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Abstract 
Given an arbitrary mesh, we present a method to construct a 
progressive mesh (PM) such that all meshes in the PM sequence 
share a common texture parametrization.  Our method considers 
two important goals simultaneously.  It minimizes texture stretch 
(small texture distances mapped onto large surface distances) to 
balance sampling rates over all locations and directions on the 
surface.  It also minimizes texture deviation (“slippage” error 
based on parametric correspondence) to obtain accurate textured 
mesh approximations.  The method begins by partitioning the 
mesh into charts using planarity and compactness heuristics.  It 
creates a stretch-minimizing parametrization within each chart, 
and resizes the charts based on the resulting stretch.  Next, it 
simplifies the mesh while respecting the chart boundaries.  The 
parametrization is re-optimized to reduce both stretch and devia-
tion over the whole PM sequence.  Finally, the charts are packed 
into a texture atlas.  We demonstrate using such atlases to sample 
color and normal maps over several models. 
Additional Keywords: mesh simplification, surface flattening, surface 
parametrization, texture stretch. 

1. Introduction 
The progressive mesh (PM) representation encodes an arbitrary 
mesh as a simple base mesh M0 and a sequence of n refinement 
operations called vertex splits [10].  It defines an array {M0…Mn} 
of level-of-detail (LOD) approximations, and supports geomorphs 
and progressive transmission [1].  Unlike multiresolution frame-
works based on subdivision, the meshes in a PM have irregular 
connectivities that can accurately model sharp features (e.g. 
creases and corners) at all scales. 
One challenge in the PM framework is dealing with texture maps.  
Hardware rasterization features (including bump maps, normal 
maps, and multitexturing) let fine detail be captured in texture 
images parametrized over the mesh.  Sources for textures include 
sampling detailed scanned meshes, evaluating solid textures, ray 
tracing, and 3D painting.  In this paper, we address the problem of 
parametrizing texture images over all meshes in a PM sequence. 
A single unfolding of an arbitrary mesh onto a texture image may 
create regions of high distortion, so generally a mesh must be 
partitioned into a set of charts.  Each chart is parametrized by a 
region of a texture domain, and these parametrizations collec-
tively form an atlas (see Figure 4c).  For instance, several 
schemes [2][22][25][27] simplify a mesh and then construct a 
texture image chart over each simplified face by sampling attrib-
utes (e.g. normals) from the original mesh. 
For a PM, one might then consider re-using chart images defined 
on faces of M0 for all meshes M1…Mn.  However, the problem is 
that a PM is generally not chart-compliant, in that its vertex splits 
can change the chart topology when applied indiscriminately near 
chart boundaries, thereby forcing parametric discontinuities.  For 

example, the vertex split shown on 
the right changes the adjacency of 
the three colored charts, resulting in 
the discontinuous texture.  Fortu-
nately, it is possible to construct a 
single atlas parametrization for the entire PM sequence.  Chart-
compliance can be obtained by first defining the charts on the 
original mesh, and then constraining a simplification sequence to 
comply with those chart boundaries [3]. 
Therefore, our problem is the following: given an arbitrary mesh, 
parametrize it onto a texture atlas, and create a PM sequence 
compliant with the atlas charts.  In doing so, we have two goals: 
- Minimize texture stretch:  The parametrization determines 
sampling density over the surface, but is constructed before 
knowing what texture map(s) will be applied.  Therefore, we seek 
a balanced parametrization rather than one that samples finely in 
some surface regions or directions while undersampling others.  
A conservative, local measure of how finely the parametrization 
samples the texture signal is the larger singular value of its Jaco-
bian, which measures how much a sampling direction in the 
texture domain is stretched on the mesh surface in the worst case.  
By minimizing the largest texture stretch across all domain 
points, we create a balanced parametrization where no domain 
direction is too stretched and thus undersamples its corresponding 
mapped 3D direction.  (See Figure 1 and Figure 6.) 
- Minimize texture deviation:  Traditional mesh simplification 
measures geometric error by approximating closest-point (Haus-
dorff) distance.  For textured surfaces, it is more appropriate to 
use the stricter texture deviation error, which measures geometric 
error according to parametric correspondence [3].  For a PM, 
texture deviation can be graphed as a function of mesh complex-
ity (Figure 3).  Our goal is to lower this graph curve. 
Recall that the motivation for partitioning the surface into charts 
is to reduce texture stretch.  However, the presence of chart 
boundaries hinders simplification quality since chart-compliance 
requires that these boundaries appear as edges in all meshes 
including M0.  In the extreme, if each face of Mn is made its own 
chart, stretch is zero, but no simplification can occur.  Hence, 
there exists a trade-off between texture stretch and deviation. 
Minimizing stretch and deviation is a difficult nonlinear problem 
over both discrete and continuous variables.  The discrete vari-
ables are the mesh partition and the edge collapse sequence.  The 
continuous variables are the texture coordinates of the vertices.  
Our approach is to set the discrete variables early, using heuris-
tics, and then proceed to optimize the continuous variables.  
Specifically, our method has the following steps: 
(1) partition original mesh into charts  (considering geometry) 
(2) form initial chart parametrizations  (minimizing stretch) 
(3) resize chart polygons  (based on stretch)  
(4) simplify mesh  (minimizing texture deviation, creating PM) 
(5) optimize parametrization  (stretch & deviation over all PM) 
(6) pack chart polygons  (forming texture atlas) 
(7) sample texture images  (using atlas parametrization) 

