

Texture Mapping Progressive Meshes
Pedro V. Sander John Snyder Steven J. Gortler Hugues Hoppe

Harvard University Microsoft Research Harvard University Microsoft Research
http://cs.harvard.edu/~pvs johnsny@microsoft.com http://cs.harvard.edu/~sjg http://research.microsoft.com/~hoppe

Abstract
Given an arbitrary mesh, we present a method to construct a
progressive mesh (PM) such that all meshes in the PM sequence
share a common texture parametrization. Our method considers
two important goals simultaneously. It minimizes texture stretch
(small texture distances mapped onto large surface distances) to
balance sampling rates over all locations and directions on the
surface. It also minimizes texture deviation (“slippage” error
based on parametric correspondence) to obtain accurate textured
mesh approximations. The method begins by partitioning the
mesh into charts using planarity and compactness heuristics. It
creates a stretch-minimizing parametrization within each chart,
and resizes the charts based on the resulting stretch. Next, it
simplifies the mesh while respecting the chart boundaries. The
parametrization is re-optimized to reduce both stretch and devia-
tion over the whole PM sequence. Finally, the charts are packed
into a texture atlas. We demonstrate using such atlases to sample
color and normal maps over several models.
Additional Keywords: mesh simplification, surface flattening, surface
parametrization, texture stretch.

1. Introduction
The progressive mesh (PM) representation encodes an arbitrary
mesh as a simple base mesh M0 and a sequence of n refinement
operations called vertex splits [10]. It defines an array {M0…Mn}
of level-of-detail (LOD) approximations, and supports geomorphs
and progressive transmission [1]. Unlike multiresolution frame-
works based on subdivision, the meshes in a PM have irregular
connectivities that can accurately model sharp features (e.g.
creases and corners) at all scales.
One challenge in the PM framework is dealing with texture maps.
Hardware rasterization features (including bump maps, normal
maps, and multitexturing) let fine detail be captured in texture
images parametrized over the mesh. Sources for textures include
sampling detailed scanned meshes, evaluating solid textures, ray
tracing, and 3D painting. In this paper, we address the problem of
parametrizing texture images over all meshes in a PM sequence.
A single unfolding of an arbitrary mesh onto a texture image may
create regions of high distortion, so generally a mesh must be
partitioned into a set of charts. Each chart is parametrized by a
region of a texture domain, and these parametrizations collec-
tively form an atlas (see Figure 4c). For instance, several
schemes [2][22][25][27] simplify a mesh and then construct a
texture image chart over each simplified face by sampling attrib-
utes (e.g. normals) from the original mesh.
For a PM, one might then consider re-using chart images defined
on faces of M0 for all meshes M1…Mn. However, the problem is
that a PM is generally not chart-compliant, in that its vertex splits
can change the chart topology when applied indiscriminately near
chart boundaries, thereby forcing parametric discontinuities. For

example, the vertex split shown on
the right changes the adjacency of
the three colored charts, resulting in
the discontinuous texture. Fortu-
nately, it is possible to construct a
single atlas parametrization for the entire PM sequence. Chart-
compliance can be obtained by first defining the charts on the
original mesh, and then constraining a simplification sequence to
comply with those chart boundaries [3].
Therefore, our problem is the following: given an arbitrary mesh,
parametrize it onto a texture atlas, and create a PM sequence
compliant with the atlas charts. In doing so, we have two goals:
- Minimize texture stretch: The parametrization determines
sampling density over the surface, but is constructed before
knowing what texture map(s) will be applied. Therefore, we seek
a balanced parametrization rather than one that samples finely in
some surface regions or directions while undersampling others.
A conservative, local measure of how finely the parametrization
samples the texture signal is the larger singular value of its Jaco-
bian, which measures how much a sampling direction in the
texture domain is stretched on the mesh surface in the worst case.
By minimizing the largest texture stretch across all domain
points, we create a balanced parametrization where no domain
direction is too stretched and thus undersamples its corresponding
mapped 3D direction. (See Figure 1 and Figure 6.)
- Minimize texture deviation: Traditional mesh simplification
measures geometric error by approximating closest-point (Haus-
dorff) distance. For textured surfaces, it is more appropriate to
use the stricter texture deviation error, which measures geometric
error according to parametric correspondence [3]. For a PM,
texture deviation can be graphed as a function of mesh complex-
ity (Figure 3). Our goal is to lower this graph curve.
Recall that the motivation for partitioning the surface into charts
is to reduce texture stretch. However, the presence of chart
boundaries hinders simplification quality since chart-compliance
requires that these boundaries appear as edges in all meshes
including M0. In the extreme, if each face of Mn is made its own
chart, stretch is zero, but no simplification can occur. Hence,
there exists a trade-off between texture stretch and deviation.
Minimizing stretch and deviation is a difficult nonlinear problem
over both discrete and continuous variables. The discrete vari-
ables are the mesh partition and the edge collapse sequence. The
continuous variables are the texture coordinates of the vertices.
Our approach is to set the discrete variables early, using heuris-
tics, and then proceed to optimize the continuous variables.
Specifically, our method has the following steps:
(1) partition original mesh into charts (considering geometry)
(2) form initial chart parametrizations (minimizing stretch)
(3) resize chart polygons (based on stretch)
(4) simplify mesh (minimizing texture deviation, creating PM)
(5) optimize parametrization (stretch & deviation over all PM)
(6) pack chart polygons (forming texture atlas)
(7) sample texture images (using atlas parametrization)

The contributions of our work are:

• an algorithm for partitioning a mesh into charts, which consid-
ers simplification quality and does not alter the mesh.

