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Abstract. Approximate query processing has emerged as d Introduction

cost-effective approach for dealing with the huge data volumes

and stringent response-time requirements of today’s decisioApproximate query processirgas recently emerged as a vi-
support systems (DSS). Most work in this area, however, hagble solution for dealing with the huge amounts of data,
so far been limited in its query processing scope, typically fo-the high query complexities, and the increasingly stringent
cusing on specific forms of aggregate queries. Furthermorgesponse-time requirements that characterize today’s decision
conventional approaches based on sampling or histograms apupportsystems (DSS) applications. Typically, DSS users pose
pear to be inherently limited when it comes to approximatingvery complex queries to the underlying database management
the results of complex queries over high-dimensional DSS dataystem (DBMS) that require complex operations over Giga-
sets. In this paper, we propose the use of multi-dimensionapytes or Terabytes of disk-resident data and, thus, take a very
wavelets as an effective tool for general-purpose approximatéong time to execute to completion and produce exact answers.
query processing in modern, high-dimensional applicationsDue to theexploratory naturef many DSS applications, there
Our approach is based on buildimgavelet-coefficient syn- are a number of scenarios in which an exact answer may not
opsewf the data and using these synopses to provide approxXee required, and a user may prefer a fast, approximate answer.
imate answers to queries. We develop novel query procesd=or example, during a drill-down query sequence in ad hoc
ing algorithms that operate directly on the wavelet-coefficientdata mining, initial queries in the sequence frequently have
synopses of relational tables, allowing us to process arbitrarthe sole purpose of determining the truly interesting queries
ily complex queriegntirelyin the wavelet-coefficient domain. and regions of the database [12]. Providing (reasonably accu-
This guarantees extremely fast response times since our apate) approximate answers to these initial queries gives users
proximate query execution engine can do the bulk of its pro-the ability to focus their explorations quickly and effectively,
cessing over compact sets of wavelet coefficients, essentiallyithout consuming inordinate amounts of valuable system re-
postponing the expansion into relational tuples until the endsources. An approximate answer can also provide useful feed-
result of the query. We also propose a novel wavelet decomback on how well-posed a query is, allowing DSS users to
position algorithm that can build these synopses in an I/O4make an informed decision on whether they would like to in-
efficient manner. Finally, we conduct an extensive experimenvest more time and resources to execute their query to comple-
tal study with synthetic as well as real-life data sets to detertion. Moreover, approximate answers obtained from appropri-
mine the effectiveness of our wavelet-based approach conftesynopsesfthe data may be the only available option when
pared to sampling and histograms. Our results demonstrafée base data is remote and unavailable [2]. Finally, for DSS
that our techniques: (1) provide approximate answers of betqueries requesting a numerical answer (e.g., total revenues or
ter quality than either sampling or histograms; (2) offer queryannual percentage), it is often the case that the full precision
execution-time speedups of more than two orders of magniof the exact answer is not needed and the first few digits of
tude; and (3) guarantee extremely fast synopsis constructioprecision will suffice (e.g., the leading few digits of a total in
times that scale linearly with the size of the data. the millions or the nearest percentile of a percentage) [1].

Keywords: Query processing—Data synopses—ApproximatePrior work. The strong incentive for approximate answers
query answers — Wavelet decomposition has spurred a flurry of research activity on approximate query
processing techniques in recent years [1,7,9,11,12,16, 26,33,
34]. The majority of the proposed techniques, however, have
been somewhat limited in thajuery processing scopsypi-

cally focusing on specific forms afggregate querieBesides

the type of queries supported, another crucial aspect of an ap-
proximate query processing technique is the emplajesta

* Work done while visiting Bell Laboratories. reduction mechanisnthat is, the method used to obtain syn-
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opses of the data on which the approximate query executiomg [18,24,32]. Recent studies have demonstrated the appli-
engine can then operate [3]. The methods explored in thigability of wavelets to selectivity estimation [21] and the ap-
context includesamplingand, more recentlfjistogramsand  proximation of range-sum queries over OLAP data cubes [33,
wavelets 34]. The idea is to apply wavelet decomposition to the input

) , data collection (attribute column(s) or OLAP cube) and re-
e Sampling-based techniquage based on the use of random (5i, the best fewavelet coefficientss a compact synopsis of
samples as synopses for large data sets. Sample synopses ga8 input data. The results of Vitter et al. [33,34] have shown
be either precomputed and incrementally maintained (€.9., [Iinat wavelets are effective in handling aggregates over high-
7]) or they can be obtained progressively at run-time by ac-jimensional OLAP cubes, while avoiding the high construc-
cessing the base data using appropriate access methods (e costs and storage overheads of histograming techniques.
[11,12]). Random samples of a data collection typically pro-Theijr wavelet decomposition requires only a logarithmically
vide accurate estimates for aggregate quantities @ant S gmall number of passes over the data (regardless of the di-
or average s), as witnessed by the long history of success-mensionality) and their experiments prove that a few wavelet
ful applications of random sampling in population surveys [4, csefficients suffice to produce surprisingly accurate results for
31] and selectivity estimation [20]. An additional benefit of gymmation aggregates. Nevertheless, the focus of these earlier
random samples is that they can provide probabilistic guarangydies has always been on a very specific form of queries (i.e.,
tees on the quality of the estimated aggregate [10]. Samp””%nge-sums) over a single OLAP table. Thus, the problem of
however, suffers from two inherent limitations that restrict its \ynether wavelets can provide a solid foundation for general-

applicability as an approximate query processing tool. Firsty, rpose approximate query processing has hitherto been left
ajoin operator applied on two uniform random samples ;nanswered.

results in anon-uniformsample of the join result that typi-

cally containsvery few tupleseven when the join selectivity o ) o

is fairly high [1]. Thus,join operations typically lead to Our contrlbutlons._ In this paper, we _S|gn|f|cantly extend
significant degradations in the quality of an approximate agthe scope of earlier work on approximate query answers,
gregate. (“Join synopses” [1] provide a solution, but only for establishing the viability and effectiveness of wavelets as
foreign-key joins that are known beforehatitat is, they can- & 9Eneric approximate query processing tool for modern,
not support arbitrary join queries over any schema.) Second}igh-dimensional DSS applications. More specifically, we
for a non-aggregatequery, execution over random samples Propose a novel approach to general-purpose approximate

of the data is guaranteed to always produce a small subs&Uery p_rocessing that consists of two basic steps. First, multi-
of the exact answer which is ofte@mptywhenjoin s are dimensional Haar wavelets are used to efficiently construct

involved [1,16]. compact synopses of general relational tables. Second, using
novel query processing algorithms, standard SQL operators
e Histogram-based techniqueave been studied extensively (both aggregate and non-aggregate) are evalulatectly over
in the context of query selectivity estimation [8,14,15,23,27,the wavelet-coefficient synopses of the data to obtain fast and
28] and, more recently, as a tool for providing approximateaccurate approximate query answers. The crucial observation
query answers [16,26]. The very recent work of loannidishere is that, as we demonstrate in this work, our approximate
and Poosala [16] is the first to address the issue of obtainquery execution engine can do all of its processngjrely
ing practical approximations twn-aggregatguery answers, in the wavelet-coefficient domaithat is, both the input(s)
making two important contributions. First, it proposes a hoveland the output of our query processing operators are compact
error metric for quantifying the quality of an approximate set- collections of wavelet coefficients capturing the underlying
valued answer (in general, a multiset of tuples). Second, itelational data. This implies that, for any arbitrarily complex
demonstrates how standard relational operators {tke query, we can defer expanding the wavelet-coefficient syn-
andselect ) can be processed directly over histogram syn-opses back into relational tuples till the very end of the query,
opses of the data. The experimental results given in [16] provéhus allowing for extremely fast approximate query process-
that certain classes of histograms can provide higher-qualityng. (In contrast, the histogram-bageth processing algo-
approximate answers compared to random sampling, wherithm of loannidis and Poosala [16] requires each histogram
considering simple queries over low-dimensional data (oneo be partially expanded to generate the tuple-value distribu-
or two dimensions). It is a well-known fact, however, that tion for the corresponding approximate relation. As our results
histogram-based approaches become problematic when dealemonstrate, this requirement can slow down join process-
ing with the high-dimensional data sets that are typical ofing over histograms significantly, since the partially expanded
modern DSS applications. The reason is that, as the dimerhistogram can give rise to large numbers of tupdspecially
sionality of the data increases, both #terage overhea@l.e.,  for high-dimensional data.) The contributions of our work are
number of buckets) and th@nstruction cosbf histograms  summarized as follows.
that can achieve reasonable error rates increase in an explo- . . )
sive manner [19,33]. The dimensionality problem is further® Neéw, l/O-efficient wavelet decomposition algorithm for
exacerbated bjoin ~ operations that can cause the dimen- relauonal tables. The methodology developed in this paper

sionality of intermediate query results (and the correspondind® Pased on a different form of the multi-dimensional Haar
histograms) to explode. ransform than that employed by Vitter et al. [33,34]. As a

consequence, the decomposition algorithms proposed by Vit-
e Wavelet-based techniqupsovide a mathematical tool for ter and Wang [33] are not applicable. We address this problem
the hierarchical decomposition of functions, with a long his- by developing a novel, I/O-efficient algorithm for building the
tory of successful applications in signal and image processwavelet-coefficient synopsis of a relational table. The worst-
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case 1/0 complexity of our algorithm matches that of the besbf a function consists of a coarse overall approximation to-
algorithms of Vitter and Wang, requiring only a logarithmi- gether with detail coefficients that influence the function at
cally small number of passes over the data. Furthermore, thenaarious scales [32]. The wavelet decomposition has excellent
exist scenarios (e.g., when the table is storezhimkg5, 30]) energy compaction and de-correlation properties, which can
under which our decomposition algorithm can work 8irsgle  be used to effectively generate compact representations that
passover the input table. exploit the structure of data. Furthermore, wavelet transforms
can generally be computed in linear time, thus allowing for
very efficient algorithms.

The work in this paper is based on the multi-dimensional

e Novel query processing algebra for wavelet-coefficient
data synopsesWe propose a new algebra for approximate

ggg;?{cizrr?tcsesnsc')n%etshgg r?arl):tza:\(:zﬁgtlyug;/aer:tgien V\{[ar\]\(/aelceg;_ Haar waveletdecomposition. Haar wavelets are conceptually
ynop N 9 9 simple, very fast to compute, and have been found to perform

rect relational operator semantics. Our algebra operators INsell in practice for a variety of applications ranging from im-
clude the conventional aggregate and non-aggregate SQL R

erators, likeselect , project , join , count , sum, and ge editing and querying [24,32] to selectivity estimation and

average . Based on the semantics of Haar wavelet Coef_OLAP approximations [21,33]. Recent work has also investi-
g€ . gated methods for dynamically maintaining Haar-based data

Iféesgtso’ \gfat?) er\s/etlk?gt nw%Vdefllt?r:Ier?/n F;L?S\/?\;g%i%%ﬁ;gﬁtforrepresentations [22]. In this section, we discuss Haar wavelets
P y én both one and multiple dimensions.

domain. This allows for extremely fast response times, sinc
our approximate query execution engine can do the bulk of
its processing over compact wavelet-coefficient synopses, e§ne-dimensional Haar waveletSuppose we are given a one-
sentially postponing the expansion into relational tuples untildimensional data vectot containing the following four val-
the end-result of the query. We also propose an efficient algoues A = [2,2,5,7]. The Haar wavelet transform of can
rithm for this finalrenderingstep, i.e., for expanding a set of be computed as follows. We first average the values together
multi-dimensional Haar coefficients into an approximate re-pairwise to get a new “lower-resolution” representation of the
lation which is returned to the user as the final (approximate)ata with the following average valugs 6]. In other words,
answer of the query. the average of the first two values (thatis, 2 and 2) is 2 and that
. . L of the next two values (that is, 5 and 7) is 6. Obviously, some
o Extensive experiments validating our approachWe  jycormation has been lost in this averaging process. To be able
have conducted an extensive experimental study with syng, resiore the original four values of the data array, we need to
thetic as well as real-life data sets to determine the eﬁectlvggtore somaletail coefficientsthat capture the missing infor-
ness of our wavelet-based approach compared to samplingaiion. 1n Haar wavelets, these detail coefficients are simply
and histograms. Our results demonstrate that: (1) the quaye gifferences of the (second of the) averaged values from the
ity of approximate answers obtained from our wavelet;base omputed pairwise average. Thus, in our simple example, for
query processor is, in general, better than that obtained by, first pair of averaged values, the detail coefficient is 0 since
either sampling or histograms for a wide rangesefect 9 — 2 = 0, while for the second we need to stord since
project ,join ,and aggregate queries; (2) query execution-g_ 7 _ 1 Note that it is possible to reconstruct the four val-
time speedups of more than two orders of magnitude are madg.s of the original data array from the lower-resolution array
possible by our approximate query processing algorithms; anfl,hiaining the two averages and the two detail coefficients.
(3) our wavelet decomposition algorithm is extremely fast andRecursiver applying the above pairwise averaging and dif-

scales linearly with the size of the data. ferencing process on the lower-resolution array containing the

) ) ) ) averages, we get the following full decomposition.
RoadmapThe remainder of this paper is organized as follows.

