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Abstract. Approximate query processing has emerged as a
cost-effective approach for dealing with the huge data volumes
and stringent response-time requirements of today’s decision
support systems (DSS). Most work in this area, however, has
so far been limited in its query processing scope, typically fo-
cusing on specific forms of aggregate queries. Furthermore,
conventional approaches based on sampling or histograms ap-
pear to be inherently limited when it comes to approximating
the results of complex queries over high-dimensional DSS data
sets. In this paper, we propose the use of multi-dimensional
wavelets as an effective tool for general-purpose approximate
query processing in modern, high-dimensional applications.
Our approach is based on buildingwavelet-coefficient syn-
opsesof the data and using these synopses to provide approx-
imate answers to queries. We develop novel query process-
ing algorithms that operate directly on the wavelet-coefficient
synopses of relational tables, allowing us to process arbitrar-
ily complex queriesentirelyin the wavelet-coefficient domain.
This guarantees extremely fast response times since our ap-
proximate query execution engine can do the bulk of its pro-
cessing over compact sets of wavelet coefficients, essentially
postponing the expansion into relational tuples until the end-
result of the query. We also propose a novel wavelet decom-
position algorithm that can build these synopses in an I/O-
efficient manner. Finally, we conduct an extensive experimen-
tal study with synthetic as well as real-life data sets to deter-
mine the effectiveness of our wavelet-based approach com-
pared to sampling and histograms. Our results demonstrate
that our techniques: (1) provide approximate answers of bet-
ter quality than either sampling or histograms; (2) offer query
execution-time speedups of more than two orders of magni-
tude; and (3) guarantee extremely fast synopsis construction
times that scale linearly with the size of the data.
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1 Introduction

Approximate query processinghas recently emerged as a vi-
able solution for dealing with the huge amounts of data,
the high query complexities, and the increasingly stringent
response-time requirements that characterize today’s decision
support systems (DSS) applications.Typically, DSS users pose
very complex queries to the underlying database management
system (DBMS) that require complex operations over Giga-
bytes or Terabytes of disk-resident data and, thus, take a very
long time to execute to completion and produce exact answers.
Due to theexploratory natureof many DSS applications, there
are a number of scenarios in which an exact answer may not
be required, and a user may prefer a fast, approximate answer.
For example, during a drill-down query sequence in ad hoc
data mining, initial queries in the sequence frequently have
the sole purpose of determining the truly interesting queries
and regions of the database [12]. Providing (reasonably accu-
rate) approximate answers to these initial queries gives users
the ability to focus their explorations quickly and effectively,
without consuming inordinate amounts of valuable system re-
sources. An approximate answer can also provide useful feed-
back on how well-posed a query is, allowing DSS users to
make an informed decision on whether they would like to in-
vest more time and resources to execute their query to comple-
tion. Moreover, approximate answers obtained from appropri-
atesynopsesof the data may be the only available option when
the base data is remote and unavailable [2]. Finally, for DSS
queries requesting a numerical answer (e.g., total revenues or
annual percentage), it is often the case that the full precision
of the exact answer is not needed and the first few digits of
precision will suffice (e.g., the leading few digits of a total in
the millions or the nearest percentile of a percentage) [1].

Prior work. The strong incentive for approximate answers
has spurred a flurry of research activity on approximate query
processing techniques in recent years [1,7,9,11,12,16,26,33,
34]. The majority of the proposed techniques, however, have
been somewhat limited in theirquery processing scope, typi-
cally focusing on specific forms ofaggregate queries. Besides
the type of queries supported, another crucial aspect of an ap-
proximate query processing technique is the employeddata
reduction mechanism; that is, the method used to obtain syn-
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opses of the data on which the approximate query execution
engine can then operate [3]. The methods explored in this
context includesamplingand, more recently,histogramsand
wavelets.

• Sampling-based techniquesare based on the use of random
samples as synopses for large data sets. Sample synopses can
be either precomputed and incrementally maintained (e.g., [1,
7]) or they can be obtained progressively at run-time by ac-
cessing the base data using appropriate access methods (e.g.,
[11,12]). Random samples of a data collection typically pro-
vide accurate estimates for aggregate quantities (e.g.,count s
or average s), as witnessed by the long history of success-
ful applications of random sampling in population surveys [4,
31] and selectivity estimation [20]. An additional benefit of
random samples is that they can provide probabilistic guaran-
tees on the quality of the estimated aggregate [10]. Sampling,
however, suffers from two inherent limitations that restrict its
applicability as an approximate query processing tool. First,
a join operator applied on two uniform random samples
results in anon-uniformsample of the join result that typi-
cally containsvery few tuples, even when the join selectivity
is fairly high [1]. Thus,join operations typically lead to
significant degradations in the quality of an approximate ag-
gregate. (“Join synopses” [1] provide a solution, but only for
foreign-key joins that are known beforehand; that is, they can-
not support arbitrary join queries over any schema.) Second,
for a non-aggregatequery, execution over random samples
of the data is guaranteed to always produce a small subset
of the exact answer which is oftenemptywhen join s are
involved [1,16].