• a texture stretch metric that uniformly penalizes undersampling
everywhere over the surface.

• an algorithm for minimizing this stretch metric in the L2 and
L∞ norms, which can be used for both static meshes and PMs.

• a scheme for optimizing the parametrization to minimize both
texture stretch and texture deviation at all PM levels, with ap-
propriate weighting of each mesh in M0…Mn.

• the first automatic solution for creating a PM representation
with a consistent surface parametrization for all LODs.

2. Previous work
Mesh partitioning into charts. Several authors have proposed
methods for parametrizing meshes by partitioning into charts.
Krishnamurthy and Levoy [17] describe an interactive system in
which the user manually lays out chart boundaries by tracing
curves. Maillot et al. [21] partition mesh faces according to a
bucketing of face normals. Eck et al. [4] use a Voronoi-based
partition. These last two algorithms make little effort to adapt
charts to surface geometry, so the chart boundaries can hinder
simplification, leading to poor LOD approximations.
MAPS [18] and Normal Meshes [8] map edges of the simplified
base domain back to the original mesh. While the resulting charts
adapt to surface geometry, their boundaries cut across faces of
original mesh, requiring addition of new vertices and faces. For
the applications in [8][18], these additional vertices are only
temporary, because the mesh geometry is subsequently resampled.
However, our application is to generate a PM from a user-
specified mesh, whose connectivity is often carefully optimized,
so the imposition of new vertices is a drawback.
Chart parametrization. Several schemes have been proposed to
flatten surface regions to establish a parametrization. The
schemes typically obtain the parametrization by minimizing an
objective functional. The main distinction between the function-
als is how they measure the distance of the parametrization from
an isometry (a mapping preserving lengths and angles).
Maillot et al. [21] base their metric on edge springs of nonzero
rest length, where rest length corresponds to edge length on the
surface. To ensure that the parametrization is 1-to-1, (i.e., to
avoid parametric “buckling”, also called “face flipping”), they add
an area-preservation term to the metric. When the texture domain
boundary is fixed as in our application, it is unclear how edge
rest-lengths should be scaled. More importantly, the weighting
between the edge springs and the area-preservation term must be
adjusted to produce an embedding.
Eck et al. [4] propose the harmonic map, which weights edge
springs non-uniformly. The weights can sometimes be negative,
in which case an embedding is not guaranteed. Floater [5] pro-
poses a similar scheme with a different edge-spring weighting that
guarantees embedding for convex boundaries. For either method,
the parametrization can be found by solving a linear system.
Lévy and Mallet [19] combine orthogonality and isoparametric
terms in their metric. To solve the resulting nonlinear optimiza-
tion, they iteratively fix one texture component (s or t) and solve
for the other using a linear optimization. As in [20], a term is
added which must be sufficiently weighted to guarantee an em-
bedding.

Hormann and Greiner [11] propose the MIPS parametrization,
which roughly attempts to preserve the ratio of singular values
over the parametrization. However, the metric disregards abso-
lute stretch scale over the surface, with the result that small
domain areas can map to large regions on the surface.
To allow all meshes in the PM to share a common texture map, it
is necessary that we create domains with straight boundaries
between chart corners, unlike [11][19][21].
Our main contribution is to directly optimize the two relevant
goals for texture mapping PMs: minimal texture stretch and
minimal texture deviation. Our novel stretch metric attempts to
balance sampling rates everywhere on the surface, unlike previous
techniques.
Appearance-preserving simplification. Cohen et al. [3] intro-
duce texture deviation as the appropriate measure of geometric
accuracy when simplifying textured meshes. The texture devia-
tion between a simplified mesh Mi and the original mesh Mn at a
point pi ∈ Mi is defined as || pi – pn || where pn is the point on Mn
with the same parametric location in the texture domain. Cohen
et al. track texture deviation conservatively by storing a bounding
error box at each mesh vertex. They demonstrate results on
parametric surfaces already organized into charts.
We begin with an unparametrized mesh, and seek to form an atlas
parametrization that specifically minimizes texture deviation and
stretch over all meshes in a PM.

3. Texture stretch metric
To optimize a parametrization’s ability to balance frequency
content everywhere over the surface in every direction, we define
a new “texture stretch” metric on triangle meshes.