After reviewing some necessary background material on the : : _
Haar wavelet decomposition, Sect. 2 presents our I/O-efficient Resolution  Averages  Detail coefficients

wavelet decomposition algorithm for multi-attribute relational 2 [2,2,5,7] —
tables. In Sect. 3, we develop our query algebra and operator 1 [2, 6] [0, -1]
processing algorithms for wavelet-coefficient data synopses. 0 [4] [-2]

Section 3 also proposes an efficient rendering algorithm for

multi-dimensional Haar coefficients. In Sect. 4, we discuss the

findings of an extensive experimental study of our wavelet- We define thewavelet transform(also known as the

based approximate query processor using both synthetic anslavelet decompositigrof A to be the single coefficient rep-

real-life data sets. Finally, Sect. 5 concludes the paper. resenting the overall average of the data values followed by
the detail coefficients in the order of increasing resolution.
Thus, the one-dimensional Haar wavelet transformdos

2 Building synopses of relational tables given byW, = [4,—2,0,—1]. Each entry iniW, is called a
using multi-dimensional wavelets wavelet coefficienfThe main advantage of using 4 instead

of the original data vectod is that for vectors containing
2.1 Background: the wavelet decomposition similar values most of the detail coefficients tend to have very

small values. Thus, eliminating such small coefficients from
Wavelets are a useful mathematical tool for hierarchically dethe wavelet transform (i.e., treating them as zeros) introduces
composing functions in ways that are both efficient and theo-only small errors when reconstructing the original data, giving
retically sound. Broadly speaking, the wavelet decompositiora very effective form of lossy data compression.
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Note that, intuitively, wavelet coefficients carry different Example 1.Consider thet x 4 array A shown in Fig.1b.1.
weights with respect to theirimportance in rebuilding the orig- Figure 1b.2 shows the result of the first horizontal and verti-
inal data values. For example, the overall average is obviouslgal pairwise averaging and differencing on the 2 hyper-
more important than any detail coefficient since it affects theboxes of the original array. During this first level of recur-
reconstruction of all entries in the data array. In order to equalsion, the2 x 2 sliding hyper-box is placed at the four pos-
ize the importance of all wavelet coefficients, we needds  sible “root” positions onA, namely|0, 0], [0, 2], [2, 0], and
malizethe final entries of¥V4 appropriately. This is achieved [2, 2], and pairwise averaging and differencing is performed
by dividing each wavelet coefficient by2!, wherel denotes ~ on each of them individually. For example, pairwise averag-
the level of resolutiorat which the coefficient appears (with ing and differencing on the hyper-box with root positian0]

1 = 0 corresponding to the “coarsest” resolution level). Thus,(containing valuesd[2,0] = 2, A[3,0] = 4, A[2,1] = 6,
the normalized wavelet transform for our example data arra)ﬁndA[& 1] = 8) produces the average coefficiént[2, 0] +

becomesdV, = [4,—2,0,—1/v/2]. A[3,0] + A[2,1] + A[3,1])/4 = 5, and detail coefficients
S (A[2,0] + A[2,1] — A[3,0] — A[3,1])/4 = —1, (A[2,0] +
3, Al2,1] — A[3, 1])/4: —2,and(A[2,0] + A[3,1] —

3,0

Multi-dimensional Haar waveletsThere are two common A[3,0} —A[2,1])/4 = 0(showninthe same positiond |2, 0],
methods in which Haar wavelets can be extended to transformi[3, 0], A[2, 1], and A[3, 1]). The averages of the values for
the data values in enulti-dimensionalarray. Each of these each posmoning of the hyper-box are then assigned to the
transforms is a generalization of the one-dimensional decom2 x 2 lower-left quadrant of the wavelet transform ariiéy,,
position process described above. To simplify the expositiorwhile the detail coefficients are distributed in the three re-
to the basic ideas of multi-dimensional wavelets, we assumenaining2 x 2 quadrants ofi¥4, as shown in Fig.1b.3. As
all dimensions of the input array to be of equal size. an example, for the hyper-box with root positifh 0] (i.e.,

The first method is known astandard decomposition 4, = 1, i, = 0, andm = 2, using the notation of Fig. 1a),
In this method, we first fix an ordering for the data dimen- the resultss, —1, —2, and0 are placed at positions; , io] =
sions (sayl, 2, ... ,d) and then proceed to apply the complete [1, 0], [2™~1 + iq,42] = [3,0], [i1,2™ ! +42] = [1,2], and
one-dimensional wavelet transform for each one-dimensional2™~1 4 4;, 2™ ~1 +4,] = [3, 2], respectively. The process is
“row” of array cells along dimensioh, forallk =1,... ,d. then recursed on the lower-left quadrantl&f, (containing
The standard Haar decomposition forms the basis of the recetihe average value.5,7.5,5, and 10 from the four hyper-
results of Vitter et al., on OLAP data cube approximations [33,boxes), resulting in the average coefficién25 and detail
34]. coefficients—1.25, —2.5, and0. That ends the recursive de-

The work presented in this paper is based on the secondomposition process, producing the final wavelet transform
method of extending Haar wavelets to multiple dimensions,arrayW 4 shown in Fig. 1b.4. O

namely thenonstandard decompositioAbstractly, the_non- . As noted in the wavelet literature, both methods for ex-

ing: given an ordering for the data dimensionsX ... . d),  anq to the best of our knowledge, none has been shown to be

we performone step of pairwise averaging and differencing \,itormiy superior. Our choice of the nonstandard method

for each one-dimensional row of array cells along dimension ¢ mostly motivated by our earlier experience with nonstan-

k, foreachk = 1,..., d. (The results of earlier averaging and g, tyo-dimensional Haar wavelets in the context of effective
differencing steps are treated as data values for larger values (fﬁage retrieval [24]. An advantage of using the nonstandard

k.) This process is then repeated recursively only on the quadyanstorm is that, as we explain later in the paper, it allows for
rant containing averages across all dlmen§|ons. One Way @n efficient representation of the sign information for wavelet
cqnceptuallzmg (and 'mp'Smem'”g [24]) t'h|s prpcedure IS 10coefficients. This efficient representation stems directly from
think of a2 x 2 - - - x 2(= 2) hyper-box being shifted across q ¢onstruction process for a nonstandard Haar basis [32]. Us-
the data array, performmg pairwise averaging and differencyny honstandard Haar wavelets, however, also implies that the
ing, distributing the results to the appropriate locations of the;anqard decomposition algorithms of Vitter and Wang [33] are
wavelet transform array’, (with the averages for each box 5 |onger applicable. We address this problem by proposing a
going to the “lower-left” quadrant iV’ ) and, finally, recurs- 0| /0-efficient algorithm for constructing the nonstandard
ing the computation on the Ipwer_-left quadrantW_’fA. Th'_s wavelet decomposition of a relational table (Sect. 2.2). (We of-
procedure is demonstrated pictorially for a (t\No-d|menS|0naI)ten omit the “nonstandard” qualification in what follows.)
2™ x 2™ data arrayA in Fig.1la. More specifically, Fig.1a
shows the pairwise averaging and differencing step for oneviulti-dimensional Haar coefficients: semantics and represen-
positioning of the2 x 2 box with its “root”(i.e., lower-left  tation. Consider a wavelet coefficiefit’ generated during
corner) located at the coordinat@s, , 2i,] of A followed by the multi-dimensional Haar decomposition af-dimensional
the distribution of the results in the wavelet transform array.data arrayA. From a mathematical standpoint, this coeffi-
This step is repeated for every possible combinatiofy'sf  cient is essentially a multiplicative factor for an appropriate
i; € {0,...,2m~! —1}. Finally , the process is recursed Haar basis functionwhen the data im is expressed using
only on the lower-left quadrant a4 (containing the aver-  the d-dimensional Haar basis [32]. Thedimensional Haar
ages collected from all boxes). A detailed description of thepasis function corresponding " is defined by: (1) ad-
nonstandard Haar decomposition can be found in any standa@imensional rectangular support regidn A that captures
reference on the subject (e.g., [18,32]). the region ofA’s cells thatT contributes to during recon-
struction; and (2) thguadrant sign informatiorthat defines
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[2i}, 2i,] — m-L m-1. m-1,
\\ [i,2 4] [2 +ip, 2 +]
\ ] []
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(a) Differencing %
240
i
o.01"™ "2™ 0 L2
Data Array A Wavelet Transform
Array Wi
RECURSE
Fig. 1a,b. Non-standard
9 |12| 12| 16 -3/ 04| 0 314(0]0 3|-4 (1010 decomposition in two di-
b 3| 6| 4] 8 7515|101 -2 11210l o0 1121010 mensions.a Computing
( ) V\A: pairwise averages and
314|168 -1 0(-2]0 -1.5 -2 -2.5| 0 [-1.5]-2 differences and distribut-
ing them in the wavelet
1|1 2| 2| 4 25-5(5]|-1 -5(-1 6.251.2%-.5 |-1 transform arrayb exam-

1.Data Array A 2.After averaging 3.After distributing

& differencing results in

the sign ¢ or —) of W’s contribution (i.e.+W or —W) to

any cell contained in a given quadrant of its support rectangle.
(Note that the wavelet decomposition process guarantees that
this sign can only change across quadrants of the support rep, —

gion.) As an example, Fig.2a depicts the support regions an

signs of the sixteen nonstandard, two-dimensional Haar basis

functions for coefficients in the corresponding locations of a
4 x 4 wavelet transform arraly’ 4. The blank areas for each
coefficient correspond to regions df whose reconstruction

is independent of the coefficient, i.e., the coefficient’s contri-
bution is0. Thus, W40, 0] is the overall average that con-
tributes positively (i.e.;+1W4[0, 0]") to the reconstruction of
all values inA4, whereadV,[3, 3] is a detail coefficient that
contributes (with the signs shown in Fig. 2a) only to values
in A’s upper right quadrant. Each data cellAncan be accu-
rately reconstructed by adding up the contributions (with th

4.Final Wavelet
Transform Array

ple decomposition of a
4 x 4 array

=
I]<:>

b

W

[+ 1]

2

1

0

[+ +]

Fig. 2. aSupport regions and signs for the sixteen nonstandard two-
dimensional Haar basis functions. The coefficient magnitudes are
multiplied by 41 (—1) where a sign of- (respectively—) appears,
andO in blank areasb representing quadrant sign information for
ecoef‘ficients using “per-dimension” sign vectors

appropriate signs) of those coefficients whose support regions

include the cell. Figure 2a also depicts the teels of reso-
lution (I = 0, 1) for our example two-dimensional Haar coef-

ficients; as in the one-dimensional case, these levels definethj@[O, 1] = +W4[0,0] + Wy

appropriate constants for normalizing coefficient values (see
e.g., [32)).

Example 2.In light of Fig. 2a, let us now revisit Example 1
and consider how the entries Bf 4 contribute to the recon-

' —WA[O, 2] + Wal2,

WA[l, 0] + WA[l, 1]
WA[2,2]
O

[0,1] +
(2,0] =
= 25— (—1)+ (—.5) = 3.

To simplify the discussion in this paper, we abstract away

struction of values ind. As we have already observed, co- the distinction between a coefficient and its corresponding
efficient W4[0,0] = 6.25 is the overall average that con- basis function by representing a Haar wavelet coefficient with

tributes positively (i.e.+6.25) to the reconstruction of all
sixteen data values id. On the other hand, the detail coef-
ficientW4[0,2] = —1 affects the reconstruction of only the
four data values in the lower-left quadrant 4f contribut-
ing —1 to A[0,0] and A[1,0], and—(—1) = +1 to A[0, 1]
and A[1, 1]. Similarly, the detail coefficientV4[2,0] = —.5
contributes—.5 to A[0, 0] and A[0, 1], and+.5 to A[1, 0] and
A[1,1]. For example, based on Fig. 2a, the data val{@ 1]
can be reconstructed using the following formula:

the tripleW = (R, S,v), where:

1. W.R is thed-dimensional support hyper-rectangle of W
enclosing all the cells in the data arralyto which W
contributes (i.e., the support of the corresponding basis
function). We represent this hyper-rectangle by its low and
high boundary values (i.e., starting and ending array cells)
along each dimensiofy 1 < j < d; these are denoted by
W.R.boundarylj].lo and W.R.boundary|j].hi, respec-
tively. Thus, the coefficieri” contributes to each data cell
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Aliy,... ,iq) satisfying the condition W.R.boun- signs that enable us to efficiently perfojoin  operations
dary[jl.lo < i; < W.R.boundary[j].hi for all di- directly over wavelet-coefficient synopses.
mensionsj, 1 < j < d. For example, for the detail
coefficient4[1, 2] in Fig. 2a,W.R.boundary|1].lo = 2,
W.R.boundary[l].hi = 3, W.R.boundary[2].lo = 0, 2.2 Building and rendering wavelet-coefficient synopses
and W.R.boundary[2].hi = 1. The space required
to store the support hyper-rectangle of a coefficient isConsider a relational table with d attributesX;, X, ... Xg.
2log N bits, whereN denotes the total number of cells A straightforward way of obtaining a wavelet-based synop-
of A. sis of R would be to take the traditional two-dimensional ar-
2. W.S stores thesign information for all d-dimensional ray view of a relational table (with attributes on theaxis
quadrants of W.RStoring the quadrant sign information and tuples on theg-axis), apply a two-dimensional wavelet
directly would mean a space requirement®f2?), i.e.,  decomposition onR, and retain a few large coefficients. It
proportional to the number of quadrants @fdimensional s highly unlikely, however, that this solution will produce a
hyper-rectangle. Instead, we use a more space-efficierttigh-quality compression of the underlying data. The reason
representation of the quadrant sign information (using onlyis that wavelets (like most compression mechanisms) work by
2d bits) that exploits the regularity of the nonstandard Haarexploiting locality (i.e., clusters of constant or similar values),
transform. The basic observation here is that a nonstarwhich is almost impossible when grouping together attributes
dard d-dimensional Haar basis is formed by scaled andthat can have vastly different domains (e.g., consideagen
translated products afone-dimensional Haar basis func- attribute adjacent to aalary attribute). Similar problems
tions [32]. Thus, our idea is to store a 2-bign vectoifor occur in the vertical grouping as well, since even sorting by
each dimension, that captures the sign variation of the some attribute(s) cannot eliminate large “spikes” for others.
corresponding one-dimensional basis function. The twoWe address these problems by taking a slightly different view
elements of the sign vector of coefficidfit along dimen-  of the d-attribute relational tablé. We can represent the in-
sionj are denoted bi¥.S.sign[j].lo andW.S.sign][j].hi, formation in R as ad-dimensional arrayl , whose;*" di-
and contain the sign that corresponds to the lower andnension is indexed by the values of attribufe and whose
upper half of/W.R's extent along dimension, respec- cells contain the count of tuples iR having the correspond-
tively. Given the sign vectors along each dimension anding combination of attribute valued.r is essentially thgoint
treating a sign of+ (—) as being equivalent ta-1 (re-  frequency distributiomf all the attributes oR?. Figure 3a de-
spectively,—1), the sign for eackl-dimensional quadrant picts the tuples of an example relation with two attributes (the
can be computed as the product of theign-vector en-  “Count” column simply records the number of tuple occur-
tries that map to that quadrant; that is, following exactly rences); the corresponding joint-frequency array is shown in
the basis construction process. (Note that we will con-Fig. 3b. We obtain the wavelet synopsisi®by constructing
tinue to make use of this “+1/-1” interpretation of signs the nonstandard multi-dimensional wavelet decomposition of
throughout the paper.) Our sign-computation methodol-Ar (denoted bylWg) and then retaining only some of the
ogy is depicted in Fig.2b for two example coefficient coefficients (based on the desired size of the synopsis) using
hyper-rectangles from Fig. 2a. The sign vectors for the top-a thresholding scheme. In this section, we propose a novel,
most coefficient in Fig.2b ar®”.S.sign[1].lo = +1 and  1/O-efficient algorithm for constructingl’z. Note that, even
W.S.sign[1].hi = —1 along dimension 1 (x-axis), and though our algorithm computes the decompositioA gf it in
W.S.sign[2].lo = +1 andW.S.sign[2].hi = —1 along  fact works off the “set-of-tuples” (ROLAP) representation of
dimension 1 (y-axis); thus, the signs of the lower left, lower R. (As noted by Vitter and Wang [33], this is a requirement for
right, upper left, and upper right quadrants of its support re-computational efficiency since the joint-frequency arrhy

gion are computed d4.S.sign[1].lox W.S.sign|2].lo = is typically very sparse, especially for the high-dimensional

+1, W.S.sign[1].hixW.S.sign[2].lo = —1, W.S.sign[1]. data sets that are typical of DSS applications.) We also briefly
lo * W.S.sign[2].hi = —1, and W.S.sign[l].hi * describe our thresholding scheme for controlling the size of a
W.S.sign[2].hi = 41, respectively. wavelet-coefficient synopsis. We have also developed a time-

3. W.v is the (scalar) magnitude of coefficient.Whis is  and space-efficient algorithm (termeehder ) for render-
exactly the quantity thatl” contributes (either positively ing (i.e., expanding) a synopsis into an approximate “set-of
or negatively, depending o.S) to all data array cells tuples” relation (which is used during query processing as the
enclosed ifV.R. For example, the magnitude Bf,4 [0, 0] final step). We begin by summarizing the notational conven-
in Fig. 1b is6.25, and that oV 4[1, 2] is —2. tions used throughout the paper.