 

 



 

The contributions of our work are: 

• an algorithm for partitioning a mesh into charts, which consid-
ers simplification quality and does not alter the mesh. 

• a texture stretch metric that uniformly penalizes undersampling 
everywhere over the surface. 

• an algorithm for minimizing this stretch metric in the L2 and 
L∞ norms, which can be used for both static meshes and PMs. 

• a scheme for optimizing the parametrization to minimize both 
texture stretch and texture deviation at all PM levels, with ap-
propriate weighting of each mesh in M0…Mn. 

• the first automatic solution for creating a PM representation 
with a consistent surface parametrization for all LODs. 

2. Previous work 
Mesh partitioning into charts.  Several authors have proposed 
methods for parametrizing meshes by partitioning into charts.  
Krishnamurthy and Levoy [17] describe an interactive system in 
which the user manually lays out chart boundaries by tracing 
curves.  Maillot et al. [21] partition mesh faces according to a 
bucketing of face normals.  Eck et al. [4] use a Voronoi-based 
partition.  These last two algorithms make little effort to adapt 
charts to surface geometry, so the chart boundaries can hinder 
simplification, leading to poor LOD approximations. 
MAPS [18] and Normal Meshes [8] map edges of the simplified 
base domain back to the original mesh.  While the resulting charts 
adapt to surface geometry, their boundaries cut across faces of 
original mesh, requiring addition of new vertices and faces.  For 
the applications in [8][18], these additional vertices are only 
temporary, because the mesh geometry is subsequently resampled.  
However, our application is to generate a PM from a user-
specified mesh, whose connectivity is often carefully optimized, 
so the imposition of new vertices is a drawback. 
Chart parametrization.  Several schemes have been proposed to 
flatten surface regions to establish a parametrization.  The 
schemes typically obtain the parametrization by minimizing an 
objective functional.  The main distinction between the function-
als is how they measure the distance of the parametrization from 
an isometry (a mapping preserving lengths and angles). 
Maillot et al. [21] base their metric on edge springs of nonzero 
rest length, where rest length corresponds to edge length on the 
surface.  To ensure that the parametrization is 1-to-1, (i.e., to 
avoid parametric “buckling”, also called “face flipping”), they add 
an area-preservation term to the metric.  When the texture domain 
boundary is fixed as in our application, it is unclear how edge 
rest-lengths should be scaled.  More importantly, the weighting 
between the edge springs and the area-preservation term must be 
adjusted to produce an embedding. 
Eck et al. [4] propose the harmonic map, which weights edge 
springs non-uniformly.  The weights can sometimes be negative, 
in which case an embedding is not guaranteed.  Floater [5] pro-
poses a similar scheme with a different edge-spring weighting that 
guarantees embedding for convex boundaries.  For either method, 
the parametrization can be found by solving a linear system. 
Lévy and Mallet [19] combine orthogonality and isoparametric 
terms in their metric.  To solve the resulting nonlinear optimiza-
tion, they iteratively fix one texture component (s or t) and solve 
for the other using a linear optimization.  As in [20], a term is 
added which must be sufficiently weighted to guarantee an em-
bedding.  