Given a triangle T with 2D texture coordinates 1 2 3, ,p p p ,
(,)i i ip s t= , and corresponding 3D coordinates 1 2 3, ,q q q , the

unique affine mapping () (,)S p S s t q= = is
 ()2 3 1 3 1 2 1 2 3 1 2 3() , , , , , , , ,S p p p p q p p p q p p p q p p p= + +
where , ,a b c denotes area of triangle abc. Since the mapping is
affine, its partial derivatives are constant over (s,t) and given by

() () ()() ()
() () ()() ()

()() ()()()

1 2 3 2 3 1 3 1 2

1 3 2 2 1 3 3 2 1

1 2 3 2 1 3 1 3 1 2 1

2

2

, , 2

s

t

S S s q t t q t t q t t A

S S t q s s q s s q s s A

A p p p s s t t s s t t

= ∂ ∂ = − + − + −

= ∂ ∂ = − + − + −

= = − − − − −

The larger and smaller singular values of the Jacobian [],s tS S are
given respectively by

()
()

2 2

2 2

1 2 () () 4 max singular value

1 2 () () 4 min singular value

a c a c b

a c a c b

Γ

γ

= + + − +

= + − − +

where ss SSa ⋅= , ts SSb ⋅= , and tt SSc ⋅= . The singular
values Γ and γ represent the largest and smallest length obtained
when mapping unit-length vectors from the texture domain to the
surface, i.e. the largest and smallest local “stretch”. We define
two stretch norms over triangle T :

 () ()2 2 2() 2 2, ()L T a c L TΓ γ Γ∞= + = + = .

The norm L2(T) corresponds to the root-mean-square stretch over
all directions in the domain, and the worst-case norm L∞(T) is the
greatest stretch, i.e. the maximum singular value. Note that both
L2(T) and L∞(T) increase to infinity as the parametrization of T

becomes degenerate, since its parametric area A drops to zero. If
the triangle T flips parametrically (i.e. if A becomes negative), we
define both L2(T) and L∞(T) to remain infinite.
We define two analogous norms over the surface of the entire
mesh { }iM T= :

()22 2() () () ()

() max ()

i i i

i

i i

i

T M T M

T M

L M L T A T A T

L M L T∞ ∞

∈ ∈

∈

′ ′=

=

∑ ∑

where ()iA T′ is the surface area of triangle iT in 3D. The L2 norm
measures the overall ability of the parametrization to support
high-frequency textures, while L∞ measures its worst-case ability.
We normalize stretch values by scaling the texture domain so that
its area equals the surface area in 3D. Thus, 1.0 is a lower bound
for either norm on any parametrization. Alternately, stretch can
be normalized without explicitly scaling the texture domain by
multiplying with the factor

() ()i i

i iT M T M
A T A T

∈ ∈
′∑ ∑ .

To minimize our nonlinear metrics L2(M) and L∞(M), we begin
with a uniform-edge-spring solution, and then perform several
optimization iterations. Within each iteration, we consider verti-
ces in decreasing order of neighborhood stretch. For each vertex,
we perform a line search minimization along a randomly chosen
search direction in the (s,t) parametric domain. Because all other
vertices are held fixed, the stretch metric only needs local compu-
tation over the neighborhood. Since the metric is infinite for
degenerate or flipped triangles, the line search is naturally con-
strained within the kernel of the vertex’s neighborhood. In
successive iterations, we gradually decrease the convergence
tolerance in the 1D line search using the schedule 1/i where i is
the iteration number. For the L∞ optimization, we obtain even
better results by using our L2 solution as its starting point.
Figure 1 compares our metric with alternatives. For each metric,
we used the same optimization procedure described above. In all
cases, boundary vertices were fixed by arc-length. For each
parametrization, we created a 128×128 image in the texture
domain by sampling a procedural 3D checkered pattern on the
parametrized surface. For improved filtering, we used 4x4 super-
sampling. As can be seen in the resulting textured models,
parametrizations optimized using our metrics are better at captur-
ing high-frequency detail everywhere over the surface. In (b-d),
note the loss of resolution on the ears where stretch error is high.2
The area-preserving parametrization in (e) minimizes the Maillot
buckling term only. Although it has better spatial distribution
than (b-d), note how it undersamples certain directions, causing
directional blur on the chin, sides, and ears.

1 The harmonic map [4], not shown, is qualitatively similar to Floater [5]

and has slightly worse stretch, L2=2.28, L∞=10.07.
2 For the Maillot result (Figure 1d), we set the factor α weighting between

edge-springs and area-preservation to 0.5. Since the relative scale of 2D
to 3D edge lengths is important in this metric, we uniformly scale the
2D domain to have the same area as the 3D chart. Our reported stretch
norms are infinite because the minimum solution exhibits buckling.
Since our optimization method prevents face flipping, the result is pa-
rametrically degenerate triangles having infinite stretch.