Notation. Let D = {D;, D, ..., Dy} denote the set of di-
Thus, our view of @-dimensional Haar wavelet coefficient mensions ofd z, where dimensio®; corresponds to thealue

is that of ad-dimensional hyper-rectangle with a magnitude domainof attribute X ;. Without loss of generality, we as-
and a sign that may change across quadrants. Note that, lsume that each dimensidp; is indexed by the set of integers
the properties of the nonstandard Haar decomposition, givef0, 1, - - - , |D,|—1}, where| D;| denotes the size of dimension
any pairof coefficients, their hyper-rectangles are eittem-  D,. We assume that the attributeX,,... , X} are ordinal
pletely disjointor one iscompletely containeth the other;  in nature, that is, their domains are naturally ordered. This
that is, coefficient hyper-rectangles canpattially overlap captures all numeric attributes (e.g., age, income) and some
As will be seen later, it is precisely these containment prop-categorical attributes (e.g., education). Such domains can al-
erties coupled with our sign-vector representation of quadranivays be mapped to the set of integers mentioned above while
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Dim DI Dim D2 . Chunk3 Chunk4 (5 D1 Dim D2 c
Aurxh | @amxy | Count : (anrxD) |(auexz) | Tount Fig. 3. aAn example relatior? with
(7) 8 i (1) (1) T two data attributesX; andX,); b the
1 corresponding joint-frequency array
1 1 7 0 4 . )
PR 4 - | 4 Ar; c one possible chunking ol g;
B [ 5 6 s s 6 all cells inside a chunk are stored con-
tiguously on disk;d the correspond-
3 2 6 3 2 6 . L
p . 5 . p 5 ing chunked organization a@?; all tu-
ples belonging to the same chunk are
7 6 3 7 6 3 stored contiguously
a b c d

preserving the natural domain order and, hence, the locality ond tuples ofR belonging to the same chunk are stored con-
the distribution. It is also possible to map unordered domaingiguously on disk. Figures 3c,d depict an example chunking
to integer values; however, such mappings do not always presf Ar and the corresponding organization®§ tuples. IfR
serve locality. For example, mapping countries to integers usis organized in chunk€ oMPUTEWAVELET can perform the

ing alphabetic ordering can destroy data locality. There maydecomposition in aingle pas®ver the tuples oR. Note that

be alternate mappings that are more locality preserving, e.gsuch data organizations have already been proposed in ear-
assigning neighboring integers to neighboring countries. (Eflier work (e.g., thechunked-file organizatioaf Deshpande et
fective mapping techniques for unordered attributes are aml. [5] and Orenstein’g-order linearization [17,25]), where
open research issue that lies beyond the scope of this papertlaey have been shown to have significant performance benefits
methodology based on concept hierarchies has recently bedar DSS applications due to their excellent multi-dimensional
discussed in [6].) Thé-dimensional joint-frequency array/z clustering properties.

comprisesN = szl |D;| cells with cell Ag[iy, ia, . .. ,i4] We preseljtourI/O—eﬁicieNIOMPUTEWAngET algor@thm
containing the count of tuples iR having X; = i; for each  belowassuming that’s tuples are organized itdimensional
attributel < j < d. We defineN., to be the number of pop- chunks. IfR is not chunked, then an extra pre-processing step
ulated (i.e., non-zero) cells ol (typically, N, << N). is required to reorganizR on disk. This pre-processing is no
Table 1 outlines the notation used in this paper with a briefmore expensive than a sorting step (e.g.z{arden which
description of its semantics. We provide detailed definitionsrequires a logarithmic number of passes aokteil hus, while

of some of these parameters in the text. Additional notatiorthe wavelet decomposition requires just a single pass when
will be introduced when necessary. R is chunked, in the worst-case (i.e., wh&nis not “chun-

Most of the notation pertaining to wavelet coefficients ked”), the I/O complexity oCompuTEWAVELET matches that
W has already been described in Sect.2.1. The only exof Vitter and Wang's I/O-efficient algorithm for standard Haar
ception is thesign-change value vectdw.S.signchangelj] Wavglet_ Qecompqglt|0n [33]. We also assume that each chunk
that captures the value along dimensign (between can individually fitin memory. We show that the extra mem-
W.R.boundary|j).lo and W.R.boundary[j].hi) at which  ory required by our wavelet decomposition algorithm (in ad-
a transition in the value of the sign vectdV.S.sign|[j] dition to the memory needed to store the chunk itself) is at
occurs, for eachl < j < d. That is, the sign mostO(2¢ - log(max;{|D;|})). Finally, our implementatjon
W.S.sign[jl.lo (W.S.sign[j].hi) applies to the range ©Of CompUTEWAVELET also employs a dynamic coefficient-
[W.R.boundary|j).lo, ... ,W.S.signchange[j] —1] (respec-  thresholding scheme that adjusts the number of wavelet co-
tively, [W.S.signchangelj], ..., W.R.boundary[j].hi]).  efficients maintained during the decomposition based on the
As a convention, we sefV.S.signchange[j] equal to  desired size of the synopsis. We do not discuss the details of
W.R.boundary|j].lo when there is no “true” sign change our dynamic-thresholding step below to keep the presentation
along dimensionj, i.e., W.S.sign[j] contains [+,+] or  Of COMPUTEWAVELET simple.
[—,—]. Note that, for base Haar coefficients with a true ~ Our I/O-efficient decomposition algorithm is based on the
sign change along dimension, W.S.signchange[j] is  following observation:
simply the midpoint betweenWW.R.boundary[j].lo and
W.R.boundary|j].hi (Fig.2). This property, however, no . I : i
longer holds when arbitrary selections and joins are executed be (?(?mputed bw . pu.tlng the decom
over the wavelet coefficients. As a consequence, we need to POSition for each of the® d-dimensional subarrays
store sign-change values explicitly in order to support general ~corresponding tol z's quadrants and then performing

query processing operations in an efficient manner. pairwise averaging and differencing on the computed
24 averages ofiz’s quadrants.

The decomposition of &dimensional arraydr can

The CompUTEWAVELET decomposition algorithm. We Due to the above property, when a chunk is loaded from the
now present our I/O-efficient algorithm (call&tbmpruTE- disk for the first time,CompuTEWAVELET can perform the
WavELET) for constructing the wavelet decomposition of entire computation required for decomposing the chunk right
R. Our algorithm exploits the interaction of nonstandard away (hence no chunk is read twice). Lower resolution coef-
wavelet decomposition and “chunk-based” organizations officients are computed by first accumulating, in main memory,
relational tables [30,5]. In chunk-based organizations, theaverages from thg? quadrants (generated from the previous
joint-frequency arraydr is split into d-dimensionalchunks  level of resolution) followed by pairwise averaging and differ-
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Table 1. Notation
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Symbol Semantics

d Number of attributes (i.e., dimensionality) of the input relational table

R, Ar Relational table and correspondidglimensional joint-frequency array

X;.,D; 4" attribute of relationk and corresponding domain of valuds< j < d)
D={D,...,Dq} Set of all data dimensions of the arrdy;

ARlir,ia, - ,id4] Count of tuples inR with X; = 4; (i; € {0,...,|D;| —1}),V1<j<d

N =TI, [Djl Size (i.e., number of cells) ol r

N, Number ofnon-zeracells of Ar (N, << N)

Wrli1, 2, ,id] Coefficient located at coordinat@s, iz, - - - , 4] Of the wavelet transform arrdy/r
W.R.boundaryl[j].{lo,hi} | Support hyper-rectangle boundaries along dimensigfior coefficienti’ (1 < j < d)
W.S.sign[j].{lo, hi} Sign vector information along dimensidp; for the wavelet coefficientl (1 < j < d)
W.S.signchange[j] Sign-change value along dimensidh for the wavelet coefficierd (1 < 5 < d)

W Scalar magnitude of the wavelet coefficiéht

l Current level of resolution of the wavelet decomposition

encing, thus requiring no extra I/O. Due to the depth-first na-procedure CompUTEWAVELET(AR, m, (i1, i2, .. . ,1a), )

ture of the algorithm, the pairwise averaging and differencing€din

is performedas soon asll the 2¢ averages are accumulated, - if { = m retum Arlin, .. '_v_id]
making the algorithm memory efficient (as, at any pointin the2- for t1:=0.1 for ta :=0,1
T[t1,... ,ta] := COMPUTEWAVELET( AR, m,

computation, there can be no more than one “active” subarray
(whose averages are still being accumulated) for each level oz[
resolution). 5
The outline of our 1/0O-efficient wavelet decomposition
algorithm CompUTEWAVELET is depicted in Fig.4. To sim-

(i1 —+ 11 - 2m_l_1, A T 2m—l—1)’ [+1 )
end --- end
perform pairwise averaging and differencing on the

2 x ... x 2= 2%hyper-boxT’

: . 6. fort;:=0,1 for t4:=0,1
plify the presentation, th€oMpPUTEWAVELET pseudo-code ! o ¢ i . ia
assumes that all dimensions of the data artayare of equal 7. arraylnder:=(t -2 + g, ta s 24 i
q 8. WrlarrayIndex].v :=T[t1,... ,td]

size,i.e.|Dy| = |Ds| = ... = |Dy4| = 2™. We discuss han-
dling of unequal dimension sizes later in this section. Beside '0
the input joint-frequency array4(z) and the logarithm of the
dimension sizert), CompUTEWAVELET takes two additional
arguments: (a) theoot (i.e., “lower-left” endpoint) coordi- 12
natesof the d-dimensional subarray for which the wavelet

for j:=1,....,d
WrlarrayIndez).R.boundary[j] := [i;,4; + 27" — 1]
WrlarrayIndex).S.sign[j] ==
(t; ==0)7[+,+] : [+, -]
WrlarrayIndex).S.signchangelj) ==

(tj ==0) 74 @ i; +2m"

transform is to be computed, , is, . .. ,i4); and (b) the cur- 13,  end
rentlevel of resolutiorfor the wavelet coefficientd), Note 14. end end
that, for a given level of resolutidnthe extent (along each di-  15. return T[0, ... , 0

mension) of thel-dimensional array rooted &t , iz, ... ,iq)
being processed is exact#y* . The algorithm computes the
wavelet coefficients for the elements in the input subarray and
returns the overall average (Step 15). The wavelet-coefficient
computation is carried out by: (1) performing wavelet decom-
positionrecursivelyon each of th&? quadrants of the input
subarray (to produce the corresponding wavelet transformgray 4, corresponding to the relation shown in Fig. 3. The
for the next level of resolution, i.el.+ 1), and collecting the  ygcyrsive calls ofCompuTEWAVELET for the four resolu-
quadrant averages returned i@ & - x 2 = 2¢ temporary tjon levelsi form a depth-first invocation tree; the root of
hyper-boxT" (Steps 2-4); (2) performing pairwise averaging the tree (i.e.; = 0) corresponds to the initial invocation
and differencing orf’ to produce the average and detail co- CoMPUTEWAVELET(AR, 3, (0,0), 0) with the entire array
efficients for the level-decomposition of the input subarray 4, as the input subarray. The root then recursively invokes
(Step 5); and, finally, (3) distributing these levairavelet co-  covpureWavELET 0N the subarrays corresponding to the four
efficients to the appropriate locations of the wavelet trans-; » 4 quadrants of4 “rooted” at cells(0,0), (0,4), (4,0),
form array Wy (computing their support hyper-rectangles and(4, 4) to compute the wavelet coefficients at the next level
and dimension sign vectors at the same time) (Steps 6-14yf resolution { = 1). CoMPUTEWAVELET(AR, 3, (0,0), 1) in

The initial invocation ofCoMPUTEWAVELET is done with root ¢ invokesCompUTEWAVELET on the four2 x 2 quadrants
(i1, 32, .- y1a) = (0,0,...,0) and level = 0. (rooted af0,0), (0,2), (2,0), and(2, 2)) of its input subarray