Hormann and Greiner [11] propose the MIPS parametrization, 
which roughly attempts to preserve the ratio of singular values 
over the parametrization.  However, the metric disregards abso-
lute stretch scale over the surface, with the result that small 
domain areas can map to large regions on the surface.  
To allow all meshes in the PM to share a common texture map, it 
is necessary that we create domains with straight boundaries 
between chart corners, unlike [11][19][21]. 
Our main contribution is to directly optimize the two relevant 
goals for texture mapping PMs: minimal texture stretch and 
minimal texture deviation.  Our novel stretch metric attempts to 
balance sampling rates everywhere on the surface, unlike previous 
techniques. 
Appearance-preserving simplification.  Cohen et al. [3] intro-
duce texture deviation as the appropriate measure of geometric 
accuracy when simplifying textured meshes.  The texture devia-
tion between a simplified mesh Mi and the original mesh Mn at a 
point pi ∈ Mi is defined as || pi – pn || where pn is the point on Mn 
with the same parametric location in the texture domain.  Cohen 
et al. track texture deviation conservatively by storing a bounding 
error box at each mesh vertex.  They demonstrate results on 
parametric surfaces already organized into charts. 
We begin with an unparametrized mesh, and seek to form an atlas 
parametrization that specifically minimizes texture deviation and 
stretch over all meshes in a PM. 

3. Texture stretch metric 
To optimize a parametrization’s ability to balance frequency 
content everywhere over the surface in every direction, we define 
a new “texture stretch” metric on triangle meshes. 

Given a triangle T with 2D texture coordinates 1 2 3, ,p p p , 
( , )i i ip s t= , and corresponding 3D coordinates 1 2 3, ,q q q , the 

unique affine mapping ( ) ( , )S p S s t q= = is 
 ( )2 3 1 3 1 2 1 2 3 1 2 3( ) , , , , , , , ,S p p p p q p p p q p p p q p p p= + +  
where , ,a b c denotes area of triangle abc.  Since the mapping is 
affine, its partial derivatives are constant over (s,t) and given by 
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The larger and smaller singular values of the Jacobian [ ],s tS S are 
given respectively by 
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where ss SSa ⋅= , ts SSb ⋅= , and tt SSc ⋅= .  The singular 
values Γ and γ represent the largest and smallest length obtained 
when mapping unit-length vectors from the texture domain to the 
surface, i.e. the largest and smallest local “stretch”.  We define 
two stretch norms over triangle T : 

 ( ) ( )2 2 2( ) 2 2, ( )L T a c L TΓ γ Γ∞= + = + = . 

The norm L2(T) corresponds to the root-mean-square stretch over 
all directions in the domain, and the worst-case norm L∞(T) is the 
greatest stretch, i.e. the maximum singular value.  Note that both 
L2(T) and L∞(T) increase to infinity as the parametrization of T 



 

becomes degenerate, since its parametric area A drops to zero.  If 
the triangle T flips parametrically (i.e. if A becomes negative), we 
define both L2(T) and L∞(T) to remain infinite. 
We define two analogous norms over the surface of the entire 
mesh { }iM T= : 
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where ( )iA T′ is the surface area of triangle iT  in 3D.  The L2 norm 
measures the overall ability of the parametrization to support 
high-frequency textures, while L∞ measures its worst-case ability. 
We normalize stretch values by scaling the texture domain so that 
its area equals the surface area in 3D.  Thus, 1.0 is a lower bound 
for either norm on any parametrization.  Alternately, stretch can 
be normalized without explicitly scaling the texture domain by 
multiplying with the factor 

( ) ( )i i

i iT M T M
A T A T

∈ ∈
′∑ ∑  . 

To minimize our nonlinear metrics L2(M) and L∞(M), we begin 
with a uniform-edge-spring solution, and then perform several 
optimization iterations.  Within each iteration, we consider verti-
ces in decreasing order of neighborhood stretch.  For each vertex, 
we perform a line search minimization along a randomly chosen 
search direction in the (s,t) parametric domain.  Because all other 
vertices are held fixed, the stretch metric only needs local compu-
tation over the neighborhood.  Since the metric is infinite for 
degenerate or flipped triangles, the line search is naturally con-
strained within the kernel of the vertex’s neighborhood.  In 
successive iterations, we gradually decrease the convergence 
tolerance in the 1D line search using the schedule 1/i where i is 
the iteration number.  For the L∞ optimization, we obtain even 
better results by using our L2 solution as its starting point. 
Figure 1 compares our metric with alternatives.  For each metric, 
we used the same optimization procedure described above.  In all 
cases, boundary vertices were fixed by arc-length.  For each 
parametrization, we created a 128×128 image in the texture 
domain by sampling a procedural 3D checkered pattern on the 
parametrized surface.  For improved filtering, we used 4x4 super-
sampling.  As can be seen in the resulting textured models, 
parametrizations optimized using our metrics are better at captur-
ing high-frequency detail everywhere over the surface.  In (b-d), 
note the loss of resolution on the ears where stretch error is high.2  
The area-preserving parametrization in (e) minimizes the Maillot 
buckling term only.  Although it has better spatial distribution 
than (b-d), note how it undersamples certain directions, causing 
directional blur on the chin, sides, and ears. 

