_{t-1}) \cdot o_{t}$$
$$\beta_{t} = \mathbf{A}^{T} (\beta_{t+1} \cdot o_{t+1})$$

- Execute in straight "for" loops on GPU with cusparseDcsrmv and cublasDdgmm
- Beautifully simple

LFMMI Improvements

Configuration	ResNet		LACE		BLSTM	
Configuration	CH	SWB	CH	SWB	CH	SWB
Baseline	17.5	11.1	16.9	10.4	17.3	10.3
i-vector	16.6	10.0	16.4	9.3	17.6	9.9
i-vector+LFMMI	15.2	8.6	16.2	8.5	16.3	8.9

8-14% relative improvement on SWB

- Denominator LM graph has 52k states and 215k transitions
- GPU-side alpha-beta computation is 0.18xRT exclusive of NN evaluation

Cognitive Toolkit (CNTK) Training

- Flexible
- Multi-GPU
- Multi-Server
- 1-bit SGD
- All AM training

Best LM training

Outline

- Acoustic Modeling
- Language Modeling
- Decoding, Rescoring & System Combination
- Measuring Human Performance
- Results
- Counterpoint Letter based CTC
- Conclusions

Language Models

- 1st Pass n-gram:
 - SRI-LM, 30k vocab, 16M n-grams
- Rescoring n-gram:
 - SRI-LM, 145M n-grams
- RNN LM
 - CUED Toolkit, two 1000 unit layers
 - Relu activations, NCE training
- LSTM LM
 - Cognitive Toolkit (CNTK), three 1000 unit layers
 - Letter trigram input, no NCE

LM Training Trick: Self-stabilization

• Learn an overall scaling function for each layer

 $\mathbf{y} = \mathbf{W}\mathbf{x}$ becomes: $\mathbf{y} = (\beta \mathbf{W})\mathbf{x}$

Applied to the LSTM networks, between layers.

[Ghahremani & Droppo, 2016]

Language Model Perplexities

Language model	PPL]
Ngram: 4gram baseline (145M ngrams)	75.5	
RNN: 2 layers + word input	59.8	LSTM beats RNN
LSTM: word input in forward direction	54.4	
LSTM: word input in backward direction	53.4	Letter trigram input slightly
LSTM: letter trigram input in forward direction	52.1	better than word input
LSTM: letter trigram input in backward direction	52.0	Note both forward and

Perplexities on the 1997 eval set

backward running models

Outline

- Acoustic Modeling
- Language Modeling
- Decoding, Rescoring & System Combination
- Measuring Human Performance
- Results
- Counterpoint Letter based CTC
- Conclusions

Overall Process

Greedy System Combination

- Make confusion network from best single system
- Repeat:
 - Compute error rate on development data for each possible system addition
 - Add the system

Rescoring Performance

Language model	PPL	WER	$\int One STM \sim 0.5\%$
4-gram LM (baseline)	75.5	8.6	better than one RNN.
+ RNN-LM	59.8	7.4	
+ LSTM-LM	51.4	6.9	
+ 2-LSTM-LM interpolation	50.5	6.8	Multiple LSTMs
+ 2FW & 2 BW	-	6.6	provide further 0.3%

ResNet CNN Acoustic Model (no combination)

Outline

- Acoustic Modeling
- Language Modeling
- Decoding, Rescoring & System Combination
- Measuring Human Performance
- Results
- Counterpoint Letter based CTC
- Conclusions

A First Try

• The 4% rumor

[Lippman, 1997]

Fig. 7. Word error rates for humans and a high-performance HMM recognizer on phrases extracted from spontaneous telephone conversations in the Switchboard speech corpus (Liu et al., 1996; Martin, 1996).

1996. Speech recognition on Mandarin Call Home: A largevocabulary, conversational, and telephone speech corpus. Proc. IEEE Internat. Conf. Acoust. Speech Signal Process., pp. 157–160.

A. Martin, 1996. Personal communication.

Miller, G.A., 1962. Decision units in the perception of speech. Institute of Radio Engineers Transactions on Information Theory 8, 81–83.

Another Attempt

Language	Genre	Careful Transcription WDR	Quick (Rich) Transcription WDR
	CTS	4.1-4.5%	9.63% (5 pairs)
Me English Inte BN BC	Meeting	-	6.23% (4 pairs)
	Interview	n/a	3.84% (22 pairs)
	BN	1.3%	3.5% (6 pairs)
	BC	n/a	6.3% (6 pairs)

[Glenn et al., 2010]

Significant variability.

Note the bulk of the training data was "quick transcribed."