(I = 2). Similarly, ComPUTEWAVELET (AR, 3, (0,0), 2) in-
vokesCoMPUTEWAVELET 0N its fourl x 1 “quadrants” (i.e.,
simple cells) located &0.0), (0,1), (1,0), and(1, 1). Each of

end

ig. 4. ComPUTEWAVELET: an |/O-efficient wavelet decomposition
Igorithm

Example 3.Figure 5 illustrates the working of th@owmpuUTE-
WAaVELET algorithm on the exampl8 x 8 joint-frequency
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COMPUTEWAVELET After Distribute results in Wg
(AR, 3,(0,0),0) ,returns 0.5 Subarray X — —
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Averages and R S iy A
differencing A S B
Steps 2-4
1=0 (Steps 2:4) (Step 5) k-
— (-
[0].5] [28.25— P it
5128 282
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COMPUTEWAVELET COMPUTEWAVELET COMPUTEWAVELET COMPUTEWAVELET
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Distribute results in Wg
After T
adrant averaging [ i shE EEEET PR —TT Same
b oers and [ Same [11. 1] same roess
|:1 ubarray (Steps 2-4) differencing |} 1 L L 4 14 process [_L_2__t_] process N
676 (Step 5) as shown |_L_i_.4] asshown as shown
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- m (Recursive calls made by (Recursive calls made by (Recursive calls made by
3 this invocation not shown) this invocation not shown) this invocation not shown)
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Quadrant Quadrant Quadrant Quadrant
COMPUTEWAVELET COMPUTEWAVELET COMPUTEWAVELET COMPUTEWAVELET
(AR: 3,(0,0), 2) returns 1 (AR:3.(0,2),2) retums 0 (AR, 3,(2,0), 2) retums 0 (A, 3, (2,2), 2) returns 3
After Dis‘trib‘ute‘res‘ults‘ in ‘WR
averaging |
Quadrant and e Same Same Same
=2 Averages differencing | ! process 1 process 1 process
= Subarray  (steps 2-4) (Step 5) ) -=r==1 as shown --1--1 asshown | 61 6] asshown
fd o ; on left i on left : on left
1 oj1] [5]1
3 3|0 1.5 F {Recursive calls made by  {Recursive calls made by {(Recursive calls made by
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Quadrant Quadrant Quadrant Quadrant
COMPUTEWAVELET COMPUTEWAVELET COMPUTEWAVELET COMPUTEWAVELET
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Fig. 5. Execution of theCompuTEWAVELET algorithm for a8 x 8 joint-frequency array. Each invocation of ttempuTEWAVELET procedure
is shown in a dotted box labeled by the procedure call with the right parameters

these four invocations (at resolutidoe= 3) satisfies the “base 3, (0,0), 0) collects the returned averages (ik.0, 0.5, and
condition” of theCoMmPUTEWAVELET recursion (Step 1); thus, 0.5) in the “quadrant-averages array”, performs pairwise
each such invocation simply returns the value at its respecaveraging and differencing, distributes the resultdin, and

tive 1-cell subarray input3( 0, 0, and1, respectively). The
caller CoMmPUTEWAVELET (AR, 3, (0,0), 2)) collects these
four values in the “quadrant-averages array’performs pair-

returns the overall average ©6. O

As we already observe@omMpUTEWAVELET basically ex-

wise averaging and differencing, distributes the results in theploits chunked array organizations by working in a “depth-
wavelet-transform array¥’r, and returns the computed av- first” manner — all the computation required for decompos-

erage (i.e.|1) to its caller (theCoMPUTEWAVELET (AR, 3,

ing an array chunk is done the first time the chunk is loaded

(0,0), 1) invocation). The other three recursive invocationsinto memory. Thus, once d-dimensional chunk ofd is

made byComMPUTEWAVELET(AR, 3, (0,0), 1) are processed
in the same manner. Similarl;oMPUTEWAVELET (AR, 3,
(0,0), 1) simply collects the returned averages (ik.0, 0,
and 3) in the “quadrant-averages arrdy;’performs pairwise
averaging and differencing, distributes the resultd/in, and
returns the computed average (iB.1o its caller (theCom-
PUTEWAVELET (AR, 3, (0,0), 0) invocation). The other three
recursive invocations made BYoMPUTEWAVELET (AR, 3,
(0,0), 0) on the fourd x 4 quadrants ofAr are processed
in the same manner. As previous§pMPUTEWAVELET (AR,

loaded into memoryCoMPUTEWAVELET computes the (non-
standard) wavelet coefficierds all levelsfor that chunk with

no additional I/O’s. This property essentially guarantees that
all computation is completed in a single pass over the chunks
of Agr. Thus, assuming a chunked organizatioi¥ tuples,

the time complexity ofCompuTEWAVELET is O(N,)%; if R

! For simplicity, the pseudo-code in Fig.4 works on the joint-
frequency arrayd r, which seems to imply a complexity 6¥(V)
for CompuTEWAVELET. Our implementation, as mentioned before,
works onR itself and hence has a time complexity of o}y V.,).
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is not chunked, then the complexity GbMPUTEWAVELET is cess for nonstandard Haar coefficients to the important case
O(N, log N,), due to the extra pre-processing step discusse@f unequal dimension extents. (The proof follows by a simple
above. verification of the orthonormality property for the constructed
With respect to the memory requirements of our algorithm,coefficients.)
observe that the only extra memory required@ympUTE-
WAVELET (in addition to that needed to store the data chunkLemma 4. Let W be any wavelet coefficient generated by
itself) is the memory for storing the temporary “quadrant- pairwise averaging and differencing during the nonstandard
averages hyper-boxeg’. Each such hyper-box consists of d-dimensional Haar decomposition df= |D;|x - - - x |Dy|.
exactly2¢ entries and the number of distinct hyper-boxes thatln addition, letW.R.length[j] := W.R.boundaryl[j].hi —
can be “active” at any given point in time during the oper- W.R.boundary[j].lo + 1 denote the extent df/ along di-
ation of CompuTEWAVELET is bounded by the depth of the mensionyj, for eachl < j < d. Then, dividing the valué/’.v
recursion, or equivalently, the number of distinct levels of co- ot each coefficient’ by the factor] ], ID;l___ gives
efficient resolution. Thus, the extra memory requiredoy- 3V W.R.lengthlj]
PUTEWAVELET is at mostO(2¢ - m) (when|Dy| = ... =
|Da| = 2™) or O(2¢-log(max;{|D;|})) (for the general case o _ _ o
of unequal dimension extents). Coefficient thresholdingGiven a limited amount of storage
We should note here that both the hyper-rectangle and théor maintaining the wavelet-coefficient synopsisiafwe can
sign information for any coefficient generated during the exe-Only retain a certain numbe?¥ of the coefficients stored in
cution of ComPUTEWAVELET Over a base relatioR canbeeas- Wk (The remaining coefficients are implicitly setq Typ-
ily derived from the location of the coefficient in the wavelet ically, we haveC' << N, which implies that the chosefi
transform arrayV z, based on the regular recursive structure of wavelet coefficients form a highly compressed approximate
the decomposition process. Thus, in order to conserve spackepresentation of the original relational data. The goal of co-
hyper-rectangle boundaries and sign vectors are not explicitlgfficient thresholding is to determine the “best” subse€’of -
stored in the wavelet-coefficient synopses of base relationg:0efficients to retain, so that the error in the approximation is
(All that we need are the coefficients’ coordinate$li.) As minimized.
we will see later, however, this information does need to be  The thresholding scheme that we have employed for the

stored explicitly for intermediate collections of wavelet coef- Purposes of this study is to retain tlielargest wavelet co-
ficients generated during guery processing_ efficients inabsolute normalized valudt is a well-known

fact that (for any orthonormal wavelet basis) this thresholding

method is in facprovably optimalwith respect to minimiz-
Handling unequal dimension extentt.the sizes of the di- ing the overall mean squared error (i.B% error norm) in the
mensions ofdr are not equal, then the recursive invocation data compression [32]. Given that our goal in this work is to

anorthonormal basis O

of CompuTEWAVELET for quadrantty, ... , ¢a] (Step 3) takes  support effective and accurageneralquery processing over
place only if the inequality; +t; - 2"~'~! < |D;|is satis-  such wavelet-compressed relational tables, we felt that the
fied, for eachy = 1,... ,d. This means that, initially, quad- L? error norm would provide a reasonable aggregate metric

rants along certain “smaller” dimensions are not considerewf the accuracy of the approximation over all the individual
by CompuTEWAVELET; however, once quadrant sizes becometuples of R. Our thresholding approach is also validated by
smaller than the dimension size, computation of coefficientsarlier results, where it has been proven that minimizing the
in quadrants for such smaller dimensions is initiated. Con-L? approximation error is in fact optimal (on the average) for
sequently, the pairwise averaging and differencing computaestimating the sizes of join query results [15]. Note that it is
tion (Step 5) is performed only along those dimensions thapossible to optimize outompuTEWAVELET algorithm forZ2-
are“active” in the current level of the wavelet decomposi- based coefficient thresholding to ensure that only coefficients
tion. The support hyper-rectangles and dimension sign vecthat make it into the final synopsis are maintained during the
tors for such active dimensions are computed as described ilecomposition process; for example, Steps 6—14 can be omit-
Steps 10-12, whereas for an “inactive” dimensidhe hyper-  ted for coefficients with absolute normalized value less than
rectangle boundaries are sebatindary(j] := (0,|D;| — 1) the C best coefficients found so far. We have chosen not to
(the entire dimension extent) and the sign vector is set aincorporate such optimizations in our discussion here in order
sign[j] = [+, +]. to keep the presentation 6bMpUTEWAVELET simple and in-

As mentioned in Sect. 2.1, the coefficient values computediependent of the specifics of the thresholding scheme. For the
by CompUTEWAVELET need to be properlgormalizedin or- remainder of the paper, we use the symig} to denote the
der to ensure that the Haar basis functions are orthonormalet of wavelet coefficientetainedfrom the decomposition of
and the coefficients are appropriately weighted according tgelation R (i.e., thewavelet-coefficient synopsi$ R).
their importance in reconstructing the original data. This is
o_l:)vious'ly'crucial when thresholding coefficients based ON &Rendering a wavelet-coefficient synopsiscrucial require-
given (limited) amount of storage space. When all dimensiong,ent for any lossy data-compression scheme is the ability to

are of equal extent (i.e}Dy| = [Do| = ... = |Da| = 2™),  reconstructan approximate version of the original data from a
we can normalize cfioefﬁment values by simply dividing each i en compressed representation. In our context, this require-
coefficient with+/2!", wherel is the level of resolution for ment translates t@nderinga given set of wavelet coefficients
the coefficient. As for one-dimensional wavelets, this normal-Wr = {W, = (R;, S;,v;)} corresponding to a relational
ization ensures the orthonormality of the Haar basis [32]. TheaableT", to produce an “approximate version” @f that we
following lemma shows how to extend the normalization pro-denote byrender (Wr). It is important to note thal’ can
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correspond to either a base relation or the result of an arbi- Wavlet Coeficient] render (W) ... [ Approximate

trarily complex SQL query on base relations. As we show in W VW, W render (W) B,k

Se_ct. 3,our approximate query execution engm_e_does the t_)ull%(er W (T, %, . T

of its processing directly over the wavelet coefficient domain. Y Y

This means that producing the final approximate query answer Result Set of Result Approximate

P ” . Wavelet Coefficient; > Relation

in “human-readable” form can always be done by placing a W, render (wg) S

render () operator at the root of the query plan or as a post-

processing step. Fig. 6. Valid semantics for processing query operators over the

Abstractly, the approximate relatioender (Wy) can  Wavelet-coefficient domain
be constructed by summing up the contributions of every

coefficient W; in Wp to the appropriate ceIIS_ of the. (ap- Fig. 6. (These semantics can be translated to the equivalence
proximate) MOLAP arrayAr. Consider a cell inAr with render (op(Ti,...,T:)) = op(render (T1,...,T})), for

coordinates(iy, ... ,ia) that is contained in théVi’s sup-  each operatoop.) Our algebra allows the fast execution of
port hyper-rectangléV;. R. Then, the contribution ofV; 1o any relational queryy entirely over the wavelet-coefficient
Arlir,... ,id] is exactly Wi.v - [ <;<48;, Wheres; = qomain, while guaranteeing that the final (rendered) result is
W.S.sign[j].loif i; < W.S.signchange[j]; otherwise,s; =  identical to that obtained by executigyon the approximate

W.S.sign[j].hi. Once the counts for all the cells in the approx- input relations.

imate MOLAP arrayAr have been computed, the non-zero  |n the following subsections, we describe our algorithms

cells can be used to generate the tuples in the approximat@r processing the SQL operators in the wavelet-coefficient do-

relationrender (Wr). In Sect.3.5, we present an efficient main. Each operator takes as input one or more set(s) of multi-

algorithm for rendering a set of wavelet coefficielits toan  dimensional wavelet coefficients and appropriately combines

approximate MOLAP representation. (The tuple generatiorand/or updates the components (i.e., hyper-rectangle, sign in-

step is then trivial.) formation, and magnitude) of these coefficients to produce
a “valid” set of output coefficients (Fig.6). Note that, while
the wavelet coefficients (generatedbympPUuTEWAVELET) for

3 Processing relational queries base relational tables have a very regular structure, the same is

in the wavelet-coefficient domain not necessarily true for the set of coefficients output by an ar-

) ] bitrary select orjoin operator. Nevertheless, we loosely

In this section, we propose a novel query algebra for waveleteontinue to refer to the intermediate results of our algebra op-

coefficient synopses. The basic operators of our algebra cogrators as “wavelet coefficients” since they are characterized

respond directly to conventional relational algebra and SQLpy the exact same components as base-relation coefficients

operators, including the (non-aggregatelect ,project , (e g., hyper-rectangle, sign-vectors) and maintain the exact

andjoin , as well as aggregate operators ld@int , sum,  same semantics with respect to the underlying intermediate

andaverage . There is, however, one crucial difference: our relation (i.e., the rendering process remains unchanged).
operators are definexver the wavelet-coefficient domaihat

is, their input(s) and output arsets of wavelet coefficients

(rather than relational tables). The motivation for defining a3.1 Selection operatosglect )

query algebra for wavelet coefficients comes directly from the

need for efficient approximate query processing. To see thisQur selection operator has the general fosglect ,..q
consider am-ary relational quen over Ry,... ,R, and  (Wr), wherepred represents a generic conjunctive predi-
assume that each relatidf) has been reduced to a (truncated) cate on a subset of the attributes inT’; that is, pred =
set of wavelet coefficientd’z,. A simplistic way of process-  (I;; < X;; < hy) Ao A (I, < Xy, < hy,), wherel;,
ing @ would be to render each synop$isz, into the corre-  andh;; denote the low and high boundaries of the selected
sponding approximate relation (denotetider (Wg,))and  range along each selection dimension, j = 1,2,--- , k,
process the relational operators@hover the resulting sets k < d. This is essentially &-dimensional range selection,
of tuples. This strategy, however, is clearly inefficient: the ap-where the queried range is specified alérjmensionsD’ =
proximate relatiorrender (WWg,) may contain just as many {D;,,D,,,...,D; } and left unspecified along the remain-
tuples as the originaR; itself, which implies that query exe- ing (d — k) dimensiongD — D’). (D = {D1, Da, ..., D4}
cution costs may also be just as high as those of the originallenotes the set of all dimensionsia)) Thus, for each unspec-
query. Therefore, such a“render-then-process” strategy esseified dimensionD;, the selection range spans the full index
tially defeats one of the main motivations behind approximatedomain along the dimension; thatis = 0 andh; = |D;|—1,
guery processing. for eachD; € (D — T’).

