
Interval Analysis For Computer Graphics

John M. Snyder

California Institute of Technology

Pasadena, CA 91125

Abstract

This paper discusses how interval analysis can be used to solve a wide vari-

ety of problems in computer graphics. These problems include ray tracing,

interference detection, polygonal decomposition of parametric surfaces, and

CSG on solids bounded by parametric surfaces. Only two basic algorithms

are required: SOLVE, which computes solutions to a system of constraints,

and MINIMIZE, which computes the global minimum of a function, subject

to a system of constraints.

We present algorithms for SOLVE and MINIMIZE using interval analysis as

the conceptual framework. Crucial to the technique is the creation of “inclu-

sion functions” for each constraint and function to be minimized. Inclusion

functions compute a bound on the range of a function, given a similar bound

on its domain, allowing a branch and bound approach to constraint solution

and constrained minimization. Inclusion functions also allow the MINIMIZE

algorithm to compute global rather than local minima, unlike many other

numerical algorithms.

Some very recent theoretical results are presented regarding existence and

uniqueness of roots of nonlinear equations, and global parameterizability of

implicitly described manifolds. To illustrate the power of the approach, the

basic algorithms are further developed into a new algorithm for the approx-

imation of implicit curves.

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and

Object Modeling; G.4 [Mathematical Software]: Reliability and Robustness

Additional Key Words: constraint solution, constrained minimization, in-

terval analysis, inclusion function, approximation, implicit curve

1 Introduction

Interval analysis is a new and promising branch of applied mathematics.

A general treatment can be found in [MOOR66] and [MOOR79], by R.E.

Moore, the originator of this field. The main benefit of interval analysis is

that it can solve problems so that the results are guaranteed to be correct,

even when computed with finitely precise floating point operations. This is

accomplished by using inclusion functions that compute bounds on functions

relevant to the problem, thus controlling approximation errors.

Although the application of interval methods to computer graphics is not

new, it has been applied only to a limited class of computer graphics prob-

lems. Mudur and Koparkar [MUDU84] have presented an algorithm for

rasterizing parametric surfaces using interval arithmetic. They also suggest

the utility of such methods for other operations in geometric modeling. Toth

[TOTH85] has demonstrated the usefulness of interval based methods for

the direct ray tracing of general parametric surfaces. Most recently, inter-

val methods have been used for error bounding in computing topological

properties of toleranced polyhedra [SEGA90], for contouring 2D functions

and rendering implicit surfaces [SUFF90], and for ray tracing implicit sur-

faces [MITC90]. Several researchers have also used Lipschitz bounds, a

special case of an interval method, in their algorithms: to approximate para-

metric surfaces [VONH87], to compute collisions between time-dependent

parametric surfaces [VONH89,VONH90], and to ray trace implicit surfaces

[KALR89].

This paper extends the work of these researchers by showing how a gen-

eral set of problems in computer graphics can be solved using only two

algorithms that employ interval analysis: constraint solution (SOLVE) and

constrained minimization (MINIMIZE). Many of the ideas presented here

are borrowed from recent work in the area of interval analysis ([RATS88,

ALEF83]), but are new to computer graphics. These ideas include the ac-

tual algorithms for SOLVE (Section 3.1) and MINIMIZE (Section 3.3), and a

robust test for the solution of nonlinear systems of equations (Section 3.2).

Section 2 presents background information necessary for the understanding

of these ideas. Using the techniques described, Section 4 presents a new,

robust algorithm for the approximation of implicit curves, an important al-

gorithm in shape modeling operations such as CSG.

1.1 Problem Definition for SOLVE and MINIMIZE

SOLVE computes solutions to a constraint problem, which seeks points from

a domain, 1 D � Rn , that satisfy a logical combination of equalities and

inequalities. That is, it seeks the set given by

SOLVE
x2D

F � fx j x 2 D;F(x) = 1g

where F: Rn
! f0; 1g represents the constraint to be solved. For example,

F(x) may be given by the simultaneous satisfaction of the r + s constraints

gi(x) = 0 i = 1; . . . ; r

hj(x) � 0 j = 1; . . . ; s

The scalar functions g i(x) and h j(x) are called the constraint functionals, and

are assumed to be continuous.

Related to the constraint problem is what we call the constrained parti-

tioning problem, which seeks to partition a domain D into a collection of

hyper-rectangles, fR ig, such that each partition R i satisfies a given set con-

straint. A set constraint is a mapping from a hyper-rectangle to f0; 1g. For

example, let S: R 2
! R3 be a parametric surface, and let R � R 2. Define

the distance function of the surface, d(R), as the maximum distance between

two surface points, mapped from R: 2

d(R) � supfkS(p1)� S(p 2)k j p1; p2 2 Rg

A useful set constraint for the surface approximation problem, G(R), is

G(R) � (d(R) < �) (1)

which requires that no two points on S from R be farther apart than �. A con-

strained partitioning problem can also be combined with a constraint prob-

lem, in order to partition the constraint problem’s solution set. We will later

show how SOLVE can be applied to the constrained partitioning problem.

1We will assume the domain of all problems is a hyper-rectangle, also called a vector-valued

interval in Section 2.1.
2sup denotes supremum, the least upper bound of a set.

MINIMIZE computes solutions to a constrained minimization problem,

which seeks the global minima of a scalar function, f (x), called the objective

function, over the points in a given domain that satisfy a system of con-

straints. Two possible solutions may be required, the minimum value of the

objective function: 3

MINIMUM
x2D;F(x)=1

f � infff (x) j x 2 D;F(x) = 1g

or its set of global minimizers:

MINIMIZERS
x2D;F(x)=1

f � fx j f (x) = MINIMUM
x2D;F(x)=1

fg

Note that the MINIMUM operator is well-defined only if the feasible set of the

constraint system is nonempty. We assume the continuity of the objective

function as well as the constraint functionals involved in the definition of

F(x). This, together with the compactness of D, guarantees that the MINI-

MIZERS operator is well-defined when the feasible set is nonempty.

We will use the term global problem for a constraint problem, constrained

partitioning problem, or constrained minimization problem.

1.2 SOLVE and MINIMIZE in Computer Graphics

SOLVE and MINIMIZE can be applied to a wide variety of problems in ren-

dering and geometric modeling. We shall describe an important, but by no

means exhaustive, set of examples in the following paragraphs. Further ap-

plications of the algorithms to computer graphics include scan conversion

of parametric surfaces, parametric/implicit representation conversion, selec-

tion of feasible/optimal parameters for parameterized shapes, and computa-

tion of toleranced geometric queries such as point enclosure.

Ray Tracing Ray tracing a parametric surface, S(u;v): R 2
! R3 , in-

volves a minimization problem over (u; v) space. Let o and d be the origin

and direction, respectively, of a given ray. As in [TOTH85], to find the first

intersection of this ray with S, we may solve

MINIMUM
(u;v)2DS
F(u;v)=1

t(u; v)

where the objective function, t(u; v), is given by 4

t(u; v) � minf
Sx(u; v)� o x

dx

;

Sy(u;v) � o y

dy

;

Sz(u;v) � o z

dz

g

and the constraint function F(u; v) is given by

(S(u;v)� o)� d = 0 and t(u; v) � 0

Ray tracing of implicit surfaces can be accomplished with a similar, 1D min-

imization problem [MITC90].