                                                                 
1 The harmonic map [4], not shown, is qualitatively similar to Floater [5] 

and has slightly worse stretch,  L2=2.28,  L∞=10.07. 
2 For the Maillot result (Figure 1d), we set the factor α weighting between 

edge-springs and area-preservation to 0.5.  Since the relative scale of 2D 
to 3D edge lengths is important in this metric, we uniformly scale the 
2D domain to have the same area as the 3D chart.  Our reported stretch 
norms are infinite because the minimum solution exhibits buckling.  
Since our optimization method prevents face flipping, the result is pa-
rametrically degenerate triangles having infinite stretch. 

  
(a) exact 

  
(b) Floater [5]     L2=2.26  L∞=9.86 

  
(c) MIPS [11]     L2=2.31  L∞=7.46 

  
(d) Maillot [20]     L2=∞  L∞=∞ 

  
(e) area-preserving     L2=1.57  L∞=4.19 

  
(f) our L2 stretch     L2=1.22  L∞=2.13 

  
(g) our L∞ stretch     L2=1.28  L∞=1.65 

Figure 1: Chart parametrization comparison.1 



 

4. Our PM parametrization scheme 
In this section we present the steps of our PM parametrization 
scheme.  We first introduce some definitions and assumptions. 
Let a chart corner be any vertex adjacent to 3 or more charts, and 
let a chart boundary be the path of edges separating charts be-
tween two corners.  We define the neighborhood of a vertex as the 
ring of faces adjacent to the vertex. 
Our PM is based on the half-edge collapse opera-
tion (v1 , v2)  v1  which affects the neighborhood 
of v2 as shown on the right and leaves the position 
and attributes of v1 unchanged [16].  We prefer the 
half-edge to the full-edge collapse to avoid writes 
to the vertex buffer during runtime LOD changes.  
Therefore, (s,t) texture coordinates at any vertex 
must be the same at all LOD levels.  Since a vertex 
on a chart boundary has different (s,t) coordinates 
on each chart, these must be stored at the corners of 
mesh faces [10]. 
To create a texture atlas over a PM, we must enforce the follow-
ing constraints: 
(1) mesh faces cannot span more than one chart, since it is im-
practical to specify and render disjoint pieces of texture over any 
single triangle. 
(2) chart boundaries must be straight in the parametric domain, 
since each chart boundary is generally simplified to a single edge 
in the PM base mesh. 
These constraints restrict the partition of the mesh into charts 
(Section 4.1) and the mesh simplification sequence (Section 4.4). 

4.1 Partition mesh into charts 
The first step is to partition the mesh into a set of charts: regions 
with disk-like topology.  Ideally one could simultaneously search 
over the discrete space of possible chart decompositions and the 
continuous space of parametrizations allowed by each decomposi-
tion.  Clearly this is intractable.  In our system we first partition 
the mesh using a greedy chart-merging approach.  It is similar to 
simplification schemes based on the greedy growth of “super-
faces” [9][15], and to the independent work by Garland et al. [6]. 
Initially, each face is assigned to be its own chart.  For each pair 
of adjacent charts, we consider the operation of merging the two 
charts into one, and enter this candidate operation into a priority 
queue according to a computed cost.  As in [6], the merge opera-
tion is assigned a cost that measures both its planarity and 
compactness.  We measure planarity as the mean-squared distance 
of the chart to the best-fitting plane through the chart, defined as a 
continuous surface integral (unlike [6] which evaluates it only at 
the vertices).  We measure compactness simply as the squared 
perimeter length. 
We iteratively apply the merge operation with lowest cost, and 
update costs of neighboring candidate merge operations.  The 
process ends when the cost exceeds a user-specified threshold.  
A chart merge operation is disallowed if it results in any chart 
with fewer than 3 corners.  It is also disallowed if the boundary 
between the new chart and any adjacent chart consists of more 
than one connected component (e.g. one isolated vertex and one 
path of edges).  This constraint also guarantees that charts remain 
homeomorphic to discs. 
Once the charts are formed, they define the set of chart corner 
vertices.  Note that these corner vertices in Mn must appear as 