On the other hand, the synopsi&y, is a highly- Theselect operator effectively filters out the portions
compressed representatiorrender (Wg,) thatis typically  of the wavelet coefficients in the synopsig, that do not
orders of magnitude smaller thah. Executing® inthe com-  overlap with thek-dimensional selection range, and thus do
pressed wavelet-coefficient domain (essentially, postponingot contribute to cells in the selected hyper-rectangle. This
render -ing until the final query result) can offer tremen- process is illustrated pictorially in Fig.7. More formally, let
dous speedups in query execution cost. We therefore ddd” ¢ W denote any wavelet coefficient in the input set of
fine the operatorep of our query processing algebra over ourselect operator. Our approximate query execution en-
wavelet-coefficient synopses, while guaranteeing the validyine processes the selection oV&ras follows. If1¥’s sup-
semantics depicted pictorially in the transition diagram of port hyper-rectangl&V. R overlaps thek-dimensional selec-
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tion hyper-rectangle; that is, fibr everydimensionD;, € D,
the following condition is satisfied:

li; < W.R.boundaryl[ij].lo < hy, OR
W.R.boundaryli;].lo < l;; < W.R.boundaryli;].hi,

then

1. For all dimension®;; € D’ do
1.1. Set W.R.boundaryli;].lo max{ I,
W.R.boundaryli;].lo } and W.R.boundary[i;].hi :=
min{h;;, W.R.boundaryli;].hi }.
If  W.R.boundaryli;].hi < W.S.signchangel[i;] then
set W.S.signchange[i;] := W.R.boundaryli;].lo and
W.S.sign[ij] := [W.S.sign[i;].lo, W.S.sign[i;].lo].
1.3. Else if W.R.boundaryli;].lo > W.S.signchangeli,]
then set W.S.signchangeli;] := W.R.boundaryli;].lo
and W.S.sign[i;] :== [W.S.sign[i;].hi, W.S.sign[i;].hi].
2. Add the (updated)’ to the set of output coefficients; that is, set
Ws := Wg U{W}, whereS = select ,,ca(T).

1.2.

Ourselect
ately updates) only the coefficientslify that overlap with the

k-dimensional selection hyper-rectangle. For each such coef-

processing algorithm chooses (and appropri-
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Since W3.S.signchange[l] = 12 which is betweerd and
13 (the new boundaries along,), the sign information
along D, is not updated. Along dimensiol,, however,
we have W3.S.signchange[2] 4 which is less than
Ws.R.boundary([2).lo = 5, and so Step 1.3 updates the
sign information alongD; to W3.S.sign[2] := [—,—] and
Ws.S.signchange[2] := 5 (i.e., the low boundary along
Dy). O

3.2 Projection operatorgroject )

Our projection operator has the forproject

Xiy e X,
(Wr), where thek projection attributes(; ,... , X;, forma
subset of the! attributes off". LettingD’ = {D;,,... ,D;, }

denote thek < d projection dimensions, we are interested
in projecting outthe d — k dimensions in(D — D’). We
give a general method for projecting out a single dimension
D; € D — D'. This method can then be applied repeatedly to
project out all the dimensions {{D — D’), one dimension at
atime.

Consider T's corresponding multi-dimensional joint-

ficient, our algorithm: (a) updates the hyper-rectangle boundfrequency arraydr. Projecting a dimensio®; out of A is
aries according to the specified selection range (Step 1.1); anguivalent to summing up the counts for all the array cells in
(b) updates the sign information, if such an update is neceseach one-dimensional row dfr along dimensio; and then
sary (Steps 1.2-1.3). Briefly, the sign information along theassigning this aggregated count to the single cell correspond-

queried dimensiorD;, needs to be updated only if the se-
lection range alond);; is completely contained in either the

ing to that row in the remaining dimensior® (- {D,}). The
above process is illustrated with an example two-dimensional

low (1.2) or the high (1.3) sign-vector range of the coefficientarrayAr in Fig. 8a. Consider any-dimensional wavelet coef-

alongD;. . In both cases, the sign-vector of the coefficient is ficient W in the project

operator’s input seit’r. Remem-

updated to contain only the single sign present in the selectioR®' thatlV” contributes a value v to every cell in its sup-

range and the coefficient’'s sign-change is set to its leftmos

boundary value (since there is no change of sign albng

after the selection). The sign-vector and sign-change of th#/V
result coefficient remain untouched (i.e., identical to those of
the input coefficient) if the selection range spans the origina

sign-change value.

port hyper-rectangléV. R. Furthermore, the sign of this con-
tribution for every one-dimensional row along dimension

is determined as eithé¥.S.sign[j].hi (if the cell lies above
.S.signchangelj]) orW.S.sign[j].lo (otherwise). Thus, we
an work directly on the coefficient’ to project out dimen-
ion D; by simply adjusting the coefficient’s magnitude with
an appropriate multiplicative constditv := W.vxp;, where

Example 5.Figure 7a depicts the semantics of a selection op®; IS defined as (we omit the¥”.” prefix for clarity):

eration in the relation domain using an example relafion
with two dimensions |D;| = 16, |D2| = 16) shown in its
joint-frequency array representatiory-. Theselect oper-

(R.boundary[j].hi — S.signchange[j] + 1) * S.sign[j].hi +

(S.signchange[j] — R.boundary[j].lo) = S.sign[j].lo. 1)

ator defines a two-dimensional selection hyper-rectangle over

T with boundariegly, h1] = [4,13] and iz, ha] = [5,10]
along dimension®); and D, respectively. The output of the
operation consists of only those tuplesiothat fall inside the
selection hyper-rectangle.

A two-dimensional example of projecting out a dimension in
the wavelet-coefficient domain is depicted in Fig.8b. Multi-
plying W.v with p; (Eq. (1)) effectively projects out dimen-
sion D; from W by summing upi¥’s contribution on each

Figure 7b shows the semantics of the same selection opefne-dimensional row along dimensidn . Of course, besides
ation in the wavelet-coefficient domain. We describe the pro-2djustinglV.v, we also need to discard dimensibr from the
cessing for one of our example coefficients; the others ardlyper-rectangle and sign information fiéf, since it is now a

processed similarly. Consider the wavelet coefficiéithav-
ing hyper-rectangle rangé¥s. R.boundary[1] = [9, 15] and
Ws.R.boundary[2] = [2,7]. The sign information fofVs is
W3.S.sign[l] = [+, —], W5.S.sign[2] = [+, —] (Fig.2b),
Ws.S.signchange[l] = 12, and W3.S.signchange|2]
4. Since W3's hyper-rectangle overlaps with the selec-
tion hyper-rectangle, it is processed by thelect op-

erator as follows. First, in Step 1.1, the hyper-rectangleoutput wavelet coefficientd’s, whereS = project

boundaries ofi¥V; are updated tdVs.R.boundary[l]
[9,13] and W3.R.boundary[2] := [5,7] (i.e., the region
that overlaps with the select ranges alohg and D).

(d — 1)-dimensional coefficient (on dimensiofis— {D;}).
Note that if the coefficient’s sign-change lies in the middle of
its support range along dimensidn; (e.g., see Fig. 2a), then
its adjusted magnitude will i which means that it can safely
be discarded from the output set of the projection operation.
Repeating the above process for each wavelet coefficient
W € Wy and each dimensioP; € D — D’ gives the set of
o (T).
Equivalently, given a coefficient’, we can simply sét.v :=
W HDJGD_D, p; (wherep; is as defined in Eq. (1)) and
discard dimension® — D’ from W's representation.
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Fig. 8. aProcessing a projection operation in the relation domajmocessing a projection operation in the wavelet-coefficient domain

Example 6.Figure 8a depicts the semantics of a projectioning to Ay, and Ar,, respectively. If the indexes of the two

operationin the relation domain, showing the two-dimensionalkells match on the join dimensions, i.&.= 2, . ..

relationT (|D;| = 16,|D2| = 16) from Example 5 and the
result of its projection on dimensiab, .

-1 -2
1 U = U
then the cell in the join result arrayls with coordinates

(i1, yig, 041, - »ig,) is populated with the@roductof

Figure 8b illustrates the semantics of the same prothe countvalues contained in the two joined cells. Figure 9ail-
jection operation in the wavelet-coefficient domain. Con-lustrates the above process with two example two-dimensional

sider the wavelet coefficient¥ whose hyper-rectangle
and sign information along dimensiob, are as follows:
W.R.boundary[2] = [4,11], W.S.sign[2] = [—,+], and
W.S.signchange[2] = 10. In addition, let the magnitude of
W beW.v = 2. Then, projectingV on dimensionD; causes
W.to be updated tdV.v := 2 ((11-10+1) — (10—4)) =
-8. O

3.3 Join operatorjpin )

Our join operator has the general fojom ... ,(Wr,, Wr,,),
whereT; andTs;, are (approximate) relations of arify andda,
respectively, angred is a conjunctivek-ary equi-join predi-
cate of the form X{ = X7) A... A (X} = X}), whereX
(D¥) (j = 1,... ,d;) denotes thg'" attribute (respectively,
dimension) ofT; (i = 1,2). (Without loss of generality, we
assume that the join attributes are the first min{d;, d»}

joint-frequency arrays r, (with dimensiond); andDs, | D, |

= | D3| = 16) and Ar, (with dimensionsD; andDs, |D;| =

| D3| = 16) and join dimensiorD; (shown vertically for both
arrays). For example, the cell8, 6) in Ar, (count value 2)
and(9,2) in Ap, (count value 6) match on the join dimension
D, (both have aD; coordinate of); hence, the join output

is populated with the ce(l9, 6, 2) (count value =22 % 6 = 12).
Since the cell counts fot 1, are derived by appropriately sum-
ming the contributions of the wavelet coefficientdifr, and,

of course, a numeric product can always be distributed over
summation, we can process flogn  operator entirely in the
wavelet-coefficient domain by considering all pairs of coef-
ficients fromW, andWr,. Briefly, for any two coefficients
from Wr, andWr, that overlap in the join dimensions and,
therefore, contribute to joining data cells, we define an out-
put coefficient with magnitude equal to the product of the two
joining coefficients and a support hyper-rectangle with ranges
that are: (a) equal to the overlap of the two coefficients for

attributes of each joining relation.) Note that the result of thethek (common) join dimensions; and (b) equal to the original

join operatioriVg is a set of d; +ds — k)-dimensional wavelet

coefficient ranges along any of the+ ds — 2k remaining di-

coefficients; that is, the join operation returns coefficients ofmensions. The sign information for an output coefficient along

(possibly) different arity than any of its inputs.

any of thek join dimensions is derived by appropriately mul-

To see how our join processing algorithm works, con-tiplying the sign-vectors of the joining coefficients along that

sider the multi-dimensional arraysy, and Az, correspond-
ing to the join operator’s input arguments. L}, ... ,i} )
and(i?, ...,

dimension, taking care to ensure that only signs along the over-
lapping portion are taken into account. (The sign information

232) denote the coordinates of two cells belong- along non-join dimensions remains unchanged.) An example
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(Join output shown
in relational form
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Fig. 9. aProcessing @in operation in the relation domaih;processing oin operation in the wavelet-coefficient domagomputing
sign information forjoin  output coefficients

of this process in two dimensiong(= ds = 2, kK = 1) is 1.2.2. Else ifW.R.boundaryli].lo > W;.S.signchangeli]
depicted in Fig. 9b. then set s; := [W;.S.sign[i].hi, W;.S.sign[i].hi].
More formally, our approximate query execution strategy 1.2.3. Else set; := W;.S.signli].
for joins can be described as follows. (To simplify the no-  1.3. Set W.S.sign[i] := [s1.l0 x s2.lo, s1.hi * s2.hi].
tation, we ignore the “1/2” superscripts and denote the join 1.4. If  W.S.sign[illo == W.S.signli].hi  then set
dimensions a®, ... , Dy, and the remainind, +d, — 2k di- W.S.signchangeli] := W.R.boundary[i].lo.
mensions a1, . .. , D4, +q,_1.) For each pair of wavelet 15 Else set W.S.signchangeli] = maxj=12{
coefficientsiW, € Wy, andW, € Wr,, if the coefficients’ W;.S.signchangeli] = Wj.S.signchange[i] €
support hyper-rectangles overlap in thgoin dimensions; ) [WRHbOU”d“.”./[Z]'l;’ WR:bouﬁd‘?ry_[’]‘h” }-
that is, iffor everydimensionD,,i =1... , k, the following ) Fo_r each (non-join) |mens!onD“ =kt ’C.ll
condition is satisfied: do: Set  W.R.boundaryli] := Wi.R.boundarylil,

W.S.sign[i] := W1.S.sign[i] , and W.S.signchangeli] :
W1.S.signchangeli].

. . 3. For each (non-join) dimensio®;, i = di1 + 1,...,d1 +
R. . < R. . AND
(W1.R-boundary.loli] < Wy 'R boundary.lofi] . ds — k do: Set W.R.boundary[i] := Wa.R.boundaryli —
Ws.R.boundary.lo[i] < Wi.R.boundary.hili] ) dy + K|, W.S.sign[i] := Ws.S.sign[i — di + k] , and
OR W.S.signchange[i] :== Wa.S.signchange[i — d1 + k].
( Wa.R.boundary.lo[i] < Wi.R.boundary.lo[i] AND 4. Set W .= Wiwx Wa.v and Ws := Ws U {W}, where

. ar. S :jOin pred(TlvTQ)'
Wi.R.boundary.lofi] < Wa.R.boundary.hi[i] ),

Note that the bulk of our join processing algorithm concen-
trates on the correct settings for the output coeffici€ralong
thek join dimensions (Step 1), since the problem becomes triv-

then the corresponding output coefficiétitc Wy is defined
in the following steps.