Polygonal Decomposition Approximating a shape, such as a curve or sur-

face, as a collection of simple pieces is a fundamental operation in computer

graphics. For example, we may wish to produce a collection of triangles that

approximate a parametric surface, S(u; v), to some error tolerance. Such an

approximation can be accomplished using constrained partitioning with the

set constraint, G(R), from Formula (1). For each resultant (u; v) partition, a

set of triangles can be formed joining the partition’s four corner vertices, as

well as any vertices from more highly subdivided neighbor partitions (Fig-

ure 1). The whole collection of triangles approximates the surface without

deviating from it more than a distance of �. Set constraints can be also be de-

fined that bound each partition’s surface area, maximum variation of surface

normal, or any other function over the surface. Figure 10 compares polygo-

nal decomposition using set constraints with simple uniform sampling.

Interference Detection Let S(u;v) and T(r; s) be two parametric surfaces,

with D S and D T their respective domains. To compute whether these sur-

faces intersect, the following 4D constraint problem is appropriate:

SOLVE
(u;v)2DS
(r;s)2DT

(S(u; v) = T(r; s))

3inf denotes infimum, the greatest lower bound of a set.
4If any ray direction components are equal to 0, the corresponding quotient is taken to be1, and

so is ignored in the min.

)

Figure 1: Approximating a surface as a triangular mesh – The surface’s pa-

rameter space is first broken into rectangles each of which satisfies a set

constraint, controlling the approximation quality. A collection of triangles is

then generated connecting points at the corners of the rectangle or its neigh-

bors.

In this case, evaluation of the points of intersection is unnecessary; we need

only compute whether or not the feasible set is empty. Similar constraint

problems can be solved to determine whether two moving surfaces inter-

sect, by solving a 5D constraint problem given the time-dependent surfaces

S(u; v; t) and T(r; s; t) [VONH90].

A related problem is to determine the minimum distance between two

parametric surfaces, which may be expressed as the unconstrained mini-

mization problem

MINIMUM
(u;v)2DS
(r;s)2DT

kS(u;v)� T(r; s)k (2)

Figure 11 shows the results of the unconstrained minimization problem to

compute the minimum distance between two parametric surfaces.

CSG Computing CSG operations on solids represented by their paramet-

ric surface boundaries involves computing the curve of intersection between

pairs of parametric surfaces. The resulting curve can be projected into the

respective parameter spaces of the two surfaces, and used to perform trim-

ming operations. The curve of intersection is an implicit curve solving a

system of three equations in four variables, of the form

SOLVE
(u;v)2DS
(r;s)2DT

(S(u;v) = T(r; s))

where S and T are the two intersecting parametric surfaces. This problem is

similar to the one presented for interference detection, except that an approx-

imation of the solution is desired rather than a mere indication of solution

existence. Such an approximation can be computed using the algorithm in

Section 4, which is built on the SOLVE algorithm. Figure 8 shows the results

of CSG operations computed in this way.

2 Inclusion Functions

The interval analysis approach to solving global problems works by recur-

sively subdividing an initial hyper-rectangle of the parameter space of the

global problem. Inclusion functions are used to test whether a particular

region satisfies the constraints (constraint and minimization problems), con-

tains points with a small enough value of the objective function (minimiza-

tion problem), or satisfies the set constraint (partitioning problem), by com-

puting a bound on the function over the region. For example, to test whether

a region X includes a solution to the equation f (x) = 0, an inclusion function

for f is evaluated over the region X. If the resulting bound on f does not

contain 0, then X may be rejected. The following section defines inclusion

functions more precisely, discusses some of their properties, and explains

how they may be implemented.

2.1 Terminology and Definitions

An interval, A = [a; b], is a subset of R defined as

[a; b] � fx j a � x � b; x; a; b 2 Rg

The numbers a and b are called the bounds of the interval; a is called the

lower bound, written lb [a; b], and b, the upper bound, written ub [a; b]. The

symbol I denotes the set of all intervals.

A vector-valued interval of dimension n, A = (A 1;A2; . . . ;An), is a subset

of Rn defined as

A � fx j xi 2 Ai and Ai 2 I for i = 1; 2; . . . ; ng

For example, a vector-valued interval of dimension 2 represents a rectan-

gle in the plane, while a vector-valued interval of dimension 3 represents a

“brick” in 3D space. An interval A i that is a component of a vector-valued

interval is called a coordinate interval of A. The symbol I m denotes the set of

all vector-valued intervals of dimension m. Hereafter, we will use the term

interval to refer to both intervals and vector-valued intervals; the distinction

will be clear from the context.

The width of an interval, written w([a; b]), is defined by

w([a; b]) � b � a

Similarly, the width of a vector-valued interval, A 2 I n, is defined as

w(A) �
n

max
i=1

w(Ai)

Given a subset D of R m, let I (D) be defined as the set of all intervals that

are subsets of D:

I(D) � fY j Y 2 Im and Y � Dg

Let f : D ! Rn be a function. An inclusion function for f , written 2f , is a

function 2f : I (D) ! I n such that

x 2 Y) f (x) 2 2f (Y) 8Y 2 I (D)

In other words,2f is a vector-valued interval bound on the range of f over a

vector-valued interval bound on its domain. Many possible inclusion func-

tions may be defined for a given function f , each having different properties.

For example, an inclusion function 2f is called convergent if

w(X) ! 0) w(2f (X)) ! 0

Note that f must be continuous for its inclusion function to be convergent.

2.2 Inclusion Functions for Arithmetic Operators

To see how inclusion functions can be evaluated on a computer, let us first

consider functions defined using arithmetic operations. Let g and h be func-

tions from R m to R , and let X 2 I m. Let inclusion functions for g and h be

given and evaluated on the interval X

2g(X) = [a; b]

2h(X) = [c; d]

Given these interval bounds on g and h, we can bound an arithmetic com-

bination, g ? h, where ? represents addition, subtraction, multiplication or

division. This bound may be computed by bounding the set Q
?

, defined as

Q
?

� fx ? y j x 2 [a; b]; y 2 [c; d]g

Q
?

can be bounded within an interval using the well-known technique of
interval arithmetic, which defines the operators +

2

, �
2

, �
2

, and =

2

ac-
cording to the rules

[a;b] +
2

[c; d] � Q+ � [a + c; b + d]

[a;b] �

2

[c; d] � Q
�

� [a� d;b � c]

[a;b] �

2

[c; d] � Q
�

� [min(ac; ad; bc; bd);max (ac; ad;bc; bd)]

[a;b] =

2

[c; d] � Q
=

�

�

min(a
c ;

a
d
;

b
c ;

b
d

);max(a
c ;

a
d
;

b
c ;

b
d

)
�

provided 0 =2 [c; d]

The inclusion functions defined above rely on an infinitely precise rep-

resentation for real numbers and arithmetic operations. To perform interval

analysis on a computer, an interval A = [a; b] must be approximated by a

machine interval AM = [a M; bM] containing A, so that a M and b M are mem-

bers of the machine’s set of floating point numbers. We can not assume that

an inclusion function for g + h can be constructed by producing the interval

[a + M c; b + M d], where + M denotes the hardware addition operator. Because

of addition rounding errors, a + M c may not be a lower bound for a + c. This

problem can be solved on machines that conform to the IEEE floating point

standard using using round-to-�1 mode for computation of interval lower

bounds, and round-to-+1 mode for interval upper bounds.