vertices in the base mesh M0 due to the constrained half-edge 
collapses.  Therefore, we would like each chart boundary to 
closely align with the straight line segment between its adjacent 
two corners, so as to not be a limiting factor in the simplification 
quality.  We straighten each boundary by computing a shortest 
path over mesh edges, constrained not to intersect other chart 
boundaries. 
Results of the initial chart partition, and the subsequent boundary 
straightening are shown in Figure 2.  Note that chart boundaries 
align with important features in the mesh. 

Figure 2: Top row shows initial chart partitions, and bottom row 
shows result of chart boundary optimization. 

4.2 Form initial chart parametrizations 
Once the chart boundaries are defined in Mn, we create an initial 
parametrization of each chart onto a 2D polygon.  We define the 
2D polygon boundary to be a convex polygon with vertices on a 
circle, where the length of each polygon edge is proportional to 
the arc-length of the corresponding chart boundary in 3D, as 
in [4].  We initially scale the polygon to have unit area.  Within 
each chart, we parametrize the interior vertices by minimizing the 
L2(M) stretch metric, using the algorithm described in Section 3. 

4.3 Resize chart polygons 
Now that we have chart parametrizations on Mn, we determine 
how much relative space each chart should be granted in the 
texture domain.  For each chart, we compute L2(Mn

chart), the rms 
stretch over the chart, and use that value to uniformly resize the 
chart while preserving its shape.  We had hoped to use L∞(Mn

chart) 
to resize the charts, but unfortunately there are a few triangles for 
which the maximum stretch remains high.  Although the relative 
chart sizes have no effect on simplification (Section 4.4), they do 
affect E(PM) in the final PM optimization (Section 4.5). 

4.4 Simplify mesh 
Given the initial chart parametrizations, we simplify the mesh to 
define a PM.  Our goal during simplification is to minimize 
texture deviation.  Our algorithm closely follows that of Cohen et 
al. [3].  We select edge collapses that minimize texture deviation 
by using a priority queue.  To enforce chart compliance, we 
disallow an edge collapse  (v1,v2)  v1  in  Mi+1  Mi  if vertex v2 

 

v2 

v1 

v1 

Mi+1 

Mi 



 

is a chart corner (to preserve corners), or if v2 is on a chart bound-
ary and edge (v1,v2) is not on a chart boundary (to preserve 
boundary straightness).  In addition, we also prevent the creation 
of parametrically flipped or degenerate triangles. 
To measure texture deviation for each candidate edge collapse, 
rather than using conservative bounds as in [3], we use the fast 
heuristic of measuring the incremental texture deviation 
d(Mi+1,Mi) between the two meshes.  (The heuristic is akin to the 
“memoryless” error that has proven effective for geometric 
simplification [20].)  The maximum deviation 
between Mi+1 and Mi is known to lie either at the 
removed vertex v2 or at an edge-edge intersection 
point in the parametric neighborhood (e.g. the red 
points shown in the figure to the right).  We con-
firmed empirically that the incremental deviation heuristic works 
well by comparing to a slow simplification that orders edge 
collapses using the true deviation error (between Mi and Mn). 

4.5 Optimize chart parametrizations 
Having determined the PM simplification sequence, we now re-
optimize the chart parametrizations to minimize stretch and 
deviation on the entire sequence M0…Mn.  Our nonlinear optimi-
zation algorithm follows the strategy of moving vertices of Mn 
one-by-one in the parametric domain as in Sections 3 and 4.2, but 
using a different objective function. 
Our objective function is a weighted sum of the texture stretch 
and deviation on all meshes M0…Mn: 

E(PM) = Σi=0..n  ψ(i) [ λ L2(Mi)2  +  (1 - λ) d(Mi,Mn)2 / A′ (Mn) ] 

where L2(Mi) is the normalized average stretch of Mi (Section 3) 
computed using the resized charts from Section 4.3, d(Mi,Mn) is 
its texture deviation, the parameter 0 ≤ λ ≤ 1 is used to weight 
stretch error relative to deviation error, and ψ(i) is the relative 
weight assigned to each LOD mesh in the sequence.  Dividing by 
the mesh surface area A′(Mn) makes the second term scale-
invariant like the first term. 