Getting a Positive ID on Actual Test Data

- Skype Translator has a weekly transcription contract
 - Quality control, training, etc.
- Transcription followed by a second checking pass
- One week, we added eval 2000 to the pile...

The Results

- Switchoard: 5.9% error rate
- CallHome: 11.3% error rate
- SWB in the 4.1% 9.6% range expected
- CH is difficult for both people and machines
 - High ASR error not just because of mismatched conditions

Language	Genre	Careful Transcription WDR	Quick (Rich) Transcription WDR
	CTS	4.1-4.5%	9.63% (5 pairs)
English	Meeting	-	6.23% (4 pairs)
	Interview	n/a	3.84% (22 pairs)
	BN	1.3%	3.5% (6 pairs)
	BC	n/a	6.3% (6 pairs)

Outline

- Acoustic Modeling
- Language Modeling
- Decoding, Rescoring & System Combination
- Measuring Human Performance
- Results
- Counterpoint Letter based CTC
- Conclusions

The Bottom Line & Comparisons

Model	N-gra	am LM	RNN	N-LM	LST	M-LM	
	CH	SWB	CH	SWB	CH	SWB	remarkably well
ResNet	14.8	8.6	13.2	6.9	12.5	6.6	
LACE	14.8	8.3	13.5	7.1	12.7	6.7	
BLSTM (27k, spatial smoothing)	14.9	8.3	13.7	7.0	13.0	6.7] Parity with
Final ASR System	13.3	7.4	12.0	6.2	11.1	5.9	professional
Human Performance	-	-	-	-	11.3	5.9	transcribers

Model	N-gram LM		NN LM		
WIOUCI	СН	SWB	CH	SWB	
Saon et al. [51] LSTM	15.1	9.0	-	-	
Povey et al. [54] LSTM	15.3	8.5	-	-	
Saon et al. [51] Combination	13.7	7.6	12.2	6.6	

Best previous number

Runtimes

	DNN	BLSTM	ResNet	LACE
AM Training, GPU	0.012	0.022	0.60	0.23
AM eval, GPU	0.0064	0.0081	0.15	0.081
AM eval, CPU	0.052	NA	11.7	8.47
Decoding, GPU	1.04	1.40	1.19	1.38

GPU 10 to 100x faster than CPU

(Multiples of real-time, smaller is better)

 AM Training: Forward, Backward + Update computations
 AM eval: Forward probability computation only
 Decoding: Mixed GPU/CPU, complete decoding time with open beams Titan X GPU & Intel Xeon E5-2620 v3 @2.4GhZ, 12 cores
 All times are xRT (fraction of real-time required) on Titan X GPU

Error Analysis

Substitutions (~21k words in each test set)

CH		SWB		
ASR	Human	ASR	Human	
45: (%hesitation) / %bcack	12: a / the	29: (%hesitation) / %bcack	12: (%hesitation) / hmm	
12: was / is	10: (%hesitation) / a	9: (%hesitation) / oh	10: (%hesitation) / oh	
9: (%hesitation) / a	10: was / is	9: was / is	9: was / is	
8: (%hesitation) / oh	7: (%hesitation) / hmm	8: and / in	8: (%hesitation) / a	
8: a / the	7: bentsy / bensi	6: (%hesitation) / i	5: in / and	
7: and / in	7: is / was	6: in / and	4: (%hesitation) / %bcack	
7: it / that	6: could / can	5: (%hesitation) / a	4: and / in	
6: in / and	6: well / oh	5: (%hesitation) / yeah	4: is / was	

"ums" and "uh-hums" most frequent mistakes

- but most errors are in the long tail

Error Analysis

Deletions

СН		SWB		
ASR	Human	ASR	Human	
44: i	73: i	31: it	34: i	
33: it	59: and	26: i	30: and	
29: a	48: it	19: a	29: it	
29: and	47: is	17: that	22: a	
25: is	45: the	15: you	22: that	
19: he	41: %bcack	13: and	22: you	
18: are	37: a	12: have	17: the	
17: oh	33: you	12: oh	17: to	

Insertions

СН		SWB		
ASR	Human	ASR	Human	
15: a	10: i	19: i	12: i	
15: is	9: and	9: and	11: and	
11: i	8: a	7: of	9: you	
11: the	8: that	6: do	8: is	
11: you	8: the	6: is	6: they	
9: it	7: have	5: but	5: do	
7: oh	5: you	5: yeah	5: have	
6: and	4: are	4: air	5: it	

Both people and machines insert "I" and "and" a lot.