2.3 Natural Interval Extensions

It is clear that the interval bounds of the previous section can be recursively

applied to yield an inclusion function for an arbitrary, nested combination of

arithmetic operators on a set of functions with known inclusion functions.

For example, an inclusion function for f + (g + h) is given by

2(f + (g + h)) � 2f +
2

(2g +
2

2h) (3)

Furthermore, this notion can be extended to non-arithmetic operators. For

each operator, P(f 1; f2; . . . ; fn), that produces a function given n simpler

functions, we must define a method, P
2

, that evaluates an inclusion func-

tion for P, depending only on the interval results of the inclusion functions

2fi . Let each of the functions f i be defined on a domain D and let X 2 I (D).

Given P
2

, an inclusion function for P(f 1; . . . ; fn) is then given by

2P(f1; f2; . . . ; fn)(X) � P
2

(2f1(X);2f2(X); . . . ;2fn(X))

In a generalization of Equation 3 , given a set of operators, P 1;P2; . . . ;PN ,

an inclusion function can be evaluated for any function formed by their com-

position (e.g., P 1(P2(f1; f2);P3(f3))). Inclusion functions constructed in this

way are called natural interval extensions.

Construction of an operator’s inclusion function method may not be dif-

ficult if the operator’s monotonicity intervals are known. For example, an

inclusion function evaluation method can be defined for the cosine operator,

based on the observation that the cosine function is monotonically decreas-

ing in the interval [�2n; �(2n + 1)], and monotonically increasing in the in-

terval [�(2n + 1); �(2n + 2)], for integer n. Let f be a function from R m to R ,

and let X 2 I m. Let an inclusion functions for f be given and evaluated on

the interval X, yielding the interval [a; b]. An inclusion function for cos (f)

can be evaluated on X according to the following rules:

cos
2

([a; b]) �

>

>

>

>

>

>

>

>

[�1; 1] ; if 1 + a
�

�

b
�

[�1; max(cos(a); cos (b))]; if a
�

�

b
�

and a
�

mod 2 = 1

[min(cos(a); cos (b));1]; if a
�

�

b
�

and a
�

mod 2 = 0

[min(cos(a); cos (b)) ;

max(cos(a);cos (b))];
otherwise

The numerical cosine evaluations implied by min (cos(a);cos (b)), for ex-

ample, must be computed so that they are a lower bound for the theoretical

result. Similar inclusion functions can be constructed for operators such as

sine, square root, exponential, and logarithm.

Inclusion functions for vector and matrix operations are also easy to con-

struct. For example, an inclusion function method for the dot product oper-

ator can be defined via

2(f � g) � (2f 1 �2 2g1) +
2

(2f2 �2 2g2) +
2

. . . +
2

(2fn �2 2gn)

Similarly, interval arithmetic can be used to define inclusion function meth-

ods for the matrix multiply, inverse, and determinant operators, and for vec-

tor operators like addition, subtraction, length, scaling, and cross product.

2.4 Inclusion Functions for Relational and Logical Op-

erators

Inclusion functions can also be defined for relational and logical operators,

allowing natural interval extensions for functions used as constraints.

A relational operator produces a result in the set f 0; 1g, 0 for “false” and

1 for “true”. The operators equal to, not equal to, less than, and greater

than or equal to are all binary relational operators. An inclusion functions

for a relational operator, such as less than, can easily be defined. Let f and g

be functions from R n to R , with given inclusion functions, 2f and 2g. Let

X 2 In , and

2f (X) = [a; b]

2g(X) = [c; d]

Then we have

2(f < g)(X) �

[0; 0] ; if d � a

[1; 1] ; if b < c

[0; 1] ; otherwise

Logical operators, such as and, or, and not, combine results of the rela-

tional operators in Boolean expressions. Their inclusion functions are also

easily defined. For example, if r 1 and r 2 are two relational functions from

Rn to f0; 1g, and 2r 1 and 2r 2 are their corresponding inclusion functions,

then an inclusion function for the logical and of the relations, r 1 ^ r2, is

given by

2(r1 ^ r2) �

[0; 0] ; if 2r1 = [0; 0] or 2r2 = [0; 0]

[1; 1] ; if 2r1 = [1; 1] and 2r2 = [1; 1]

[0; 1] ; otherwise

2.5 Mean Value Forms

Given a differentiable function f : R m
! Rn , with parameters x 1; x2; . . . ; xm,

an inclusion function, called the mean value form, can be constructed for f

as follows:

2f (Y) � f (c) +
2

2f 0(Y) �
2

(Y �
2

c) (4)

where c 2 Y, Y 2 Im and 2f 0 is an inclusion function for the Jacobian

matrix of f , i.e.,

2f 0(Y) � 2

@fi

@xj

(Y)

That the above formula represents a valid inclusion function for f is an imme-

diate consequence of Taylor’s theorem. The mean value form has the useful

property that, under certain conditions, the resulting bound on f quadrat-

ically converges to the ideally tight bound as the width of Y shrinks to 0

(Krawczyk-Nickel 1982, for a formal statement and proof, see [SNYD92b]).

Note that the addition, subtraction and matrix-vector multiplication opera-

tions implied by this definition are computed using interval arithmetic. 5 The

ensuing treatment of interval analysis will drop the 2 subscripts for interval

arithmetic operations; it should be clear by the context whether the standard

operations or their interval analogs are meant.

The idea of a mean value form can be generalized to produce inclu-

sion functions that incorporate more terms of a function’s Taylor expansion,

called Taylor forms. A related inclusion function, called the monotonicity-

test inclusion function, is also defined using inclusion functions on the partial

derivatives of f [MOOR79]). By testing whether these derivatives exclude

0, (i.e., the function is monotonic with respect to a given parameter), very

tight bounds can be produced. Mean value forms can also be defined for

functions which are only piecewise differentiable (see [RATS88]).

3 Solving Global Problems

3.1 Constraint Solution Algorithm

A system of constraints can be represented as a function, F: R n
! R, that re-

turnsa 1 if the constraints are satisfied and a 0 if they are not. Such a function

can incorporate both equality and inequality constraints, and can be repre-

sented with the relational and logical operators whose inclusion functions

were examined in Section 2.4. As discussed in Section 2.4, an inclusion

function for F, 2F, over a region X � I n can take on three possible values:

2F(X) = [0; 0]) X is an infeasible region

5It should also be noted that to implement this mean value form on a computer, the interval

2f ([c; c]) should replace f (c). This is because the computer can not exactly compute f (c) and must

instead bound the result.