1. For all join dimension®;, i = 1, ... , k do ia! for the dl +_dg - 213: remaining ldimensions. (.Ste.ps 2—3).
1.1. SetW.R.boundaryli].lo := max{ Wi.R.boundary]i].lo, Given a pair of10|n|ng Input coeff|C|en_ts and a join dimension
Wa.R.boundary[i].lo} and W.R.boundaryli].hi = D;, our algorithm starts out by setting the hyper-rectangle
min{ W1.R.boundaryli).hi, Wa.R.boundary[i].hi}. range of the output coefficiemt’ alongD; equal to the over-

1.2. Forj =1,2 [* s; is a temporary sign-vector variable */  lap of the two input coefficients along; (Step 1.1). We then
1.2.1. If W.R.boundary[i].hi < W;.S.signchangeli] proceed to comput8’’s sign information along join dimen-
then set s; := [W;.S.sign[i].lo, W;.S.signli].lo]. sion D, (Steps 1.2-1.3) , which is slightly more involved.
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(Remember thal} andT; are (possibly) the results of ear- domain. Consider the wavelet coefficient§ and 5. Let
lier select and/orjoin operators, which means that their the boundaries and sign information @f; and W, along
rectangle boundaries and signs aldhgcan be arbitrary.) The  the join dimensionD; be as follows:W;.R.boundary[1]
basic ideais to determine, for each of the two input coefficients= [4,15], W5.R.boundary[l] = [8,15], W;.S.sign[l] =
W, andWs, where the boundaries of the join range lie with [—, +], W5.S.sign[1] = [—, +], W1.S.signchange[l] = 8,
respect to the coefficient’s sign-change value along dimensioandW,.S.signchange[1] = 12. In the following, we illustrate
D;. Given an input coefficienit’; (j = 1, 2), ifthe joinrange  the computation of the hyper-rectangle and sign information
alongD; is completely contained in either the low (1.2.1) or for join dimensionD, for the coefficientV that is output by
the high (1.2.2) sign-vector rangedf; alongD;, thenatem-  our algorithm wherl¥; and W, are “joined”. Note that for
porary sign-vectos; is appropriately set (with the same sign the non-join dimension®, and Ds, this information fori//
in both entries). Otherwise, i.e., if the join range spénss is identical to that olV; andW, (respectively), so we focus
sign-change (1.2.3), they) is simply set td¥;’s sign-vector  solely on the join dimensio®; .
alongD;. Thus,s; captures the sign of coefficiefit; in the First, in Step 1.1,W.R.boundary[l] is set to[8,15],
joining range, and multiplying; ands, (element-wise) yields i.e., the overlap range betweéi; and W, along D;. In
the sign-vector for the output coefficiefif along dimension  Step 1.2.2, sincéV.R.boundary([l].lo = 8 is greater than
D; (Step 1.3). If the resulting sign vector fir does notcon-  or equal toWW;.S.signchange[l] = 8, we sets; = [+, +]. In
tain a true sign change (i.e., the low and high components oStep 1.2.3, sincél,.S.signchange[l] = 12 lies in between
W.S.signl[i] are the same), thdi’s sign-change value along W.R's boundaries, we set, = [—,+]. Thus, in Step 1.3,
dimensionD; is set equal to the low boundary Bf. R along ~ W.S.sign[1] is set to the product of; ands, whichis[—, +].
D;, according to our convention (Step 1.4). Otherwise, theFinally,in Step 1.5\V.S.signchange[1] is setto the maximum
sign-change value for the output coefficié¥italongD; isset  of the sign change values fdr; andiV, along dimensiorD,,
equal to the maximum of the input coefficients’ sign-changeor W.S.signchange[l] := max{8,12} = 12. O
values that are contained in the join range (€.R’s bound-
aries) alongD; (Step 1.5).

In Fig.9c, we illustrate three common scenarios for the3.4 Aggregate operators
computation ofi¥’s sign information along the join dimen-
sionD;. The left-hand side of the figure shows three possibil-In this section, we show how conventional aggregation oper-
ities for the sign information of the input coefficierif§ and  ators, likecount , sum, andaverage , are realized by our
W, along the join range of dimensidp, (with crosses denot- approximate query execution engine in the wavelet-coefficient
ing sign changes). The right-hand side depicts the resultinglomairf. As before, the input to each aggregate operator is
sign information for the output coefficiefit’ along the same @ set of wavelet coefficientd/'r. If the aggregation is not
range. The important thing to observe with respect to our signgualified with aGROUP-BYclause, then the output of the
information computation in Steps 1.3—1.5 is that the join rangeoperator is a simple scalar value for the aggregate. In the
along any join dimensio; can contairat most oné¢rue sign ~ more general case, whereGROUP-BYclause over dimen-
change. By this, we mean that if the sign for input coefficientsionsD’ = {Dy, ... , D;.} has been specified, the output of
W; actually changes in the join range alofy, then this  the aggregate operator consists éfdimensional array span-
sign-change value is unique; that is, the two input coefficientgling the dimensions i’, whose entries contain the computed
cannot have true sign changes at distinct points of the joirdggregate value for each cell.
range. This follows from theomplete containmermroperty Note that, unlike our earlier query operators, we define
of the base coefficient ranges along dimensgipr{Sect.2.1).  Our aggregate operators to provide output that is essentially a
(Note that our algorithm foselect retains the value of a rendered data array, rather than a set of (un-rendered) wavelet
true sign change for a base coefficient if it is contained in thecoefficients. This is because there is no clean, general method
selection range, and sets it equal to the value of the left boundio map the computed aggregate values (e.g., attribute sums or
ary otherwise.) This range containment alddgensures that ~averages) onto the semantics and structure of wavelet coeffi-
if W1 and¥;, both contain a true sign change in the join range cients. We believe, however, that exiting the coefficientdomain
(i.e., their overlap) alond);, then that will occurat exactly ~ after aggregation has no negative implications for the effec-
the same valutor both (as illustrated in Fig. 9(c.1)). Thus, in tiveness of our query execution algorithms. The reason is that,
Step 1.3,W;’s and Wy’s sign vectors in the join range can for most DSS queries containing aggregation, the aggregate
be multiplied to derivé?’s sign-vector. If, on the other hand, operator is the final operator at the root of the query execution
one of W; andW, has a true sign change in the join range (asplan, which means that its result would have to be rendered
shown in Fig. 9(c.2)), then thaax operation of Step 1.5 will anyway.
always set the sign changeldf alongD; correctly to the true While the earlier work of Vitter and Wang [33] has
sign-change value (since the other sign change will either be @¢ddressed the computation of aggregates over a wavelet-
the left boundary or outside the join range). Finally, if neither compressed relational table, their approach is significantly

W, nor W, have a true sign change in the join range, then the 2 e most conventional data reduction and approximate querying

high and low components &Fs sign vector will be identical  ochnigues (e.g., sampling and histograms), wavelets are inherently

and Step 1.4 will setl’s sign-change value correctly. limited to “trivial answers” when it comes tmin or max aggregate
functions (see, for example, [16]). In our case, this would amount

Example 7.Figure 9a depicts the semantics of ajoin operationto selecting thenon-zerocell in the reconstructed array with mini-

in the relation domain as described above. Figure 9b illustratemum/maximum coordinate along the specified query range. We do

the semantics of the same operation in the wavelet-coefficientot considemin or max aggregates further in this paper.
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different from ours. Vitter and Wang focus on a very spe- Note that, the summations of the index values aléngin
cific form of aggregate queries, nameBnge-sum queries the above formula can be expressed in closed form using
where the range(s) are specified over one or ruometional straightforward algebraic methods.

attributeand the summation is done over a prespecifieh- 2.2. Discard dimensio); from the hyper-rectangle and sign
sure attribute Their wavelet decomposition and aggregation information foriv.

algorithm are both geared towards this specific type of queries3. Let As := render (Ws) and output the cells in theD’|-
that essentially treats the relation’s attributes in an “asymmet-  dimensional arrayls with non-zero values for the summation.
ric” manner (by distinguishing the single measure attribute).

Our approach, on the Other hand, haS a much broader quem/erage Operator e(verage ) The averaging Operator
processing scope. As a result, all attributes are treated in gyerage o (Wr, D;) (whereD' is the set ofGROUP-BY
completely symmetric fashion, thus enabling us to perform &jimensions and); ¢ D’ corresponds to the averaged at-
broad range of aggregate (and non-aggregate) operations ov@hute of T') is implemented by combining the computation
any attribute(s). of sump/ (Wr, D;) andcount . (Wr). The idea is to com-
pute the attribute sums and tuple counts for every cell over the
data dimensions in theROUP-BYattributesD’, as described
earlier in this section. We then render the resulting coefficients
and output the average value (i.e., the ratio of sum over count)
efor every cell with non-zero sum and count.

Count operator ¢ount ). Our count operator has the gen-
eral formcount o, (Wr), where thek GROUP-BYdimen-
sionsD’ = {D,,,...,D;, } form a (possibly empty) subset
of thed attributes ofl". Counting is the most straightforward
aggregate operation to implement in our framework, sinc
each cell in our approximate multi-dimensional array already

stores the count information for that cell. Thus, processingg 5 Rendering a set of wavelet coefficients

count /(W) is done by simply projecting each input coef-

ficient onto theGROUP-BYlimensionsD’ and rendering the  Since our approximate query execution engine does the bulk
result into a multi-dimensional array of counts, as follows.  of its processing in the wavelet coefficient domain, an es-

1. LetWg := project 5 (Wr) (see Sect.3.2). sential final step for every user query is render an out-
2. LetAg :=render (W) and output the cells in the®’'|- put setWs of d-dimensional wavelet coefficients (over, say,
dimensional arrayl 5 with non-zero counts. D = {Dx,...,Dq}) to produce the approximate query an-

swer in a “human-readable” form. (Note that rendering is re-
Sum operator§um). The general form of our summation quired as a final step even for the aggregate processing algo-
operator issump, (Wr, D;), whereD' = {D;,,...,D;,} rlthms descr_lbed in the previous section.) The main challenge
denotes the set @ROUP-BMimensions and); ¢ D’ cor- inthe rendering step is how éfficientlyexpand the input set of
responds to the attribute @f whose values are summed. The d-dimensional wavelet coefficientEg into the corresponding
sum operator is implemented in three steps. First, we projec{approximate)i-dimensional array of countds.
the input coefficient$V on dimension®’ U {D; }. Second, A naive approach to renderifitjs would be to simply con-
for each coefficient¥ output by the first step and for each sider each cell in the multi-dimensional artdy and sum the
row of cells along the summation attribuf&;, we compute  contributions of every coefficiet’ € W to that cellin order
the sum of the product of the coefficient's magnititie and o obtain the corresponding tuple count. However, the number
the index of the cell along); °. This sum (essentially, an  of cells in Ag is potentially huge, which implies that such a
integralalongD; ) is then assigned to the coefficient's magni- najve rendering algorithm could be extremely inefficient and
tudeW.v and thg summing dimensidn; is dlgcarded. Thus, computationally expensive (typically, of orde{ N - |Ws|),
at the end of this steg)/.v stores the contribution dfi’ to d .
the summation value for eve{’|-dimensional cell ifv.g. ~ WNereN = I[,_, |Di| is the number of array cells). Instead
Third, the resulting set of wavelet coefficients is rendered to°f following this naive and expensive strategy, we propose a
produce the output multi-dimensional array on dimensihs ~ more efficient algorithm (termecender ) for rendering an
More formally, oursump (Wr, D;) query processing algo- input set of multi-dimensional wavelet coefficients. (Note that
rithm comprises the following steps. render canbe seen elth'er asa (ffmal?]query pr)ogeSS|InQ qpr(]ar—
. ator or as a post-processing step for the query.) Our algorithm
%: tgtr‘;s[gch:wgr\%?ecttcogf/fﬁgﬁl}f(Zva&s(?jgd'3'2)' exploits the fact that the number of coefficientd#y is typ-
2.1. SetW.v according to the following equation: !cally much smalletthan the number. of array cells. .Thls
implies that we can expeets to consist of large, contiguous

W.5.signchange(j] -1 multi-dimensional regions, where all the cells in each region
W = W | W.S.sign[j].lo > k +  contain exactly the same count. (In fact, because of the spar-
k=W.R.boundary[j].lo sity of the data, many of these regions will have counts of

W.S.sign[j].hi * Z gions in Ag is typically considerably smaller tha{. Thus,
k=W.S.signchangelj the basic idea of our efficient rendering algorithm is to parti-

* To simplify the exposition, we assume thatthe (integer) cell indextion the multi-dimensional arragt , one dimension at a time,
values along dimensioR; are identical to the domain values for the INto such uniform-count data regions and output the (single)
corresponding attributé ; of T If that is not the case, then areverse count value corresponding to each such region (the same for
mapping from theD; index values to the corresponding values of all enclosed cells).