Outline

- Acoustic Modeling
- Language Modeling
- Decoding, Rescoring & System Combination
- Measuring Human Performance
- Results
- Counterpoint Letter based CTC
- Conclusions

Two Ways to move up field

The Dive

The Pass

The CTC Alternative

- Wouldn't it be nice if we could just
 ➢look at the frame-level labels,
 ➢de-dup,
 ➢and read-off the transcription?
- For example, with a character model,

S – **U** U – **P** P **P E** E - - **R G** G - - **O** O – **D** D *Super Good*

• CTC [Graves et al. 2006] can train a model so you can do this!

Objective Function and Gradient:

Obj. function :
$$\Lambda = \sum_{\pi \in \text{alignments}} P(q \mid \pi) = \sum_{\pi \in \text{alignments}} \prod_{t} p_{q(\pi(t))}^{t}$$

 $P_{q(\pi(t))}^{t}$: neural net output at time *t* for symbol $q(\pi(t))$
Gradient before softmax : $\frac{\partial \Lambda}{\partial a_q^t} = \gamma_q^t - p_q^t$

Make the neural-net outputs look like the transcript-constrained $\alpha\beta$ posteriors

Defining the Symbols

- Characters:
 - Generalize to new words
 - No problem with infrequent words
- Couple of issues:
 - Double-letters (e.g. "hello") don't work with de-duping
 - Where to insert spaces to form words (e.g. "darkroom" vs "dark room")
- Solution:
 - introduce double-letter units (II, oo, etc.)
 - Introduce word-initial letters (capital letters)

Explicit space character aligns acoustics to nothing.

CUDNN RNN Implementation

- Process full minibatch per CUDNN call
- 32 utterances per minibatch
- $\alpha\beta$ computation on CPU
 - 8-way parallelization / OMP
- Best Configuration:
 - 9 Relu-RNN layers
 - Bidirectional
 - 1024 wide
 - 0.0058 xRT (!)

cudnnStatus t cudnnRNNForwardTraining(cudnnHandle t handle, const cudnnRNNDescriptor t rnnDesc, const int seqLength, const cudnnTensorDescriptor t *xDesc, const void * x, const cudnnTensorDescriptor t hxDesc, const void * hx, const cudnnTensorDescriptor t cxDesc, const void * cx, const cudnnFilterDescriptor t wDesc, const void * w, const cudnnTensorDescriptor t *yDesc, void * y, const cudnnTensorDescriptor t hyDesc, void * hy, const cudnnTensorDescriptor t cyDesc, void * cy, void * workspace, size t workSpaceSizeInBytes, void * reserveSpace, size t reserveSpaceSizeInBytes)

cudnnStatus_t

```
cudnnRNNBackwardData( cudnnHandle t handle,
                      const cudnnRNNDescriptor t rnnDesc,
                      const int seqLength,
                      const cudnnTensorDescriptor t * yDesc,
                      const void * y,
                      const cudnnTensorDescriptor t * dyDesc,
                      const void * dy,
                      const cudnnTensorDescriptor t dhyDesc,
                      const void * dhy,
                      const cudnnTensorDescriptor t dcyDesc,
                      const void * dcy,
                      const cudnnFilterDescriptor t wDesc,
                      const void * w,
                      const cudnnTensorDescriptor t hxDesc,
                      const void * hx,
                      const cudnnTensorDescriptor t cxDesc,
                      const void * cx,
                      const cudnnTensorDescriptor t * dxDesc,
                      void * dx,
                      const cudnnTensorDescriptor t dhxDesc,
                      void * dhx,
                      const cudnnTensorDescriptor t dcxDesc,
                      void * dcx,
                      void * workspace,
                      size t workSpaceSizeInBytes,
                      const void * reserveSpace,
                                                          45
                      size t reserveSpaceSizeInBytes )
```

Results: 2000 Hour Training

Conclusion: Much simpler systems can produce good performance [Zweig et al., 2016]

Outline

- Acoustic Modeling
- Language Modeling
- Decoding, Rescoring & System Combination
- Measuring Human Performance
- Results
- Counterpoint Letter based CTC
- Conclusions

Summary: Human Parity after Twenty Years

DARPA Speech Recognition Benchmark Tests

Concluding Remarks

- Parity Are we done?
 - Cocktail party problem
 - Farfield
 - Robustness

Cocktail Party Problem

Concluding Remarks

- Parity Are we done?
 - Cocktail party problem
 - Farfield
 - Robustness
- What is interesting?
 - New network structures
 - Process Simplification e.g. CTC

Concluding Remarks

- Parity Are we done?
 - Cocktail party problem
 - Farfield
 - Robustness
- What is interesting?
 - New network structures
 - Process Simplification e.g. CTC
- Are we stuck?
 - CNNs! LSTMs! Attention & More.
 - The future is bright

Thank You!