2F(X) = [0; 1]) X is an indeterminate region

2F(X) = [1; 1]) X is a feasible region

An infeasible region is a region in which no point solves the constraint sys-

tem. A feasible region is a region in which every point solves the constraint

system. An indeterminate region is a region in which the constraint sys-

tem may or may not have solutions. We now present an algorithm to find

solutions to this constraint system.

Algorithm 3.1 (SOLVE) We are given a constraint inclusion function 2F,

an initial region, 6 X, in which to find solutions to the constraint problem

F(x) = 1, and the solution acceptance set constraint, 2A, specifying when

an indeterminate region should be accepted as a solution.

place X on list L

while L is nonempty

remove next region Y from L

evaluate 2F on Y

if 2F(Y) = [1; 1] add Y to solution

else if 2F(Y) = [0; 0] discard Y

else if 2A(Y) = [1; 1] add Y to solution

else subdivide Y into regions Y 1 and Y2 ,

and insert into L

endwhile

Subdivision in Algorithm 3.1 can be achieved by dividing each candi-

date interval in half along the midpoint of a single dimension. By storing

the index of the last subdivided dimension with each region, the algorithm

can cyclically subdivide all dimensions of the initial region, ensuring that

the width of candidate regions tends to 0 as the number of iterations in-

creases. On the other hand, by knowing properties of the constraint sys-

tem whose solutions are sought, we can often deduce smaller regions that

bound the solutions, especially through the use of interval Newton methods

[TOTH85,RATS88,SNYD92b]. The Hansen-Greenberg algorithm is an ef-

ficient method for finding zeroes of a function [RATS88] and uses exhaustive

subdivision, interval Newton methods, and local Newton methods.

3.1.1 The Problem of Indeterminacy

Algorithm 3.1 finds a set of intervals bounding the solutions to the constraint

system. In particular, by the property of inclusion functions, if this algorithm

finds no solutions, then the constraint system has no solutions, because a

region Y is rejected only when 2F(Y) shows that it is infeasible. It can

also be proved that the constraint solution algorithm converges to the actual

solution set, when the inclusion functions used in the equality and inequality

constraints are convergent (see, for example, [SNYD92b]).

Unfortunately, a computer implementation of the constraint solution al-

gorithm can not iterate forever; it must terminate at some iteration n and ac-

cept the remaining regions as solutions. Especially when equality constraints

are used, the algorithm may accept some indeterminate regions, which may

contain zero, one, or more solutions, when these regions satisfy the solution

acceptance set constraint. This problem is mitigated by several factors.

First, it may be enough to distinguish between the case that the constraint

problem possibly has solutions (to some tolerance), and the case that it has

no solutions. For example, to compute interference detection between two

parametric surfaces, S 1; S2: R2
! R3 , a constraint system of three equations

in four variables can be solved of the form

S1(u1; v1) = S 2(u2; v2)

If we instead solve the relaxed constraint problem,

kS1(u1; v1) � S2(u2; v2)k < �

the algorithm can hope to produce feasible solution regions, for which the

constraints are satisfied for every point in the region. 7 Such relaxed con-

6The initial region X can be infinite if the technique of infinite interval arithmetic is used (see

[RATS88]).
7Note that the solution to the unrelaxed system is typically a curve of intersection between the two

parametric surfaces. Any neighborhood of a point on this curve will also contain points for which the

two surfaces do not intersect and hencedo not solve the system of equations. The relaxed problem, on

the other hand, has solutions for which a neighborhood of small enough size is completely contained

within the solution space.

straint problems are called �-collisions in [VONH89]. If any feasible re-

gions are found, the surfaces interfere, within the tolerance. If all regions

are eventually found to be infeasible, the surfaces do not interfere within the

tolerance, and in fact come no closer than �. It is also possible that only

indeterminate regions are accepted as solutions. In this case, we may con-

sider the two surfaces to interfere to the extent that our limited floating point

precision is able to ascertain.

Second, we may know a priori that the system has a single solution. Let

the solution acceptance set constraint have the simple form

2A(Y) � (w(Y) < �)

If the inclusion functions bounding the constraint equality and inequality

functions are convergent, then the solution approximation produced by Al-

gorithm 3.1 achieves any degree of accuracy as � goes to 0.

Third, we may be able to compute information about solutions to the con-

straint system as the algorithm progresses. Section 3.2 presents a theorem

specifying conditions computable with interval techniques under which a

region contains exactly one zero of a system of equations.

Finally, we can relax the constraints of a constraint system and/or accept

indeterminate results of the algorithm. In practice, although we can not guar-

antee the validity of such results, they are nevertheless useful.

3.1.2 Termination and Acceptance Criteria for Constraint Solution

SOLVE can be applied to five specific problems:

1. find a bound on the set of solutions

2. determine whether a solution exists

3. find one solution

4. find all solutions

5. solve a constrained partitioning problem

The following discussion analyzes the application of Algorithm 3.1 to these

specific problems, making the distinction between heuristic approaches, in

which the results are not guaranteed to be correct, and robust approaches, in

which the results are guaranteed to be correct.

Algorithm 3.1 never rejects a region unless it contains no solutions to the

constraint problem. Therefore, an unmodified Algorithm 3.1 can be used to

robustly find a set of regions bounding the solutions to the constraint system.

Such a solution superset is often useful in higher-level algorithms, such as

the implicit curve approximation algorithm of Section 4. The solution super-

set can also be visualized to obtain a rough idea of the nature of the solutions,

even if the solutions form a multidimensional manifold rather than a finite

set of points.

To determine whether a solution exists, if the algorithm terminates with

an empty list of solutions, then the algorithm should return the answer “no”.

If at any point the algorithm finds a feasible region, then the algorithm can

immediately terminate with the answer “yes”. If the algorithm finds only in-

determinate regions, then nothing can be concluded with certainty. A heuris-

tic solution is to return “yes” anyway. This heuristic approach can be made

more robust through the choice of an appropriate solution acceptance set

constraint. For example, in solving the system f (x) = 0 for a continuous

function f , it is reasonable that a region, Y, before being accepted as a solu-

tion, should satisfy

w(2f (Y)) < �

for some small �. The algorithm should report an error when none of the in-

determinate regions satisfy the acceptance criteria, before the machine pre-

cision limit is reached during subdivision. A robust solution to the problem

can be achieved by testing indeterminate regions for the existence of solu-

tions, using the test of Section 3.2.

To find any single solution to a constraint system, Algorithm 3.1 may con-

clude that the entire starting region is infeasible, or find a feasible region. In

the latter case, any point in the feasible region is chosen as a representative

solution and the algorithm is halted. Indeterminate regions are heuristically

accepted when they satisfy the solution acceptance set constraint. They may

also be tested for the existence of solutions, again using the test of Sec-

tion 3.2.