(a) exact

(b) Floater [5] L2=2.26 L∞=9.86

(c) MIPS [11] L2=2.31 L∞=7.46

(d) Maillot [20] L2=∞ L∞=∞

(e) area-preserving L2=1.57 L∞=4.19

(f) our L2 stretch L2=1.22 L∞=2.13

(g) our L∞ stretch L2=1.28 L∞=1.65

Figure 1: Chart parametrization comparison.1

4. Our PM parametrization scheme
In this section we present the steps of our PM parametrization
scheme. We first introduce some definitions and assumptions.
Let a chart corner be any vertex adjacent to 3 or more charts, and
let a chart boundary be the path of edges separating charts be-
tween two corners. We define the neighborhood of a vertex as the
ring of faces adjacent to the vertex.
Our PM is based on the half-edge collapse opera-
tion (v1 , v2) v1 which affects the neighborhood
of v2 as shown on the right and leaves the position
and attributes of v1 unchanged [16]. We prefer the
half-edge to the full-edge collapse to avoid writes
to the vertex buffer during runtime LOD changes.
Therefore, (s,t) texture coordinates at any vertex
must be the same at all LOD levels. Since a vertex
on a chart boundary has different (s,t) coordinates
on each chart, these must be stored at the corners of
mesh faces [10].
To create a texture atlas over a PM, we must enforce the follow-
ing constraints:
(1) mesh faces cannot span more than one chart, since it is im-
practical to specify and render disjoint pieces of texture over any
single triangle.
(2) chart boundaries must be straight in the parametric domain,
since each chart boundary is generally simplified to a single edge
in the PM base mesh.
These constraints restrict the partition of the mesh into charts
(Section 4.1) and the mesh simplification sequence (Section 4.4).

4.1 Partition mesh into charts
The first step is to partition the mesh into a set of charts: regions
with disk-like topology. Ideally one could simultaneously search
over the discrete space of possible chart decompositions and the
continuous space of parametrizations allowed by each decomposi-
tion. Clearly this is intractable. In our system we first partition
the mesh using a greedy chart-merging approach. It is similar to
simplification schemes based on the greedy growth of “super-
faces” [9][15], and to the independent work by Garland et al. [6].
Initially, each face is assigned to be its own chart. For each pair
of adjacent charts, we consider the operation of merging the two
charts into one, and enter this candidate operation into a priority
queue according to a computed cost. As in [6], the merge opera-
tion is assigned a cost that measures both its planarity and
compactness. We measure planarity as the mean-squared distance
of the chart to the best-fitting plane through the chart, defined as a
continuous surface integral (unlike [6] which evaluates it only at
the vertices). We measure compactness simply as the squared
perimeter length.
We iteratively apply the merge operation with lowest cost, and
update costs of neighboring candidate merge operations. The
process ends when the cost exceeds a user-specified threshold.
A chart merge operation is disallowed if it results in any chart
with fewer than 3 corners. It is also disallowed if the boundary
between the new chart and any adjacent chart consists of more
than one connected component (e.g. one isolated vertex and one
path of edges). This constraint also guarantees that charts remain
homeomorphic to discs.
Once the charts are formed, they define the set of chart corner
vertices. Note that these corner vertices in Mn must appear as

vertices in the base mesh M0 due to the constrained half-edge
collapses. Therefore, we would like each chart boundary to
closely align with the straight line segment between its adjacent
two corners, so as to not be a limiting factor in the simplification
quality. We straighten each boundary by computing a shortest
path over mesh edges, constrained not to intersect other chart
boundaries.
Results of the initial chart partition, and the subsequent boundary
straightening are shown in Figure 2. Note that chart boundaries
align with important features in the mesh.

Figure 2: Top row shows initial chart partitions, and bottom row
shows result of chart boundary optimization.

4.2 Form initial chart parametrizations
Once the chart boundaries are defined in Mn, we create an initial
parametrization of each chart onto a 2D polygon. We define the
2D polygon boundary to be a convex polygon with vertices on a
circle, where the length of each polygon edge is proportional to
the arc-length of the corresponding chart boundary in 3D, as
in [4]. We initially scale the polygon to have unit area. Within
each chart, we parametrize the interior vertices by minimizing the
L2(M) stretch metric, using the algorithm described in Section 3.

4.3 Resize chart polygons
Now that we have chart parametrizations on Mn, we determine
how much relative space each chart should be granted in the
texture domain. For each chart, we compute L2(Mn

chart), the rms
stretch over the chart, and use that value to uniformly resize the
chart while preserving its shape. We had hoped to use L∞(Mn

chart)
to resize the charts, but unfortunately there are a few triangles for
which the maximum stretch remains high. Although the relative
chart sizes have no effect on simplification (Section 4.4), they do
affect E(PM) in the final PM optimization (Section 4.5).