We now introduce a model for setting the relative weight ψ(i) 
assigned to each mesh Mi, consisting of two factors: usage and 
scale.  Depending on the application, other weighting schemes 
could be used, without changing the optimization method.  

• In LOD applications, coarser meshes are likely to be used 
proportionately more often.  For example, meshes with 10–100 
faces are likely to be used more than those with 900–990 faces.  
We believe that a reasonable model for usage probability is a 
uniform distribution over a logarithmic scale of model com-
plexity, e.g. meshes with 10-100 faces are as equally likely as 
meshes with 100-1000 faces.  This distribution is obtained us-
ing the factor 1/|Mi| where |M| is the number of vertices in M. 

• The fact that coarser meshes are typically used when the object 
is farther away reduces the screen-space scale of their deviation 
and stretch.  For a smooth spherical surface, texture deviation 
varies as 1 / |M|2.  Since LOD algorithms attempt to maintain a 
constant screen-space error, deviation and stretch in model 
space should therefore be down-weighted for coarser mesh 
meshes using the weighting factor |Mi|2 in ψ(i). 

To optimize the texture coordinates of a given vertex v, our 
optimization algorithm needs to repeatedly evaluate E.  Comput-
ing E using the above sum over all meshes would be expensive.  
Fortunately, the neighborhood of v changes only a few times 
within the sequence of meshes, generally O(log |Mn|) times.  Thus 
we only need to consider E on each refinement neighborhood 

Mi  Mi+1 of which v is a member.  For each vertex v, we gather 
the relevant refinement neighborhoods as a list during a coarse-to-
fine preprocess traversal of the PM. 
Since the refinement neighborhoods adjacent to a vertex v have an 
approximately logarithmic distribution over the PM sequence, we 
can account for the usage factor by summing the stretch and 
deviation on these refinement neighborhoods.  Therefore, we 
weight the error over each such neighborhood by ψ ′ (i) = |Mi|2 to 
account for the remaining scale factor. 
The following pseudo-code gives an overview of our algorithm. 
// Optimize parametrization over whole PM sequence. 
procedure parametrize_pm() 
    gather_refinement_neighborhoods()     // coarse-to-fine traversal 
    repeat 
        v = some_vertex_in_mesh(Mn) 
        optimize_vertex(v) 
    until convergence 

// Optimize the parametrization param(v) of vertex v 
procedure optimize_vertex(vertex v) 
    repeat 
        vector dir = random_search_direction()     // in 2D domain 
        // perform line search minimization 
        repeat 
            select float t           // e.g. using binary line search 
            param(v) = param(v) + dir * t   // perturb parametrization of v 
        until error_over_PM(v) is minimized 
    until convergence 

// Sum of errors affected by param(v) in all meshes M0…Mn. 
function error_over_PM(vertex v) 
    error = 0 
    for (vertex w in refinement_neighborhoods(v))  
        error += error_over_neighborhood(w, v) 
    return error 

// Error due to v in neighborhood of w (where w is first introduced) 
function error_over_neighborhood(vertex w, vertex v)  
    return ψ’(level(w)) ∗  
          [      λ  ∗ stretch_error(w, original_neighbors(w), v) + 
           (1-λ) * deviation_error(w, original_neighbors(w), v) / A′(Mn)  ] 

As in Section 4.4, we approximate the deviation error d(Mi,Mn) 
with the incremental deviation error d(Mi,Mi+1).  Because we 
define our stretch metric to be infinite when a face is flipped in 
the parameter domain, stretch minimization prevents parametric 
flipping in all meshes.  One final detail is that we also optimize 
the parametrization of vertices along chart boundaries.  Since 
these vertices have texture coordinates in two adjacent charts, we 
must consider the refinement neighborhoods in both charts simul-
taneously.  Specifically, we must constrain the parametrizations to 
remain on the boundaries, and optimize over shared barycentric 
coordinates along the boundary to prevent “parametric cracks”. 