Algorithm 3.1 can also be applied to the problem of finding all solutions

to a constraint system, when a finite set of solutions is expected. Again, if

Figure 2: Solution aggregation – The solution regions returned by Algo-

rithm 3.1 are the collection of nondashed squares. The actual solutions are

marked by dots. An adequate level of subdivision has been achieved so that

sets of contiguous regions encompass each of the four solutions, and each

contiguous region may be bounded in an interval (dashed boxes) that is dis-

joint from other such regions.

the algorithm terminates with an empty solution list, there are no solutions.

If a feasible region is found, an infinite number of solutions exist. If only

indeterminate regions are found, then a useful heuristic approach is to union

all contiguous solution regions into a set of mutually disjoint aggregate re-

gions, as shown in Figure 2. A point inside each aggregate region is picked

as a solution. If the number of solutions is known beforehand, then the algo-

rithm can be terminated with an error condition if the machine precision is

reached in subdivision with a number of aggregated regions unequal to the

number of solutions. Of course, we note that although this approach almost

always works correctly, it is still heuristic, since, for example, one region

may contain no solutions while another contains two. A robust approach is

to test for solution existence in each aggregated region. In this case, reaching

the machine precision limit during subdivision without being able to verify

solution existence should result in an error termination.

Finally, to solve a constrained partitioning problem, Algorithm 3.1 must

be slightly modified so that it adds a region to the solution only when 2A is

true, regardless of the value of 2F. Alternatively, the constraint inclusion

can be set so that it returns true (i.e., the constant [1; 1]) for all regions.

The solution acceptance set constraint then becomes the set constraint of the

constrained partitioning problem.

3.2 Interval Tests for Solution Existence and Unique-

ness

An interesting and useful result can be proved that guarantees the existence

of a unique zero of the function f : R n
! Rn in an interval domain X.

Theorem 3.1 (Bao-Rokne 1987) Let f : Rn
! Rn be continuously differ-

entiable in an interval domain X, and let c 2 X. Let 2J be the interval

Jacobian matrix of f over X, i.e.,

2J � J j Jij 2 2
@fi

@xj

(X)

Let Q be the solution set of the linear interval equation in x

f (c) + 2J(x � c) = 0

That is,

Q � fx j 9J 2 2J such that f (c) + J(x � c) = 0g

If Q = ; and Q � X, then f has a unique zero in X.

A proof of this theorem can be found in [SNYD92b]. The hypothesis of

the theorem can be verified using practical computations in several ways.

First, if the interval determinant of 2J is not 0, then

Q � c � 2J�1f (c)

where 2J�1 is the interval matrix inverse of2J. We can therefore compute

the interval inverse of the Jacobian matrix 2J, compute

Q� � c� 2J�1f (c)

and verify that X � Q �, in order to show the existence of a unique solution

in X. Other methods involve Gauss-Sidel iteration on the linear equation

[RATS88], or use of linear optimization [SNYD92b].

We note that the theorem is not useful in every case, since if there is a

zero of f in X at p, and the determinant of the Jacobian of f at p is 0, then we

can never verify solution uniqueness using this theorem. We also note that

an interval test for solution existence (but not necessarily uniqueness) can

be found in [MOOR80]. The appendix discusses a test that indicates when

a region has at most one zero.

3.3 Minimization Algorithm

The constrained minimization problem involves finding the global minimum

(or global minimizers) of a function f : R n
! R for all points that satisfy a

constraint function F: R n
! f0; 1g. This constraint function is defined

exactly as in Section 3.1.

Algorithm 3.2 (MINIMIZE) We are given a constraint inclusion function

2F, a solution acceptance set constraint, 2A, an inclusion function for the

objective function, 2f , and an initial region, X. The variable u is a pro-

gressively refined least upper bound for the value of the objective function f

evaluated at a feasible point. Regions are inserted into the priority queue L

so that regions with a smaller lower bound on the objective function f have

priority.

place X on priority queue L

initialize upper bound u to +1

while L is nonempty

get next region Y from L

if 2A(Y) = [1; 1] add Y to solution

else

subdivide Y into regions Y 1 and Y2

evaluate 2F on Y 1 and Y2

if 2F(Yi) = [0; 0] discard Y i

evaluate 2f on Y 1 and Y2

if lb2f (Yi) u discard Y i

insert Y i into L according to lb 2f (Yi)

if Yi contains an identified feasible point q

u = min (u; f (q))

else if Yi contains an unidentified feasible point

u = min (u; ub 2f (Yi))

endif

endif

endwhile

Let the region U i
n be the i-th region on the priority queue L after n while

loop iterations of the algorithm. Let u n be the value of u at iteration n, and

let ln be given by

ln � lb2f (U1
n)

The interval U 1
n is called the leading candidate interval, and has the smallest

lower bound for the value of f . Let f � be the minimum value of the objec-

tive function subject to the constraints. We note that if a region X contains

feasible points for the constraint function F, then f � exists. Given existence

of a feasible point, an important property of Algorithm 3.2 is

ln � f� � un 8n

Algorithm 3.2 suffers the same problems that Algorithm 3.1 does, in that

an indeterminate region (i.e., a region Y for which 2F(Y) = [0; 1]), may or

may not include feasible points of the system of constraints. This implies that

the algorithm may accept indeterminate regions as solutions that are, in fact,

infeasible. Moreover, if the constraints can never be satisfied exactly, (e.g.,

they are represented using equality constraints), then all candidate regions

are indeterminate, so that u is never updated. In this case, the algorithm is

unable to reject any of the candidate regions on the basis of the objective

function bound and accepts all indeterminate regions as solutions.

A robust solution to this problem is to use an existence test, such as the

one presented in Section 3.2, to verify that a region contains at least one

feasible point. A heuristic approach is to consider indeterminate regions of

small enough width as if they contained a feasible point. These indetermi-

nate regions may be subjected to an appropriate acceptance test that provides

more confidence that the region contains a feasible point.

Algorithm 3.2 can be enhanced with techniques that find feasible points,

feasible points with a smaller value of the objective function, or feasible

regions in which the objective function is monotonic with respect to any

input variable [RATS88].

3.3.1 Termination and Acceptance Criteria for Minimization

A constrained minimization problem can be “solved” in three ways:

1. find the minimum value of the objective function

2. find one feasible point that minimizes the objective function

3. find all feasible points that minimize the objective function

Slight modifications to Algorithm 3.2 regarding when the algorithm is halted

and when indeterminate regions are accepted as solutions can make it appli-

cable to each of these specific subproblems.

To find the minimum value of the objective function, f �, Algorithm 3.2

should be terminated when a leading candidate interval, U 1
n , is encountered

with w(2f (U 1
n)) sufficiently small, given that U 1

n contains at least one feasi-

ble point. 8 In this case, the value f (q) should be returned for some q 2 U 1
n .

This approach is justified because if U 1
n contains a feasible point then

lb2f (U1
n) � f � � ub2f (U1

n)

This approach presumes that we can verify the presence of a feasible point

in an indeterminate region before the machine precision is reached in sub-

division. Lack of this verification should result in some form of error ter-

mination. A heuristic approach is to accept indeterminate regions of small

enough width (and, possibly, satisfying other criteria) as though they con-

tained a feasible point.