X; is needed to sum the attribute values along the boundaries of a Ourrender algorithm (depicted in Fig. 10) recursively
coefficient. partitions thed-dimensional data arraylg, one dimension

W.R.boundarylj].hi 0.) Furthermore, the total number of such “uniform-count” re-
k
]
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procedurerender (COEFF, 7)

begin

1. if(¢>d){

2. count :=0

3. for each coefficientiW in cOEFF
4, sign 1= HD]_GD stgn;

[* sign; := W.S.sign[j].lo if W.R.boundary[j].lo <
W.S.signchange[j]; else, sign; := W.S.sign[j].hi */
5. count := count + sign * W
6. end
7 output (W.R.boundary, count)
[* W is any coefficient ircoerr */

8. return
9. }
10.Q =0 /* elementse in priority queueQ are sorted

in increasing order of.key */
11. for each coefficientW in cOEFF
12. insert elementinto Q wheree.key :
W.R.boundaryli].lo — 1 ande.val := W
13. insert element into Q wheree.key :=
W.R.boundaryli].hi ande.val := W
14. if (W.R.boundaryli].lo < W.S.signchange[i] <
W.R.boundaryli].hi)
15. insert element into Q wheree.key :=
W.S.signchange[i] — 1 ande.val := W

16. end

17. prev := —oo, TEMPI := ()

18. while (Q is not empty)do

19. TtEMP2 := (), topkey := e.key for elemente at head of

20. dequeue all elementswith e.key = topkey at the head
of @ and insert.val into TEMPI

21. for eachcoefficientiV in TEmMPT

22. deletdV from Temp1 if W.R.boundaryli].hi < prev + 1
23. if (W.R.boundary][i] overlaps with the interval
[prev + 1, topkey] along dimensiorD; ) {

24, W’ =W, W'.R.boundaryli].lo := prev + 1

W' .R.boundaryli].hi := topkey
25. insert” into TEmMP2
26. }
27. end

28. render (TEmp2,i+ 1)
29. prev := topkey

30. end /*while */

end

Fig. 10. render : an efficient algorithm for rendering multi-
dimensional wavelet coefficients

at a time and in the dimension ordBx, . .. , D4. Algorithm
render takes two input arguments: (a) the index ¢f the
next dimensionD; along which the arrayls is to be parti-
tioned; and (b) the set of wavelet coefficient®¥Frr) in the
currently processed partition ofs (generated by the earlier
partitionings along dimension3, , ... , D;_1). Thenitial in-
vocation ofrender is done withi = 1 andcogerr = W.
When partitioningAg into uniform-count ranges along
dimension D;, the only points that should be considered
are those where the cell counts alohg could potentially

a b
Fig. 11.Partitioning a two-dimensional array by procedrerder

and stores them in sorted order in a priority queuSteps 11—
16). Note that, for any pair of consecutive partitioning points
along D;, the contribution okachcoefficient incoerr (and,
therefore, their sum) is guaranteed todeastantfor any row
of cells alongD; between the two points. Thus, abstractly, our
partitioning generates one-dimensional uniform-count ranges
along D,. Once the partitioning points along dimensiftn
have been determined, they are used to partition the hyper-
rectangles of the wavelet coefficientsimerr alongD; (Steps
18-30). Algorithmrender is then recursively invoked with
the set of (partial) coefficients in each partition/of to fur-
ther partition the coefficients along the remaining dimensions
Djy1,...,Dg. Once the array has been partitioned along all
dimensions inD (i.e., render is invoked with parameter
1 > d), a coefficientd in the input set of coefficientEFF is
guaranteed to have a constant contribution to every cell in the
corresponding-dimensional partition. This essentially means
that we have discovereddadimensional uniform-count par-
tition in Ag, and we can output the partition boundaries and
the corresponding tuple count (Steps 2-8).

Figure 11b depicts the partitioning of a two-dimensional
data array generated bgnder for the input set consisting
of the four wavelet coefficients shown in Fig.11la. The time
complexity of ourrender algorithm can be shown to be
O(|Ws] - P), whereP is the number of uniform-count parti-
tionsinAg. As we have already observadjs typically much
smaller than the number of array ceNs In addition, note that
render requires onlyO(|Ws| - d) of memory, since it only
needs to keep track of the coefficients in the partition currently
being processed for each dimension.

4 Experimental study

In this section, we present the results of an extensive empirical
study that we have conducted using the novel query process-
ing tools developed in this paper. The objective of this study is
twofold: (1) to establish the effectiveness of our wavelet-based
approach to approximate query processing; and (2) to demon-
strate the benefits of our methodology compared to earlier ap-
proaches based on sampling and histograms. Our experiments
consider a wide range of queries executed on both synthetic
and real-life data sets. The major findings of our study can be
summarized as follows.

change. These are precisely the points where a new coeffe Improved answer quality. The quality/accuracy of the ap-

cientW starts contributinglf/. R.boundaryli].lo), stops con-
tributing (W. R.boundary]i].hi), or the sign of its contribution
changesi{.S.signchangeli]). Algorithmrender identifies
these points along dimensidp, for each coefficient icoEFF

proximate answers obtained from our wavelet-based query
processoris, ingeneral, better than that obtained by either sam-
pling or histograms for a wide range of data setsseidct ,
project ,join , and aggregate queries.
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e Low synopsis construction costur I/O-efficientwavelet  space, since we nedunits to specify the position of the co-
decomposition algorithm is extremely fast and scales linearlyefficient in the wavelet transform array and 1 unit to specify
with the size of the data (i.e., the number of cells in the MO-the value for the coefficient. (Note that the hyper-rectangle
LAP array). In contrast, histogram construction costs increasand sign information for a base coefficient can easily be de-
explosively with the dimensionality of the data. rived from its location in the wavelet transform array.) On the

. . . other hand, each histogram bucket requires] 4 1 units of
e Fast query execution.Query execution-time speedups of

o specify the average frequency for the bucket [27]. Thus, for
given amount of space corresponding &amples/wavelet
coefficients, we store~ £ histogram buckets to ensure a fair

Thus, our experimental results validate the thesis of thiscomparison between the methods.
paper that wavelets are a viable, effective tool for general-

purpose approximate query processing in DSS environmentgueries. The workload used to evaluate the various approx-

All experiments reported in this section were performed onimation techniques consists of four main query types: (1)

a Sun Ultra-2/200 machine with 512MB of main memory, SELECT queries ranges are specified for (a subset of) the

running Solaris 2.5. attributes in a relation and all tuples that satisfy the conjunc-
tive range predicate are returned as part of the query result:
(2) SELECT-SUMgueries the totalsum of a particular at-

4.1 Experimental testbed and methodology tribute’s values is computed for all tuples that satisfy a con-
junctive range predicate over (a subset of) the attributes; (3)

TechniquesWe consider three approximate query answeringSELECT-JOIN queries after performing selections on two

techniques in our study. input relations, an equi-join on a single join dimension is per-
formed and the resulting tuples are output; andSB)LECT-

e SamplingA random sample of the non-zero cells in the JOIN-SUM queries the totalsum of an attribute’s values is

multi-dimensional array representation for each base relatiogomputed over all the tuples resulting frolBBELECT-JOIN..

is selected , and the counts for the cells are appropriately For each of the above query types, we have conducted

scaled. Thus, if the total count of all cells in the arrayt is experiments with mu|tip|e different choices for: @|ect

and the sum of the counts of cells in the sample then the ranges; and (b$e|ect , join , andsum attributes. The re-

count of every cell in the sample is multiplied By These  sylts presented in the next section are indicative of the overall

scaled counts give the tuple counts for the corresponding apsbserved behavior of the schemes. Furthermore, the queries

proximate relation. presented in this paper are fairly representative of typical

queries over our data sets.

the histogram-based methods of loannidis and Poosala [16
and sometimes significantly faster (e.g.,j@n s).

¢ Histograms.Each base relation is approximated by a multi-
dimensional MaxDiff(V,A) histogram. Our choice of this his-
togram class is motivated by the recent work of loannidis andAnswer-quality metrics.In our experiments with aggregate
Poosala [16], where itis shown that MaxDiff(V,A) histograms queries (e.gSELECT-SUMjueries), we use thabsolute rel-
result in higher-quality approximate query answers comparedchtive errorin the aggregate value as a measure of the accuracy
to other histogram classes (e.g., EquiDepth or EquiWidth)of the approximate query answer. That issétualaggris the

We processselect s, join s, and aggregate operators on result of executing the aggregation query on the actual base
histograms as described in [16]. For instance, wéélect s relations, whileapproxaggr is the result of running it on the

are applied directly to the histogram for a relatiojgia be- corresponding synopses, then the accuracy of the approximate
tween two relations is done by first partially expanding theiranswer is given pyctual-aggr —approz-aggr|

histograms to generate the tuple-value distribution of the each  peciding on an orTOr Tt 9 non-aggregate queries is
relation. An indexed nested-logpin is then performed on  gjightly more involved. The problem here is that non-aggregate
the resulting tuples. queries do not return a single value, but rather a set of tuples
(with associated counts). Capturing the “distance” between
such an answer and the actual query result requires that we

t_take into account how these two (multi)sets of tuples differ
coefficient domain, as described in Sect. 3. Injoimr  imple- in both: (a) the tuple frequencies; and (b) the actual values

mentation, overlapping pairs of coefficients are determined us!” the tuples [16]. (Thus, simplistic solutions like “symmetric
ing a simple nested-loop join. Furthermore, during the renderglfference are insufficient.) When dgmdmg on an error metric
ing step for non-aggregate queries, cells with negative count r non-aggregate results, we _C(_)n5|dered botiMaech And
are not included in the final answer to the query. omparg(MAC) error of loannidis and Poosala [16] and the
network-flow-basedarth Mover’s Distancé EMD) error of
Since we assume dimensions in the multi-dimensional Rubner et al. [29]. We eventually chose a variant of the EMD
array for ad-attribute relation¢ random samples requirex error metric, since it offers a number of advantages over MAC
(d + 1) units of spacey units are needed to store the index error (e.g., computational efficiency, natural handling of non-
of the cell and 1 unit is required to store the cell count. Stor-integral counts) and, furthermore, we found that MAC error
ing ¢ wavelet coefficients also requires the same amount otan show unstable behavior under certain circumstances [13].

e Wavelets. Wavelet-coefficient synopses are constructed
on the base relations (using algorittBoMPUTEWAVELET)
and query processing is performed entirely in the wavele
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We briefly describe the MAC and EMD error metrics below D fleiey) <c (4)
and explain why we chose the EMD metric. e, €59

The EMD and MAC set-error metric©ne of the main obser-  The EMD error, that we employ in this pafés as follows:
vations of loannidis and Poosala [16] was that a correct error ‘
metric for capturing the distance between two set-valued quenEM D(S1,S2) = > Y f(ei,e) * dist(ei, ¢;)

answers (i.e., multisets of tuples) should take into account how €;€51 €;€53
these two (multi)sets of tuples differ in both: (a) the tuple fre- ) o
quencies; and (b) the actual values in the tuples. A naive option <6651’>
is to simply define the distance between two sets of elements ZG_,ES2 €

Sy andSs as| (S —S2)U(S2 —S1)|. However, as discussed in S o

[16], this measure does not take into account the frequenciehus, intuitively, the flowsf (e;, e;) distribute the counts of
of occurrences of elements or their values. For example, bglements irb; across elements ifl, in a manner that the sum
the above measure, the two séf§ and{5,5,5} would be  Of the distances over the flows is minimum. Note that. since
considered to be at a distance of 0 from each other, while thé2 has a smaller count thaffy , we require that the inflow into
set{5} would be at the same distance from bgth1} and  €achelement; of 5, is equal ta:; (Constraint 3). In addition,
{100}. the outflqw out of eap_h element in S, cannot exceed;

In [16], the authors define the notion lfatch And Com- (Constraint 4). In addition, observe that since the cqunﬁ.‘lof
pare (MAC) distance to measure the error between two mul-could be much larger than that 8f, we scale the sumin Eq. 2
tisetsS; andS,. Letdist(e, e2) denote the distance between by the ratio of the sum of counts 6k and.S,. This ensures
e|ement$1 €S and62 €Sy (|n this paper, we use the Eu- that counts for elements lﬁhthat are not covered as part of
clidean distance between elements). The MAC error involvedhe flows get accounted for in the EMD error computation.
matching pairs of elements frofy andS, such that each ele- Thus, the EMD naturally extends the notion of distance
ment appears in at least one matching pair, and the sum of tH@et\Ne_ep single elements to d|§tance between sets of elements.
distances between the matching pairs is minimum. The sum g addition, the EMD has the nice property that if the counts of
the matching pair distances, each weighted by the maximun®1 andSs are equal, then the EMD is a true metric. There are
number of matches an element in the pair is involved in, yieldsefficient algorithms available to compute the flofis:;, ¢;)
the MAC error. Though the MAC error has a number of nice Such that constraints (2), (3) and (4) are satisfied. Another
properties and takes both frequency and value of elements iddded benefit of the EMD error is that it is naturally applicable
the sets into account, in some cases, it may be unstable [13)0 the caseswhen elementsin the sets have non-integral counts.
In addition, the MAC error, as defined in [16], could become Since in a number of cases, the number of tuples computed
computationally expensive, since multiple copies of a cell needy the approximation techniques can be fractions, this is an
to be treated separately, thus making set sizes potentially larg@dvantage. Hence we chose EMD as the error metric for non-

Due to the stability and computational problems of the @ggregate queries.

MAC error, in our experiments, we use tl&arth Mover’s

DistanceEMD error instead, which we have found to solve ] )

the above-mentioned problems. The EMD error metric was?-2 Experimental results — synthetic data sets

proposed by Rubner et al. [29] for computing the dissimi- . . . o
larity between two distributions of points and was applied to The synthetic data sets we use in our experiments are similar
computing distances between images in a database. The mdif those employed in the study of Vitter and Wang [33]. More
idea is to formulate the distance between two (multi)sets as &Pecifically, our synthetic data generator works by populating
bipartite network flow problem, where the objective function "andomly-selected rectangular regions of cells in the multi-
incorporates the distance in the values of matched elemen@mensional array. The input parameters to the generator along
and the flow captures the distribution of element counts. MoreVith their description and default values are as illustrated in
formally, the EMD error involves solving the bipartite network Table 2. The generator assigns non-zero counts to cells in
flow problem which can be formalized as the following linear féctangular regions each of whose volume is randomly cho-
programming problem. Le§; andSs be two sets of elements S€N betweem, i, andu,q, (the volume of a region is the
and letc; denote the count of element Without loss of gen- number of _<:e|!s contamed in |t)_. The regions themselves are
erality, let the sum of the counts of elementsSinbe greater uniformly distributed in the mu.Itl—dlmenS|or_1aI array..The sum
than or equal to the sum of counts of elementSsinConsider of the counts for all the cells in the array is specified by the

an assignment of non-negative flovié;, ;) such that the ~Parameter. Portiont - (1 — n.) of the count is partitioned
following sum is minimized: across the regions using a Zipfian distribution with value

Within each region, each cell is assigned a count using a Zip-
o . e fian distribution with value between,;,, andz,, .., and based
Z Z flei,ej) » dist(es, e;) @) on theL; distance of the cell from the center of the region.
©i€51 €;€52 Thus, the closer a cell is to the center of its region, the larger is
its count value. Finally, we introduce noise into the data set by

subject to the following constraints: randomly choosing cells such that these noise cells constitute

4 . .
Z fleiej) = ¢ (3) Rubner et al. [29] define the EMD error as the ratio

D e.eSy 2escs, fleise))xdist(es,e;)
i€51 24e €Sy

e; €S -
€51 2ejesy G
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Table 2. Input parameters to synthetic data generator to parameters like storage space, skew in cell counts within a
region, cell density, and query selectivity. In each experiment,