4.6 Pack chart polygons 
Since the optimization in Section 4.5 modifies the parametriza-
tion, we perform a final chart resizing step as in Section 4.3. 
The next step is to pack these resized charts into a rectangular 
texture image.  In the context of texture mapping, various heuris-
tics have been presented for the special case of packing 3-sided 
charts [2][22][25][27].  However, our chart boundaries can be 
arbitrary polygons.  The general problem is known as the NP-hard 
pants packing problem [23]. 
We simplify the problem by conservatively approximating each 
chart polygon with the least-area rectangle that encloses it.  This 
rectangle is found efficiently by considering each edge of the 
polygon’s convex hull.  Fortunately, our chart polygons are 

 



 

reasonably shaped, so the rectangle approximation is not too 
costly.  We rotate the chart to align the long axis of the rectangle 
with the vertical direction.  The problem then becomes that of 
rectangle packing, which is still NP-hard, but for which there exist 
good heuristic approximations (e.g. [14][24]).  We develop our 
own simple heuristic, which works as follows. 
We sort the rectangles by height.  In order of decreasing height, 
we place the rectangles sequentially into rows in alternating left-
to-right and right-to-left order as shown in Figure 4c [14].  
Through binary search, we optimize over the texture width such 
that the packing minimizes the area of the enclosing square. 
When the desired texture sampling density is later determined, we 
leave a one texel gap between adjacent charts.  Section 5 reports 
results of our chart packing efficiency. 

4.7 Sample texture images 
The packed charts define a texture atlas for the surface.  We use 
the atlas to sample attributes from the surface Mn into the texture 
domain, at the 2D grid of texel locations.  For improved filtering, 
we supersample the attributes using a 4x4 box filter.  Section 5 
shows results of sampling colors and normals. 
If the highest frequency f of the attribute function over the surface 
mesh is known, the stretch-based scale of the texture atlas makes 
it possible to estimate the required 2D grid sampling density.  
With the charts resized as in Section 4.3, the 2D grid spacing 
should be set no more than 1/(2f). 
In general, schemes that pack multiple charts into a single texture 
image may give rise to mip-mapping artifacts, since coarser mip-
map levels will average together 
spatially disjoint charts.  The most 
immediate artifact is that chart 
boundaries are revealed if the inter-
chart area is left unpainted (e.g. 
black).  To mitigate this, we apply a 
pull-push algorithm [7] to fill-in 
these unsampled regions with 
reasonable values.  As an example, 
the effect on the atlas image from 
Figure 4c is shown on the right. 

5. Results 
Figure 4 shows an example result, where the texture image cap-
tures pre-shaded colors from the original mesh Mn.  Although we 
only show the textured base mesh, the same texture atlas can of 
course be used on all other meshes M1… Mn in the PM, as shown 
on the accompanying video. 
Figure 5 shows several mesh approximations in a PM sequence, 
where the texture image captures a normal map.  Because the PM 
meshes can have irregular connectivities, they quickly converge to 
good geometric approximations.  Hence the figure shows LOD 
meshes with relatively low face-counts, compared to the original 
mesh of nearly 97,000 faces. 
Figure 3 compares graphs of texture stretch and deviation for 
meshes in a PM using various parametrization schemes.  The 
curve labeled “uniform” corresponds to uniform edge-spring 
parametrization followed by simplification minimizing texture 
deviation.  (The harmonic [4] and Floater [5] parametrizations 
typically have even greater stretch than the uniform parametriza-
tion.)  The curve labeled “min-stretch param.” replaces the initial 
parametrization with our scheme of Section 4.2.  As is evident in 
the graph, parametric stretch is reduced for the finest mesh Mn.  

(This difference is often more significant as shown in Table 1.)  
The curve may appear bumpy because stretch is ignored during 
simplification.  Finally, the curve labeled “min-stretch + optimiz.” 
adds our parametrization optimization of Section 4.5.  Note that it 
improves stretch at lower LODs, while also improving texture 
deviation over the whole range. 
As demonstrated in Figure 6, ignoring texture stretch during 
parametrization results in non-uniform surface sampling, which 
becomes apparent as loss of detail over regions of high stretch 
distortion. 
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Horse PM: L^2 Deviation Error (w eighted)
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Figure 3: Error graphs of texture stretch and deviation over the 
horse PM sequence, both measured using L2 norms and weighted 
by the ψ(i) factor from Section 4.5. 
 