Finding one or all minimizers of the objective function is a difficult prob-

lem that is currently not amenable to completely robust solution. Under

certain conditions 9 , Algorithm 3.2 converges, in a theoretical sense, to the

set of global minimizers of the minimization problem. In practice however,

we obtain a bound on the set of global minimizers after a finite number of

iterations. Although techniques exist to verify whether a given interval in

this bound contains a local minimizer of the minimization problem, we will

not know, in general, if these local minimizers are also global minimizers.

If we know, a priori, that a single global minimizer exists, then the tech-

nique of solution aggregation (Section 3.1.2) can be used to collect candidate

solutions into a single interval. We can then verify that the width of this in-

terval tends to zero as the algorithm iterates. If we expect a finite set of global

minimizers, then a reasonable heuristic approach is to aggregate solutions,

and pick a point in each aggregated region as a global minimizer. Such an

aggregated region should be small enough in width and satisfy other accep-

tance criteria that increase confidence that it contains a global minimizer.

4 Example: Approximating Implicit Curves

An implicit curve is the solution to a constraint system F(x) = 1, x 2 X �

Rn , such that the solution forms a 1D manifold. Implicit curves are ex-

tremely useful in geometric modeling, especially for CSG and trimming op-

erations on parametrically described shapes. They can represent, for exam-

ple, the intersection of two parametric surfaces in R 3 , or the silhouette edges

of a parametric surface in R 3 with respect to a given view.

The robustness of the algorithm presented here is superior to local meth-

ods such as [TIMM77,BAJA88]. Timmer’s method, for example, separates

implicit curve approximation into a hunting phase, where intersections of

the implicit curve with a preselected grid are computed, and a tracing phase,

where the curve inside each grid cell is traced to determine how to connect

the intersections.

The new algorithm computes points on the implicit curve using Algo-

rithm 3.1, guaranteeing a bound on the result. This method is superior to

8If all candidate intervals are rejected, then no feasible points exist in the original region, so f �

does not exist.
9A sufficientcondition is the existenceof a sequenceof points in the interior of the feasible domain

that converges to a global minimizer [RATS88].

Figure 3: Implicit curve approximation – The figure on the left shows an

implicit curve satisfying the algorithm’s assumptions. It consists of three

segments: two closed segments, and one segment intersecting the boundary

of the interval of consideration. The figure on the right shows an approxima-

tion of the implicit curve. In this case, the algorithm produces three linked

lists of points as output, one for each segment of the implicit curve.

local methods, such as Newton iteration, which are not guaranteed to con-

verge. Timmer’s method also fails to find a disjoint segment of the curve if

it lies completely within one grid cell, while the proposed algorithm uses a

global parameterizability criterion that subdivides parameter space until no

curve segment can be lost. The algorithm is similar to the one described in

[SUFF90], but differs in three respects: it uses this global parameterizabil-

ity criterion, it handles multivariate implicit curves, and it incorporates an

approximation quality metric.

4.1 An Implicit Curve Approximation Algorithm

The following are inputs to the approximation algorithm:

1. an interval X 2 I n , called the interval of consideration, in which to

approximate the implicit curve.

2. an inclusion function 2F(Y), Y 2 I (X) for the constraint system defin-

ing the implicit curve.

3. an inclusion function 2A(Y), Y 2 I (X), called the approximation ac-

ceptance inclusion function. This inclusion function tells when an in-

terval Y is small enough that each segment of the implicit curve it con-

tains can be approximated by a single interpolation segment between a

pair of solution points.

The algorithm works by subdividing the region X into subregions, called

proximate intervals, that contain the implicit curve, satisfy the approxima-

tion acceptance inclusion function, and allow simple computation of the lo-

cal topology of the curve. The algorithm makes the following assumptions:

1. The solution to the constraint system F(x) = 1 is a continuous, 1D

manifold. This implies that the solution contains no self-intersections,

isolated singularities, or solution regions of dimensionality greater than

1. It further implies that each disjoint curve segment of the solution is

either closed or has endpoints at the boundary of the region X.

2. The intersection of the solution curve with a proximate interval’s

boundaries is either empty or a finite collection of points, not a 1D

manifold. This assumption is unimportant for implicit curves with no

segments entirely along the parametric axes. When the implicit curve

does have such segments, the constraint system must be reposed (of-

ten simply by a linear transformation of the parametric coordinates) as

discussed in [SNYD92b].

Under these assumptions, each point on the implicit curve is linked to two

neighbors, or possibly a single neighbor if the point is on the boundary of X.

The output of the approximation algorithm is a list of “curves”, where each

curve is a linked list of points on a single, disjoint segment of the implicit

curve, as shown in Figure 3.

Algorithm 4.1 (Implicit Curve Approximation)

1. Subdivide X into a collection of proximate intervals bounding the

implicit curve and satisfying the approximation acceptance inclu-

sion function. This can be accomplished using Algorithm 3.1. Fig-

ure 4 shows an example of a collection of proximate intervals.

2. Check each proximate interval for global parameterizability. The

implicit curve contained in a proximate interval Y is called globally

parameterizable in a parameter i if there is at most one point in Y on

the curve for any value of the i-th parameter (see Figure 5). If the

implicit curve is not globally parameterizable in Y for any parameter,

then Y is recursively subdivided and tested again.

3. Find the intersections of the implicit curve with the boundaries of

each proximate interval, using Algorithm 3.1. Assumption 2 implies

that this intersection will be empty or a finite collection of points.

4. Ensure that the boundary intersections are disjoint in the global

parameterizability parameter. Let i be the global parameterizability

parameter for a proximate interval Y, computed from Step 2. This step

checks that intersections of the implicit curve with Y’s boundary are

non-overlapping in coordinate i, as shown in Figure 6, so that they can

be unambiguously sorted in increasing order of coordinate i.

If Y’s boundary intersections are not disjoint in parameter i, Y is recur-

sively subdivided and retested.

5. Compute the connection of boundary intersections in each proxi-

mate interval. If an interval Y contains no boundary intersections, it

can be discarded, because the global parameterizability condition im-

plies that the solution cannot be a closed curve entirely contained in

Y. Nor can the solution be a curve segment that does not intersect Y’s

boundary, by Assumption 1. If Y contains a single boundary intersec-

tion, then the solution is either tangent to a boundary of Y or passes

through a corner of Y, but does not intersect the interior of Y.

If Y contains more than one boundary intersection, the boundary inter-

sections are sorted in order of the global parameterizability parameter i.

For each pair of boundary intersections adjacent in parameter i, Algo-

rithm 3.1 is used to see if the solution curve intersects the i-th parameter

hyperplane midway between the two boundary intersections, as shown

in Figure 7. If so, the boundary intersections are connected in the local

curve topology linked list.