4.4 Simplify mesh
Given the initial chart parametrizations, we simplify the mesh to
define a PM. Our goal during simplification is to minimize
texture deviation. Our algorithm closely follows that of Cohen et
al. [3]. We select edge collapses that minimize texture deviation
by using a priority queue. To enforce chart compliance, we
disallow an edge collapse (v1,v2) v1 in Mi+1 Mi if vertex v2

v2

v1

v1

Mi+1

Mi

is a chart corner (to preserve corners), or if v2 is on a chart bound-
ary and edge (v1,v2) is not on a chart boundary (to preserve
boundary straightness). In addition, we also prevent the creation
of parametrically flipped or degenerate triangles.
To measure texture deviation for each candidate edge collapse,
rather than using conservative bounds as in [3], we use the fast
heuristic of measuring the incremental texture deviation
d(Mi+1,Mi) between the two meshes. (The heuristic is akin to the
“memoryless” error that has proven effective for geometric
simplification [20].) The maximum deviation
between Mi+1 and Mi is known to lie either at the
removed vertex v2 or at an edge-edge intersection
point in the parametric neighborhood (e.g. the red
points shown in the figure to the right). We con-
firmed empirically that the incremental deviation heuristic works
well by comparing to a slow simplification that orders edge
collapses using the true deviation error (between Mi and Mn).

4.5 Optimize chart parametrizations
Having determined the PM simplification sequence, we now re-
optimize the chart parametrizations to minimize stretch and
deviation on the entire sequence M0…Mn. Our nonlinear optimi-
zation algorithm follows the strategy of moving vertices of Mn
one-by-one in the parametric domain as in Sections 3 and 4.2, but
using a different objective function.
Our objective function is a weighted sum of the texture stretch
and deviation on all meshes M0…Mn:

E(PM) = Σi=0..n ψ(i) [λ L2(Mi)2 + (1 - λ) d(Mi,Mn)2 / A′ (Mn)]

where L2(Mi) is the normalized average stretch of Mi (Section 3)
computed using the resized charts from Section 4.3, d(Mi,Mn) is
its texture deviation, the parameter 0 ≤ λ ≤ 1 is used to weight
stretch error relative to deviation error, and ψ(i) is the relative
weight assigned to each LOD mesh in the sequence. Dividing by
the mesh surface area A′(Mn) makes the second term scale-
invariant like the first term.

We now introduce a model for setting the relative weight ψ(i)
assigned to each mesh Mi, consisting of two factors: usage and
scale. Depending on the application, other weighting schemes
could be used, without changing the optimization method.

• In LOD applications, coarser meshes are likely to be used
proportionately more often. For example, meshes with 10–100
faces are likely to be used more than those with 900–990 faces.
We believe that a reasonable model for usage probability is a
uniform distribution over a logarithmic scale of model com-
plexity, e.g. meshes with 10-100 faces are as equally likely as
meshes with 100-1000 faces. This distribution is obtained us-
ing the factor 1/|Mi| where |M| is the number of vertices in M.

• The fact that coarser meshes are typically used when the object
is farther away reduces the screen-space scale of their deviation
and stretch. For a smooth spherical surface, texture deviation
varies as 1 / |M|2. Since LOD algorithms attempt to maintain a
constant screen-space error, deviation and stretch in model
space should therefore be down-weighted for coarser mesh
meshes using the weighting factor |Mi|2 in ψ(i).

To optimize the texture coordinates of a given vertex v, our
optimization algorithm needs to repeatedly evaluate E. Comput-
ing E using the above sum over all meshes would be expensive.
Fortunately, the neighborhood of v changes only a few times
within the sequence of meshes, generally O(log |Mn|) times. Thus
we only need to consider E on each refinement neighborhood

Mi Mi+1 of which v is a member. For each vertex v, we gather
the relevant refinement neighborhoods as a list during a coarse-to-
fine preprocess traversal of the PM.
Since the refinement neighborhoods adjacent to a vertex v have an
approximately logarithmic distribution over the PM sequence, we
can account for the usage factor by summing the stretch and
deviation on these refinement neighborhoods. Therefore, we
weight the error over each such neighborhood by ψ ′ (i) = |Mi|2 to
account for the remaining scale factor.
The following pseudo-code gives an overview of our algorithm.
// Optimize parametrization over whole PM sequence.
procedure parametrize_pm()
 gather_refinement_neighborhoods() // coarse-to-fine traversal
 repeat
 v = some_vertex_in_mesh(Mn)
 optimize_vertex(v)
 until convergence

// Optimize the parametrization param(v) of vertex v
procedure optimize_vertex(vertex v)
 repeat
 vector dir = random_search_direction() // in 2D domain
 // perform line search minimization
 repeat
 select float t // e.g. using binary line search
 param(v) = param(v) + dir * t // perturb parametrization of v
 until error_over_PM(v) is minimized
 until convergence

// Sum of errors affected by param(v) in all meshes M0…Mn.
function error_over_PM(vertex v)
 error = 0
 for (vertex w in refinement_neighborhoods(v))
 error += error_over_neighborhood(w, v)
 return error