Models bunny parasaur horse hand 

# faces in Mn 69,630 43,866 96,956 60,856 
# vertices in Mn 34,817 21,935 48,480 30,430 
# charts 75 75 120 60 
# faces in M0 288 298 470 230 
# vertices in M0 146 151 237 117 
(stretch efficiency with 
 uniform parametrization) 0.41 0.001 0.38 0.07 

 stretch efficiency 0.60 0.40 0.55 0.46 
   intra-rectangle efficiency 0.77 0.71 0.77 0.76 
   rectangle-packing effic. 0.87 0.89 0.91 0.82 
 packing efficiency 0.67 0.63 0.70 0.62 
texture efficiency 0.40 0.25 0.38 0.29 

Table 1: Quantitative results. 



 

 

Table 1 provides results on the efficiency of the parametrization 
in reducing the required texture memory.  Stretch efficiency is the 
total surface area in 3D divided by the total chart area in 2D,  
ΣT A′ (T) / ΣT A(T), given that charts are resized as in Section 4.3.  
It is less than unity if some surface regions are sampled more than 
necessary (i.e. if texture stretch is not uniform everywhere and in 
every direction).  Packing efficiency is the sum of chart areas in 
2D divided by the rectangular texture domain area.  It is less than 
unity due to two factors: the enclosure of chart polygons into 
rectangles, and the wasted space between the packed rectangles.  
Texture efficiency is the product of stretch and packing efficien-
cies, or total surface area divided by texture domain area. 
A 1-texel gutter is required between texture charts in the texture 
domain.  The overhead of these gutters depends on the resolution 
assigned to the texture.  The packing efficiencies reported in 
Table 1 ignore this overhead, and therefore assume a reasonably 
high sampling rate. 
Stretch efficiency can of course be improved by partitioning the 
surface into more charts, but this increases the complexity of the 
coarsest LOD mesh, and may lower overall texture efficiency due 
to the additional gutter area.  Our stretch-minimizing parametriza-
tion allows larger charts with fewer undersampling artifacts. 

6. Summary and future work 
We have presented a scheme for defining a texture atlas pa-
rametrization over the PM representation of an arbitrary mesh.  
This atlas permits the same texture image(s) to be used for all 
LOD mesh approximations in the PM sequence.  In forming the 
parametrization, we optimized for both texture stretch and devia-
tion on all meshes in the sequence.  We demonstrated that 
optimizing our new stretch metric creates a balanced parametriza-
tion that attempts to prevent undersampling at all locations and 
along all directions. 
There remain a number of areas for future work: 

• Examining how best to address the trade-off between texture 
quality (stretch) and geometric quality (deviation). 

• Constraining anisotropy in the parametrization. 
• Applying our stretch-based parametrization approach to other 

multiresolution frameworks such as those using subdivision. 
• Speeding up the parametrization optimization of Section 3 

using a hierarchical coarse-to-fine approach as in [12]. 
• Given a known texture, optimizing the parametrization to 

consider local texture frequency content, as in [13][26]. 
• Addressing the problems involved when mip-mapping texture 

images containing multiple charts. 
• Considering out-of-core execution for complex models. 
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(a) charts on original mesh Mn (b) base mesh M0 (c) texture atlas (before pull-push) (d) textured base mesh 

Figure 4: Overview of our process.  We partition the original mesh into charts, establish a stretch-minimizing parametrization on each chart, 
and simplify the mesh while minimizing texture deviation.  With the resulting PM sequence M0…Mn, we further optimize the parametriza-
tion to reduce stretch and deviation in all meshes.  Finally, we pack the charts into an atlas, and fill the atlas with texture samples from Mn. 
 

(a) M0 (470 faces) (b) M115 (700 faces) (c) M365 (1,200 faces) (d) M4765 (10,000 faces) 

Figure 5: Textured mesh approximations in a PM sequence.  All meshes refer to the same 512x512 texture atlas. 
 

   
sampled normal map hex grid in 2D texture domain sampled normal map hex grid in 2D texture domain 

(a) ignoring stretch (b) using our scheme 
Figure 6: Texture stretch illustrated using both a sampled normal map and a uniform honeycomb pattern overlaid in the 2D texture image. 
(a) Charts are parametrized using uniform edge weights and scaled by surface area.  (b) Our scheme considers texture stretch when both 
parametrizing and scaling the charts.  In (a), note the loss of fine detail in regions with stretched honeycomb pattern (e.g. fingers and toes). 
 