6. Find the set of disjoint curve segments comprising the implicit

curve. After the implicit curve has been traced inside of each proxi-

mate interval, the list of connected boundary intersections is traversed,

using the following algorithm

let S be the set of boundary intersections

while S is nonempty

remove an intersection point P from S

find and remove all points Q in S that are

(indirectly) connected to P

associate P and the set Q with a new curve

endwhile

We note that in accumulating the set of points on a particular curve

using this algorithm, if a point P 0

2 Q is eventually found such that

P = P 0 then the curve is closed. Otherwise, the curve has two endpoints

on the boundary of X by Assumption 1.

Step 1 of the algorithm combines the constraint inclusion with the ap-

proximation acceptance inclusion to create an initial collection of proximate

intervals bounding the implicit curve (subproblem 1 in Section 3.1.2). Step 2

ensures that each proximate interval satisfy a global parameterizability cri-

terion. The appendix presents a theorem identifying conditions for global

parameterizability, computable with interval techniques already discussed.

This theorem pertains to the special case of a system of n � 1 continuously

differentiable equality constraints in n parameters. We have also developed

a more general but heuristic test for global parameterizability, discussed in

[SNYD92b].

Step 3 of the algorithm computes the intersections of the implicit curve

with the boundary of each proximate interval. Algorithm 3.1 is used with the

original constraint inclusion, 2F, and an initial region formed by one of the

2n (n � 1)-dimensional hyperplanes bounding the proximate interval. For

each boundary hyperplane, Algorithm 3.1 searches for all the constraint sys-

tem’s solutions, producing a set of intervals bounding the solutions, called

boundary intersection intervals. Boundary intersection intervals that are

shared along edges or corners of contiguous proximate intervals should be

merged, as discussed in [SNYD92b].

Figure 4: Collection of proximate intervals bounding an implicit curve – In

these examples, the constraint system is given by the equation

x2 + y 2 + cos (2�x) + sin (2�y) + sin (2�x2) cos(2�y2) = 1

The interval of consideration is [�1:1; 1:1]� [�1:1; 1:1]. The approxima-

tion acceptance inclusion function for the left example simply requires that

the width of the parameter space interval should be less than 0.2, while that

on the right guarantees the global parameterizability of the solution in each

interval.

I. Examples Globally Parameterizable in x

II. Examples Not Globally Parameterizable in x

III. Examples Not Allowed by Assumptions

Figure 5: Global parameterizability – The figure illustrates some of the pos-

sible behaviors of an implicit curve in an interval.

Steps 4 and 5 link boundary intersection intervals that are connected by

the same segment of the implicit curve. Boundary intersection intervals are

sorted in the global parameterizability parameter, and each pair of adjacent

intersections is tested. The test uses Algorithm 3.1 to discover whether the

implicit curve intersects a hyperplane midway between the pair of inter-

sections. This application of the constraint algorithm need only ascertain

whether a solution exists; the location of the intersection point is not re-

quired. On the other hand, the intersection point can be used to better ap-

proximate the implicit curve’s behavior between the boundary intersections,

at little extra computational cost.

Finally, after all proximate intervals have been examined, Step 6 asso-

ciates each of the boundary intersection intervals with a disjoint segment of

the implicit curve. A point inside each of the boundary intersection intervals

should be chosen to represent the actual point of intersection of the proxi-

mate interval’s boundary with the implicit curve. This point can be chosen

arbitrarily (e.g., midpoint of the interval) or computed using a local iterative

technique such as Newton’s method.

We note that an algorithm similar to Algorithm 4.1 can be used to generate

approximations of implicit surfaces [SNYD92a]. This algorithm also uses

the global parameterizability criterion described in the appendix, for the case

A B

p

q

r

s

p

q

r

s

Figure 6: Boundary intersection sortability – Figure A illustrates a 2D inter-

val containing four boundary intersections that are disjoint in the x parame-

ter (horizontal axis). They can therefore be sorted in x, yielding the ordering

p; q; r; s. In figure B, boundary intersections q and r are not disjoint in x (the

dashed line shows a common x coordinate).

I. Boundary Intersections of an Implicit Curve

II. Eight Cases of Implicit Curve Behavior

III. Not Allowed by Global Parameterizability

Figure 7: Global parameterizability and the linking of boundary intersec-

tions – In this figure, we assume an implicit curve defined in R 2 is globally

parameterizable in x in an interval. The implicit curve has four intersections

with the interval’s boundary, as shown in I. Because of global parameteriz-

ability and the curve approximation algorithm’s assumptions, there are only

eight possible ways the implicit curve can connect the boundary intersec-

tions, as shown in II. The possibilities shown in III are not globally param-

eterizable in x, and are therefore excluded. To disambiguate between these

eight cases, we need only see if the implicit curve intersects the x hyperplane

(dashed vertical line in I) between each pair of adjacent boundary intersec-

tions.

of a 2D manifold rather than a 1D manifold.

5 Results

Figures 8 through 11 illustrate the results of the interval analysis algorithms.

Running times for the examples ranged from about 5 seconds for the compu-

tation of the minimum distance between two parametric surfaces (Figure 11)

to several minutes for the CSG example (Figure 8) on a HP9000 Series 835

Workstation.

6 Conclusions

We have shown how a variety of important problems in computer graph-

ics can be solved using the technique of interval analysis. These problems

include ray tracing, computation of toleranced polygonal decompositions,

detection of collisions, computation of CSG operations, approximation of

silhouette curves, and many others. We have described two general algo-

rithms, constraint solution and constrained minimization, which can solve

these problems either directly, or when used in a higher level algorithm such

as the implicit curve approximation algorithm of Section 4.

The advantage of the approach advocated here is twofold. Robust so-

lution of computer graphics problems is achieved because interval analysis

controls numerical error. A simple implementation is achieved because only

two basic algorithms are necessary, which require inclusion functions for

functions relevant to the problem. Definition of inclusion functions is not

difficult; natural interval extensions, a particular type of inclusion function,

can be defined by implementing an inclusion function method for each op-

erator used in the relevant functions (e.g., the arithmetic operators and the

cosine operator of Section 2.3). Mean value forms, another type of inclusion

function, can be defined using natural interval extensions and a derivative

operator. An entire, very powerful geometric modeling system can be built

upon a set of operators each having an inclusion method, such as the system

described in [SNYD92a,SNYD92b].

Acknowledgments

I would like to thank Al Barr for his support and encouragement of the pub-

lication of this research. Al Barr and Ronen Barzel have provided many

helpful comments and suggestions. This work was funded, in part, by IBM,

Hewlett-Packard, and the National Science Foundation.

References

[ALEF83] Alefeld, G., and J. Herzberger, Introduction to Interval Computations,

Academic Press, New York, 1983.

[BAJA88] Bajaj, C., C. Hoffman, J. Hopcroft, and R. Lynch, “Tracing Surface In-

tersections,” Computer Aided Geometric Design, 5, 1988, pp. 285-307.

[KALR89] Kalra, Devendra, and Alan H. Barr, “Guaranteed Ray Intersections with

Implicit Surfaces,” Computer Graphics, 23(3), July 1989, pp. 297-304.