// Error due to v in neighborhood of w (where w is first introduced)
function error_over_neighborhood(vertex w, vertex v)
 return ψ’(level(w)) ∗
 [λ ∗ stretch_error(w, original_neighbors(w), v) +
 (1-λ) * deviation_error(w, original_neighbors(w), v) / A′(Mn)]

As in Section 4.4, we approximate the deviation error d(Mi,Mn)
with the incremental deviation error d(Mi,Mi+1). Because we
define our stretch metric to be infinite when a face is flipped in
the parameter domain, stretch minimization prevents parametric
flipping in all meshes. One final detail is that we also optimize
the parametrization of vertices along chart boundaries. Since
these vertices have texture coordinates in two adjacent charts, we
must consider the refinement neighborhoods in both charts simul-
taneously. Specifically, we must constrain the parametrizations to
remain on the boundaries, and optimize over shared barycentric
coordinates along the boundary to prevent “parametric cracks”.

4.6 Pack chart polygons
Since the optimization in Section 4.5 modifies the parametriza-
tion, we perform a final chart resizing step as in Section 4.3.
The next step is to pack these resized charts into a rectangular
texture image. In the context of texture mapping, various heuris-
tics have been presented for the special case of packing 3-sided
charts [2][22][25][27]. However, our chart boundaries can be
arbitrary polygons. The general problem is known as the NP-hard
pants packing problem [23].
We simplify the problem by conservatively approximating each
chart polygon with the least-area rectangle that encloses it. This
rectangle is found efficiently by considering each edge of the
polygon’s convex hull. Fortunately, our chart polygons are

reasonably shaped, so the rectangle approximation is not too
costly. We rotate the chart to align the long axis of the rectangle
with the vertical direction. The problem then becomes that of
rectangle packing, which is still NP-hard, but for which there exist
good heuristic approximations (e.g. [14][24]). We develop our
own simple heuristic, which works as follows.
We sort the rectangles by height. In order of decreasing height,
we place the rectangles sequentially into rows in alternating left-
to-right and right-to-left order as shown in Figure 4c [14].
Through binary search, we optimize over the texture width such
that the packing minimizes the area of the enclosing square.
When the desired texture sampling density is later determined, we
leave a one texel gap between adjacent charts. Section 5 reports
results of our chart packing efficiency.

4.7 Sample texture images
The packed charts define a texture atlas for the surface. We use
the atlas to sample attributes from the surface Mn into the texture
domain, at the 2D grid of texel locations. For improved filtering,
we supersample the attributes using a 4x4 box filter. Section 5
shows results of sampling colors and normals.
If the highest frequency f of the attribute function over the surface
mesh is known, the stretch-based scale of the texture atlas makes
it possible to estimate the required 2D grid sampling density.
With the charts resized as in Section 4.3, the 2D grid spacing
should be set no more than 1/(2f).
In general, schemes that pack multiple charts into a single texture
image may give rise to mip-mapping artifacts, since coarser mip-
map levels will average together
spatially disjoint charts. The most
immediate artifact is that chart
boundaries are revealed if the inter-
chart area is left unpainted (e.g.
black). To mitigate this, we apply a
pull-push algorithm [7] to fill-in
these unsampled regions with
reasonable values. As an example,
the effect on the atlas image from
Figure 4c is shown on the right.

5. Results
Figure 4 shows an example result, where the texture image cap-
tures pre-shaded colors from the original mesh Mn. Although we
only show the textured base mesh, the same texture atlas can of
course be used on all other meshes M1… Mn in the PM, as shown
on the accompanying video.
Figure 5 shows several mesh approximations in a PM sequence,
where the texture image captures a normal map. Because the PM
meshes can have irregular connectivities, they quickly converge to
good geometric approximations. Hence the figure shows LOD
meshes with relatively low face-counts, compared to the original
mesh of nearly 97,000 faces.
Figure 3 compares graphs of texture stretch and deviation for
meshes in a PM using various parametrization schemes. The
curve labeled “uniform” corresponds to uniform edge-spring
parametrization followed by simplification minimizing texture
deviation. (The harmonic [4] and Floater [5] parametrizations
typically have even greater stretch than the uniform parametriza-
tion.) The curve labeled “min-stretch param.” replaces the initial
parametrization with our scheme of Section 4.2. As is evident in
the graph, parametric stretch is reduced for the finest mesh Mn.

(This difference is often more significant as shown in Table 1.)
The curve may appear bumpy because stretch is ignored during
simplification. Finally, the curve labeled “min-stretch + optimiz.”
adds our parametrization optimization of Section 4.5. Note that it
improves stretch at lower LODs, while also improving texture
deviation over the whole range.
As demonstrated in Figure 6, ignoring texture stretch during
parametrization results in non-uniform surface sampling, which
becomes apparent as loss of detail over regions of high stretch
distortion.

Horse PM: L^2 Stretch Error (weighted)

0

10

20

30

40

50

60

70

80

100 1000 10000 100000
number of faces

st
re

tc
h

er
ro

r (
*p

hi
(i)

/1
00

0)

uniform param.

min-stretch param.

min-stretch + optimiz.