Parameter | Description Default value we vary the parameter of interest while the remaining param-
d Number of dimensions 2 eters are fixed at their default values. Our results indicate that
s Size of each dimension 1,024 for a broad range of parameter settings, wavelets outperform
(equal for all dimensions) both sampling and histograms — in some cases, by more than
, Number of regions 10 an order of magnitude.
Umin, Umaz | Minimum and maximum 2,500, 2,500 e Storage spaceFigure 12a depicts the behavior of the EMD
volume of each region error for the three approximation methods as the space (i.e.,
2 Skew across regions 05 number of retained coefficients) allocated to each is increased
0, 0, 1 I -
Zmin: Zmas | Minimum and maximum 1.0, 1.0 from 2% to 20% of the relation. For a given value of the num

ber of wavelet coefficients along thez-axis, histograms are

skew within each region allocated space for £ buckets. As expected, the EMD error

T, e Noise volume and noise count0.05, 0.05 for all the cases reduces as the amount of space is increased.
t Total count 1,000,000 Note that for 500 coefficients, the EMD error for histograms
c Number of coefficients/ 1,250 is almost five times worse that the corresponding error for
samples retained wavelets. This is because the few histogram buckets are un-
b Number of histogram buckets 420 able to accurately capture the skevv_ within each region (in our
—— default parameter settings, the Zipfian parameter for the skew
sel Selectivity in terms of volume 4%

within a region is 1).

e Skew within regionsin Fig. 12b, we plot the EMD error as

Table 3.Wavelet transform computation times the Zipfian parametet,,,,,. that controls the maximum skew

No. of Cells in multi-dimensional array within each region is increased from 0 to 2.0. Histograms per-
250x10° | 1x10° | 4x10° | 16x10° form the best for values df,,,, between 0 and 0.5 when
Exec. ime (sec| 6.3 263 | 1099 | 2454 the cell counts within each region are more or less uniformly
distributed. However, once the maximum skew increases be-

yond 0.5, the histogram buckets can no longer capture the data
distribution in each region accurately. As a consequence, we

a fractionn,, of the total number of non-zero cells. The noise jp <\ /e a spike in the EMD error for region skew correspond-

ggltljgtt - n. is then uniformly distributed across these noiseing to a value of,,,, — 1.5. Incidentally, a similar behavior
Note that with the default parameter settings described ir{or MaxDiff histograms has been reported earlier in [16]
Table 2, there are a total of a million cells of which about e Celldensity InFig. 13a, we plotthe graphs for EMD error as
25,000 have non-zero counts. Thus, the density of the multi¥ .., the maximum volume of regionsiis varied between 1,000
dimensional array is approximately 2.5%. Further, in the de{1% density) and 5,000 (5% density),(;,, is fixed at 1,000).
fault case, the approximate representations of the relationds the number of non-zero cells in the multi-dimensional array
occupy only 5% of the space occupied by the original relationincreases, the number of coefficients, samples and histogram
— this is because we retain 1,250 samples/coefficients out diuckets needed to approximate the underlying data also in-
25,000 non-zero cells which translates to a compression rasreases. As a consequence, in general, the EMD error is more
tio of 20. The same is true for histograms. Finally, we set thewhenregions have larger volumes. Note the sudden jumpinthe
default selectivity of range queries on the multi-dimensionalEMD error for histograms when the volume becomes 5,000.
array to be 4% — th6 ELECTquery range along each dimen- This is because the histogram buckets overestimate the total of
sion was set to (512,720). the cell counts in the query region by almost 50%. In contrast,
the error in the sum of the cell counts within the query range

Time to compute the wavelet transforim order to demon-  With wavelets is less than 0.1%.

strate the efficiency of our algorithm for computing the waveletos - Selectivity of query Figure 13b illustrates the EMD er-
transform of a multi-dimensional array, in Table 3, we presentyors for the techniques as the selectivity of range queries is
the running times ofompUTEWAVELET as the number of cells  jncreased from 2% to 25%. Since the number of tuples in both
in the multi-dimensional array is increased from 250,000 tothe accurate as well as the approximate answer increase, the
16 million. The density of the multi-dimensional array is kept EMD error increases as the selectivity of the query is increased
constant at 2.5% by appropriately scaling the number of cell§recall that the EMD error is the sum of the pairwise distances

with non-zero counts in the array. From the table, it_ follows petween elements in the two sets of answers weighted by the
thatthe computationtime of oomMPUTEWAVELET algorithm  flows between them).

scales linearly with the total number of cells in the array. We

shou_ld note that the times dgpicted in Table 3 are actual\sgL ECT-SUM queriessigure 14a depicts the performance of
dominated by CPU-computation cost&"eMPUTEWAVELET  the various techniques f@ELECT-SUMyueries as the allo-
required a single pass over the data in all cases. cated space is increased from 2% to 20% of the relation. Both
wavelets and histograms exhibit excellent performance com-
SELECT queriesln our first set of experiments, we carry out pared to random sampling; the relative errors are extremely
a sensitivity analysis of the EMD error f@ELECTqueries  low for both techniques — 0.2% and 0.6%, respectively. These
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results are quite different from the EMD error curves for the the underlying noise in the data set. Cells in this bucket con-
three schemes (see Fig.12a). We can thus conclude that @kbuted to the dramatic increase in the join result size, and
though histograms are excellent at approximating aggregatsubsequently, the relative error.
frequencies, they are not as good as wavelets at capturing the We must point out that although the performance of his-
distribution of values accurately. In [33], wavelets were showntograms is erratic for the query region in Fig. 14b, we have
to be superior to sampling for aggregation queries — howeverfound histogram errors to be more stable on other query re-
the work in [33] did not consider histograms. gions. Even for such regions, however, the errors observed for
histograms were, in most cases, more than an order of magni-
: - tude worse than those for wavelets. Note that the relative error
SELECT-JOIN and SELECT-JOIN-SUM querieBor join ¢\ 2 elets is extremely low (less than 1%) even when the

queries, in Fig. 14b, we do not show the errors for Samp“ngcoefficients take up space that is about 4% of the relation.
since in almost all cases, the final result contained zero tu-

ples. In addition, we only plot the relative error results for

SELECT- JOIN-SUM queries, since the EMD error graphs

for SELECT- JOIN queries were similar. Query execution timesn order to compare the query process-
When the number of coefficients retained is 500, the rel-ing times for the various approaches, we measured the time

ative error with wavelets is more than four times better than(in seconds) for executingSELECT-JOIN-SUM query us-

the error for histograms — this is because the few histograning each approach. We do not consider the time for random

buckets are not as accurate as wavelets in approximating treampling since the join results with samples did not generate

underlying data distribution. For histograms, the relative er-any tuples, except for very large sample sizes. The running

ror decreases for 1,000 and 2,000 coefficients, but shows atime of the join query on the original base relations (using an

abrupt increase when the number of coefficients is 5,000. Thisndexed nested-loop join) to produce an exact answer was 3.6

is because at 5,000 coefficients, when we visualized the hiss. In practice, we expect that this time will be much higher

togram buckets, we found that a large bucket appeared in thgince in our case, the entire relations fit in main memory. As

query region (that was previously absent), in order to capturés evident from Fig. 15a, our wavelet-based technique is more
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than two orders of magnitude faster compared to running thel.3 Experimental results — real-life data sets
queries on the entire base relations.

In addition, note that the performance of histograms is . :
much worse than that of wavelets. The explanation lies in th We obtained our real-life data set from the US Census Bureau

e - : - . . . We employed the Current Population
factthatthgoin processing algorithm of loannidis and Poos-eiWWW census.gov ) O .
ala[16] requires joining histograms to be partially expanded togfumgyw(lgzﬁ) gﬁ;iﬁgg;;?rgnguvggm%g;Tevl\jgrjgg thﬁtea E)lg;
generate the tuple-value distribution for the corresponding aP44ta file for the select and select sum queries, and the 1992

proximate relations. The problem with this approach is that the , > . .
intermediate relations can become fairly large and may eve nd 1994 da;a files for the join and join Sum queries. Fpr both
Iles, we projected the data on the following four attributes

contain more tuples than the original relations. For example hose domain values were previously co (with value
with 500 coefficients, the expanded histogram contains almos ; . previously _cmyb .
main 0 to 17)educational attainmen(with value domain

five times as many tuples as the base relations. The sizes of t to 46),income(with value domain 0 to 41), ankiours per

approximate relations decrease as the number of buckets in- d . . X
crease, and thus execution times for histograms drop for Iarge"nyeek(v"Ith value domain 0 to 13). Along with each tuple in the

numbers of buckets. In contrast, in our wavelet approach, joirprOjectlon, we stored a count which is the number of times it

processing is carried out exclusively in the compressed dogfpfrig?;fé'ﬂetgfeglte‘ c\:://vee:ooli‘nzd?gsbr}teinm?ﬁlanougaﬁog?ig \é?lgze S
main, that is, joins are performed directly on the wavelet coef- P 9 '

ficients without ever materializing intermediate relations. The64’ 64, and 16 for the four dimensions, and a total of 2 mil-

. ' lion cells in the array. The 1992 and the 1994 collections had
tuples in the final query answer are generated at the very en . :
as part of the rendering step and this is the primary reason fo 6,271 and 16,024 cells with non-zero counts, respectively, re-

; sulting in a density ofs 0.001. (The data-file sizes for our CPS
the superior performance of the wavelet approach. data projections were approximately 318 kB (1992 collection)

and 313 kB (1994 collection).) Even though the density of the
resulting joint-frequency arrays is very low, we did observe
large dense regions within the arrays when we visualized the
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data — these dense regions spanned the entire domains of tttee domain of th@geattribute on which the join is performed

ageandincomedimensions. is only 18, which is quite small. Consequently, the result of
For all the queries, we used the following select range:thejoin query over the samples is no longer empty.

5 < age < 10 and10 < income < 15 that we found to be

representative of several select ranges that we considered (the

remaining two dimensions were left unspecified). The selec4.4 Summary

tivity of the query was 1,056/16,2#16%. Forsum queries,

the sum operation was performed on tagedimension. For |5 summary, our experimental results have demonstrated that
join queries, thgoin  was performed on thegedimension  oyr wavelet-based approach consistently outperforms earlier
between the 1992 and 1994 data files. approaches based on random sampling and histograms. Sam-
pling suffers mainly for non-aggregate queries since it al-
SELECT queriesin Figs. 15b and 16a, we plotthe EMD error ways produces small subsets of the exact query answer. As
and relative error foBELECTandSELECT-SUMjueries, re-  we expected, this problem with random sampling is partic-
spectively, as the space allocated for the approximations is indlarly acute wherjoin  operations are involved, as the re-
creased from 3% to 25% of the relation. From the graphs, it fol-sult of joining sample synopses is often #mpty se{espe-
lows that wavelets result in the least value for the EMD error,cially for sparse, multi-dimensional data). On the other hand,
while sampling has the highest EMD error. BELECT-SUM  histograms give poor approximate-querying performance for
queries, wavelets exhibit more than an order of magnitudenon-uniform, high-dimensional data sets, as such data distri-
improvement in relative error compared to both histogramsbutions cannot be accurately captured with a small number of
and sampling (the relative error for wavelets is between 0.5%gisjoint rectangular buckets containing uniformly distributed
and 3%). Thus, the results for the select queries indicate thgioints. Our results prove that out wavelet-based approach does
wavelets are effective at accurately capturing both the value asot suffer from such problems. More specifically, even though
well as the frequency distribution of the underlying real-life wavelets have their weaknesses (e.g., they can behave poorly
data set. for very “spiky” distributions), we have found that they are
Note that unlike the EMD error and the synthetic datavery effective in capturindocalitiesin the input data distri-
cases, the relative error for sampling is better than for his-bution, that is, regions of neighboring data cells with similar
tograms. We conjecture that one of the reasons for this ifrequencies. Further, the hierarchical nature of the wavelet
the higher dimensionality of the real-life data sets, where his-decomposition allows wavelet coefficients to capture such lo-
tograms are less effective. calities at different levels of resolution in a very concise and
accurate manner. Based on our experience, most data sets in
JOIN queries. We only plot the results of théELECT-  real-life DSS applications do exhibit such localities; thus, we
JOIN-SUM queries in Fig. 16b, since the EMD error graphs firmly believe that the wavelet-based approach proposed in
for SELECT-JOIN queries were similar. Over the entire range this paper is an effective approximate query processing solu-
of coefficients, wavelets outperform sampling and histogramstion for DSS applications.
in most cases by more than an order of magnitude. With the
real-life data set, even after th@n , the relative aggregate
error using wavelets is very low and ranges between 1% t® Conclusions
6%. The relative error of all the techniques improve as the
amount of allocated space is increased. Note that compared fgpproximate query processing is slowly emerging as an es-
the synthetic data sets, where the result wfia over sam-  sential tool for numerous data-intensive applications requir-
ples contained zero tuples in most cases, for the real-life datang interactive response times. Most work in this area, how-
sets, sampling performs quite well. This is because the size afver, has so far been limited in its scope and conventional
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approaches based on sampling or histograms appear to be
inherently limited when it comes to complex approximate

gueries over high-dimensional data sets. In this paper, we8.

have proposed the use of multi-dimensional wavelets as an
effective tool for general-purpose approximate query process-
ing in modern, high-dimensional applications. Our approach

is based on building wavelet-coefficient synopses of the data™

and using these synopses to provide approximate answers !L%

queries. We have developed novel query processing algorithms™

that operate directly on the wavelet-coefficient synopses of
relational data, allowing us to process arbitrarily complex

queriesentirelyin the wavelet-coefficient domain. This guar- 11

antees extremely fast response times since our approximate
query execution engine can do the bulk of its processing over
compact sets of wavelet coefficients, essentially postponing

the expansion into relational tuples until the end-result of thel2.

query. We have also proposed a novel I/0-efficient wavelet de-
composition algorithm for building the synopses of relational

data. Finally, we have conducted an extensive experimental3.
study with synthetic as well as real-life data sets to determine-4:

the effectiveness of our wavelet-based approach compared to
sampling and histograms. Our results demonstrate that our
wavelet-based query processor: (a) provides approximate ang
swers of better quality than either sampling or histograms; (b)
offers query execution-time speedups of more than two orders
of magnitude; and (c) guarantee fast synopsis construction

times that scale linearly to the size of the relation.
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