[MITC90] Mitchell, Don, “Robust Ray Intersections with Interval Arithmetic,” Pro-

ceedings Graphics Interface ‘90, May 1990, pp. 68-74.

[MITC91] Mitchell, Don, “Three Applications of Interval Analysis in Computer

Graphics,” Course Notes for Frontiers in Rendering, Siggraph ‘91.

[MOOR66] Moore, R.E., Interval Analysis, Prentice Hall, Englewood Cliffs, New

Jersey, 1966.

[MOOR79] Moore, R.E., Methods and Applications of Interval Analysis, SIAM,

Philadelphia.

[MOOR80] Moore, R.E., “New Results on Nonlinear Systems,” in Interval Math-

ematics 1980, Karl Nickel, ed., Academic Press, New York, 1980, pp.

165-180.

[MUDU84] Mudur, S.P., and P.A. Koparkar, “Interval Methods for Processing Geo-

metric Objects,” IEEE Computer Graphics and Applications, 4(2), Feb,

1984, pp. 7-17.

[RATS88] Ratschek, H. and J. Rokne, New Computer Methods for Global Optimiza-

tion, Ellis Horwood Limited, Chichester, England, 1988.

[SEGA90] Segal, Mark, “Using Tolerances to Guarantee Valid Polyhedral Modeling

Results,” Computer Graphics, 24(4), August 1990, pp. 105-114.

[SNYD91] Snyder, John, Generative Modeling: An Approach to High Level Shape

Design for Computer Graphics and CAD, Ph.D. Thesis, California Insti-

tute of Technology, 1991.

[SNYD92a] Snyder, John, “Generative Modeling: A Symbolic System for Geometric

Modeling,” to be published in Siggraph ‘92.

[SNYD92b] Snyder, John, Generative Modeling for Computer Graphics and CAD:

Symbolic Shape Design Using Interval Analysis, to be published by Aca-

demic Press, summer 1992.

[SUFF90] Suffern, Kevin G., and Edward Fackerell, “Interval Methods in Computer

Graphics,” Proceedings of Ausgraph ‘90, Melbourne, Australia, 1990, pp.

35-44.

[TIMM77] Timmer,H.G., Analytic Backgroundfor Computationof Surface Intersec-

tions, Douglas Aircraft Company Technical Memorandum CI-250-CAT-

77-036, April 1977.

[TOTH85] Toth, Daniel L., “On Ray Tracing Parametric Surfaces,” Computer

Graphics, 19(3), July 1985, pp. 171-179.

[VONH87] Von Herzen, Brian P. and Alan H. Barr,“Accurate Sampling of Deformed,
Intersecting Surfaces with Quadtrees,” Computer Graphics, 21(4), July

1987, pp. 103-110.

[VONH89] Von Herzen, Brian P., Applications of Surface Networks to Sampling

Problems in Computer Graphics, Ph.D. Thesis, California Institute of

Technology, 1989.

[VONH90] Von Herzen, B., A.H. Barr, and H.R. Zatz, “Geometric Collisions for

Time-Dependent Parametric Surfaces,” Computer Graphics, 24(4), Au-

gust 1990, pp. 39-48.

Appendix – A Robust Test for Global Parameteriz-

ability

Consider an r-dimensional manifold defined as the solution to a system of n� r equa-

tions in n parameters (r 2 0; 1; . . . ; n� 1):

f1(x1; x2; . . . ; xn) = 0

.

.

.
fn�r(x1; x2; . . . ; xn) = 0

Given a set of r parameter indices, A = k 1; k2; . . . ; kr , and an interval X 2 I n,

we define a subinterval of X over A as a set depending on r parameters (y 1; y2; . . . ; yr),

yi 2 Xki
, defined by

x 2 X
xi = y j if i = k j 2 A

xi 2 Xi otherwise

Thus, a subinterval is an interval subset of X, r of whose coordinates are a specified

constant, and the rest of whose coordinates are the same as in X.

The solution to a system of n � r equations in n parameters is called globally pa-

rameterizable in the r parameters indexed by A over an interval X if there is at most

one solution to the system in any subinterval of X over A. Put more simply, the system

of equations is globally parameterizable if r parameters can be found such that there is

at most one solution to the system for any particular value of the r parameters in the

interval.

We define J
fk1 k2 kr

(X), called the interval Jacobian submatrix, as an (n �

r) (n� r) interval matrix given by

J
fk1 k2 kr

(X) �
fi

xj

(X)

j=fk1 k2 kr

For an n n interval matrix M, we write det M = 0 if there exists no matrix

M 2 M such that det M = 0. The following theorem guarantees the global pa-

rameterizability of the solution in an interval X (for a proof, see [SNYD92b]).

Theorem A.1 (Interval Implicit Function Theorem) Let the constraint functions

fi (x), i = 1; 2; . . . ; n � r be continuously differentiable. Let a region X 2 I n ex-

ist such that

det J
fk1 k2 kr

(X) = 0

Then the solution to the system of equations f i(x) = 0 is globally parameterizable in

the r parameters indexed by k 1; k2; . . . ; kr over X.

In the case of approximation of a 1D solution manifold, r = 1; i.e., a system of n�1

equations in n variables is to be solved. The theorem guarantees that if, in an interval

X, we can find n� 1 parameters such that

det J
fk (X) = det

fi

xj j=k

= 0

then the solution manifold is globally parameterizable in X over the parameter x k , and

thus satisfies the constraint of Step 2. We can verify that

det J
fk (X) = 0

by forming an inclusion function for the determinant of any of the n interval Jacobian

submatrices using the interval arithmetic presented in Section 2.2.

Figure 8: CSG Example – Algorithm 4.1 was used to find the curve of intersection between a bumpy sphere surface and a cylinder

surface. The output of the algorithm was used in a parametric trimming operation, resulting in the subtraction of the cylinder

from the bumpy sphere on the left, and the subtraction of the bumpy sphere from the cylinder on the right.

Figure 9: Silhouette Edge Detection Example – The figures show the results of the implicit curve approximation algorithm to

approximate the silhouette curve of a parametric surface, S(u v), with respect to a given (in this case, orthographic) view. The

implicit curve is the solution in two variables, u and v, of the equation E (S
u

S
v
) = 0 where S(u v) is the parametric surface

and E is the viewing direction.

Figure 10: Polygonal Decomposition Example – The figure on the left shows polygonal decomposition based on uniform sampling

in parameter space. On the right, the same surface has been decomposed using a slightly smaller number of triangles, using the

constrained partitioning algorithm, which subdivides the parameter space (shown below the two surfaces) until the maximum

variation in the surface normal is below a threshold. Polygonal artifacts on the highly curved projection are much reduced.

Figure 11: Minimum Distance Computation Example – The results of the minimization algorithm to find the minimum distance

between two parametric surfaces is displayed. The yellow line connects the points on the two surfaces closest to each other. In

this case, a single global minimizer was found for the unconstrained minimization problem of Formula 2 in Section 1.2.