Horse PM: L^2 Deviation Error (w eighted)

0
1
2
3
4
5
6
7
8
9

100 1000 10000 100000
number of faces

de
vi

at
io

n
er

ro
r (

*p
hi

(i)
)

uniform param.

min-stretch param.

min-stretch + optimiz.

Figure 3: Error graphs of texture stretch and deviation over the
horse PM sequence, both measured using L2 norms and weighted
by the ψ(i) factor from Section 4.5.

Models bunny parasaur horse hand

faces in Mn 69,630 43,866 96,956 60,856
vertices in Mn 34,817 21,935 48,480 30,430
charts 75 75 120 60
faces in M0 288 298 470 230
vertices in M0 146 151 237 117
(stretch efficiency with
 uniform parametrization) 0.41 0.001 0.38 0.07

 stretch efficiency 0.60 0.40 0.55 0.46
 intra-rectangle efficiency 0.77 0.71 0.77 0.76
 rectangle-packing effic. 0.87 0.89 0.91 0.82
 packing efficiency 0.67 0.63 0.70 0.62
texture efficiency 0.40 0.25 0.38 0.29

Table 1: Quantitative results.

Table 1 provides results on the efficiency of the parametrization
in reducing the required texture memory. Stretch efficiency is the
total surface area in 3D divided by the total chart area in 2D,
ΣT A′ (T) / ΣT A(T), given that charts are resized as in Section 4.3.
It is less than unity if some surface regions are sampled more than
necessary (i.e. if texture stretch is not uniform everywhere and in
every direction). Packing efficiency is the sum of chart areas in
2D divided by the rectangular texture domain area. It is less than
unity due to two factors: the enclosure of chart polygons into
rectangles, and the wasted space between the packed rectangles.
Texture efficiency is the product of stretch and packing efficien-
cies, or total surface area divided by texture domain area.
A 1-texel gutter is required between texture charts in the texture
domain. The overhead of these gutters depends on the resolution
assigned to the texture. The packing efficiencies reported in
Table 1 ignore this overhead, and therefore assume a reasonably
high sampling rate.
Stretch efficiency can of course be improved by partitioning the
surface into more charts, but this increases the complexity of the
coarsest LOD mesh, and may lower overall texture efficiency due
to the additional gutter area. Our stretch-minimizing parametriza-
tion allows larger charts with fewer undersampling artifacts.

6. Summary and future work
We have presented a scheme for defining a texture atlas pa-
rametrization over the PM representation of an arbitrary mesh.
This atlas permits the same texture image(s) to be used for all
LOD mesh approximations in the PM sequence. In forming the
parametrization, we optimized for both texture stretch and devia-
tion on all meshes in the sequence. We demonstrated that
optimizing our new stretch metric creates a balanced parametriza-
tion that attempts to prevent undersampling at all locations and
along all directions.
There remain a number of areas for future work:

• Examining how best to address the trade-off between texture
quality (stretch) and geometric quality (deviation).

• Constraining anisotropy in the parametrization.
• Applying our stretch-based parametrization approach to other

multiresolution frameworks such as those using subdivision.
• Speeding up the parametrization optimization of Section 3

using a hierarchical coarse-to-fine approach as in [12].
• Given a known texture, optimizing the parametrization to

consider local texture frequency content, as in [13][26].
• Addressing the problems involved when mip-mapping texture

images containing multiple charts.
• Considering out-of-core execution for complex models.

Acknowledgments
We would like to thank the MIT Laboratory for Computer Sci-
ence for use of their equipment. We also thank Stanford
University and Viewpoint for the models used in our experiments.
The first and third authors were supported in part by grants from
the NSF, Sloan Foundation, and Microsoft Research.

References
[1] ABADJEV, V., DEL ROSARIO, M., LEBEDEV, A., MIGDAL, A., AND

PASKHAVER, V. Metastream. VRML 1999 Proceedings, pp. 53-62.
[2] CIGNONI, P., MONTANI, C., ROCCHINI, C., AND SCOPIGNO, R. A

general method for recovering attribute values on simplified meshes.
IEEE Visualization 1998, pp. 59-66.

[3] COHEN, J., OLANO, M., AND MANOCHA, D. Appearance-preserving
simplification. SIGGRAPH 1998, pp. 115-122.

[4] ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY, M.,
AND STUETZLE, W. Multiresolution analysis of arbitrary meshes.
SIGGRAPH 1995, pp. 173-182.

[5] FLOATER, M. Parametrization and smooth approximation of surface
triangulations. CAGD 14(3), pp. 231-250, 1997.

[6] GARLAND, M., WILLMOTT, A., AND HECKBERT, P. Hierarchical face
clustering on polygonal surfaces. Symposium on Interactive 3D
Graphics 2001, pp. 49-58.

[7] GORTLER, S., GRZESZCZUK, R., SZELISKI, R., AND COHEN, M. The
Lumigraph. SIGGRAPH 1996, pp. 43-54.

[8] GUSKOV, I., VIDIMČE, K., SWELDENS, W., AND SCHRÖDER, P.
Normal meshes. SIGGRAPH 2000, pp. 95-102.

[9] HINKER, P., AND HANSEN, C. Geometric optimization. IEEE Visu-
alization 1993, pp. 189-195.

[10] HOPPE, H. Progressive meshes. SIGGRAPH 1996, pp. 99-108.
[11] HORMANN, K., AND GREINER, G. MIPS – an efficient global pa-

rametrization method. Technical Report 27/1998, Universität
Erlangen-Nürnberg.

[12] HORMANN, K., GREINER, G., AND CAMPAGNA, S. Hierarchical
parametrization of triangulated surfaces. Vision, Modeling, and Visu-
alization 1999, pp. 219-226.

[13] HUNTER, A., AND COHEN, J. Uniform frequency images: adding
geometry to images to produce space-efficient textures. IEEE Visu-
alization 2000, pp. 243-250.

[14] IGARASHI, T., AND COSGROVE, D. Adaptive unwrapping for interac-
tive texture painting. Symposium on Interactive 3D Graphics 2001,
pp. 209-216.

[15] KALVIN, A., AND TAYLOR, R. SuperFaces: Polyhedral approximation
with bounded error. SPIE Proceedings 2164, pp. 2-13, 1994.

[16] KOBBELT, L., CAMPAGNA, S., AND SEIDEL, H.-P. A general frame-
work for mesh decimation. Proceedings of Graphics Interface ‘98,
pp. 43-50.

[17] KRISHNAMURTHY, V., AND LEVOY, M. Fitting smooth surfaces to
dense polygon meshes. SIGGRAPH 1996, pp. 313-324.

[18] LEE, A., SWELDENS, W., SCHRÖDER, P., COWSAR, L., AND DOBKIN,
D. MAPS: Multiresolution adaptive parametrization of surfaces.
SIGGRAPH 1998, pp. 95-104.

[19] LÉVY, B., AND MALLET, J.-L. Non-distorted texture mapping for
sheared triangulated meshes. SIGGRAPH 1998, pp. 343-352.

[20] LINDSTROM, P., AND TURK, G. Fast and memory efficient polygonal
simplification. IEEE Visualization 1998, pp. 279-286.

[21] MAILLOT, J., YAHIA, H., AND VERROUST, A. Interactive texture
mapping. SIGGRAPH 1993, pp. 27-34.

[22] MARUYA, M. Generating texture map from object-surface texture
data. Computer Graphics Forum (Proceedings of Eurographics ’95)
14(3), pp. 397-405.

[23] MILENKOVIC, V. Rotational polygon containment and minimum
enclosure. Proc. of 14th Annual Symposium on Computational Ge-
ometry, ACM, 1998.

[24] MURATA, H., FUJIYOSHI, K., NAKATAKE, S., AND KAJITANI, Y.
Rectangle-packing-based module placement. IEEE ICCAD 1995, pp.
472-479.

[25] SANDER, P., GU, X., GORTLER, S., HOPPE, H., AND SNYDER, J.
Silhouette clipping. SIGGRAPH 2000, pp. 327-334.

[26] SLOAN, P.-P., WEINSTEIN, D., AND BREDERSON, J. Importance driven
texture coordinate optimization. Computer Graphics Forum (Pro-
ceedings of Eurographics ’98) 17(3), pp. 97-104.

[27] SOUCY, M., GODIN, G., AND RIOUX, M. A texture-mapping approach
for the compression of colored 3D triangulations. The Visual Com-
puter 12, pp. 503-514, 1986.

(a) charts on original mesh Mn (b) base mesh M0 (c) texture atlas (before pull-push) (d) textured base mesh

Figure 4: Overview of our process. We partition the original mesh into charts, establish a stretch-minimizing parametrization on each chart,
and simplify the mesh while minimizing texture deviation. With the resulting PM sequence M0…Mn, we further optimize the parametriza-
tion to reduce stretch and deviation in all meshes. Finally, we pack the charts into an atlas, and fill the atlas with texture samples from Mn.

(a) M0 (470 faces) (b) M115 (700 faces) (c) M365 (1,200 faces) (d) M4765 (10,000 faces)

Figure 5: Textured mesh approximations in a PM sequence. All meshes refer to the same 512x512 texture atlas.

sampled normal map hex grid in 2D texture domain sampled normal map hex grid in 2D texture domain

(a) ignoring stretch (b) using our scheme
Figure 6: Texture stretch illustrated using both a sampled normal map and a uniform honeycomb pattern overlaid in the 2D texture image.
(a) Charts are parametrized using uniform edge weights and scaled by surface area. (b) Our scheme considers texture stretch when both
parametrizing and scaling the charts. In (a), note the loss of fine detail in regions with stretched honeycomb pattern (e.g. fingers and toes).