• Histogram-based techniqueshave been studied extensively
in the context of query selectivity estimation [8,14,15,23,27,
28] and, more recently, as a tool for providing approximate
query answers [16,26]. The very recent work of Ioannidis
and Poosala [16] is the first to address the issue of obtain-
ing practical approximations tonon-aggregatequery answers,
making two important contributions. First, it proposes a novel
error metric for quantifying the quality of an approximate set-
valued answer (in general, a multiset of tuples). Second, it
demonstrates how standard relational operators (likejoin
andselect ) can be processed directly over histogram syn-
opses of the data. The experimental results given in [16] prove
that certain classes of histograms can provide higher-quality
approximate answers compared to random sampling, when
considering simple queries over low-dimensional data (one
or two dimensions). It is a well-known fact, however, that
histogram-based approaches become problematic when deal-
ing with the high-dimensional data sets that are typical of
modern DSS applications. The reason is that, as the dimen-
sionality of the data increases, both thestorage overhead(i.e.,
number of buckets) and theconstruction costof histograms
that can achieve reasonable error rates increase in an explo-
sive manner [19,33]. The dimensionality problem is further
exacerbated byjoin operations that can cause the dimen-
sionality of intermediate query results (and the corresponding
histograms) to explode.

• Wavelet-based techniquesprovide a mathematical tool for
the hierarchical decomposition of functions, with a long his-
tory of successful applications in signal and image process-

ing [18,24,32]. Recent studies have demonstrated the appli-
cability of wavelets to selectivity estimation [21] and the ap-
proximation of range-sum queries over OLAP data cubes [33,
34]. The idea is to apply wavelet decomposition to the input
data collection (attribute column(s) or OLAP cube) and re-
tain the best fewwavelet coefficientsas a compact synopsis of
the input data. The results of Vitter et al. [33,34] have shown
that wavelets are effective in handling aggregates over high-
dimensional OLAP cubes, while avoiding the high construc-
tion costs and storage overheads of histograming techniques.
Their wavelet decomposition requires only a logarithmically
small number of passes over the data (regardless of the di-
mensionality) and their experiments prove that a few wavelet
coefficients suffice to produce surprisingly accurate results for
summation aggregates. Nevertheless, the focus of these earlier
studies has always been on a very specific form of queries (i.e.,
range-sums) over a single OLAP table. Thus, the problem of
whether wavelets can provide a solid foundation for general-
purpose approximate query processing has hitherto been left
unanswered.

Our contributions. In this paper, we significantly extend
the scope of earlier work on approximate query answers,
establishing the viability and effectiveness of wavelets as
a generic approximate query processing tool for modern,
high-dimensional DSS applications. More specifically, we
propose a novel approach to general-purpose approximate
query processing that consists of two basic steps. First, multi-
dimensional Haar wavelets are used to efficiently construct
compact synopses of general relational tables. Second, using
novel query processing algorithms, standard SQL operators
(both aggregate and non-aggregate) are evaluateddirectlyover
the wavelet-coefficient synopses of the data to obtain fast and
accurate approximate query answers. The crucial observation
here is that, as we demonstrate in this work, our approximate
query execution engine can do all of its processingentirely
in the wavelet-coefficient domain; that is, both the input(s)
and the output of our query processing operators are compact
collections of wavelet coefficients capturing the underlying
relational data. This implies that, for any arbitrarily complex
query, we can defer expanding the wavelet-coefficient syn-
opses back into relational tuples till the very end of the query,
thus allowing for extremely fast approximate query process-
ing. (In contrast, the histogram-basedjoin processing algo-
rithm of Ioannidis and Poosala [16] requires each histogram
to be partially expanded to generate the tuple-value distribu-
tion for the corresponding approximate relation.As our results
demonstrate, this requirement can slow down join process-
ing over histograms significantly, since the partially expanded
histogram can give rise to large numbers of tuples,especially
for high-dimensional data.) The contributions of our work are
summarized as follows.

• New, I/O-efficient wavelet decomposition algorithm for
relational tables.The methodology developed in this paper
is based on a different form of the multi-dimensional Haar
transform than that employed by Vitter et al. [33,34]. As a
consequence, the decomposition algorithms proposed by Vit-
ter and Wang [33] are not applicable. We address this problem
by developing a novel, I/O-efficient algorithm for building the
wavelet-coefficient synopsis of a relational table. The worst-
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case I/O complexity of our algorithm matches that of the best
algorithms of Vitter and Wang, requiring only a logarithmi-
cally small number of passes over the data. Furthermore, there
exist scenarios (e.g., when the table is stored inchunks[5,30])
under which our decomposition algorithm can work in asingle
passover the input table.

• Novel query processing algebra for wavelet-coefficient
data synopses.We propose a new algebra for approximate
query processing that operatesdirectly over the wavelet-
coefficient synopses of relations, while guaranteeing the cor-
rect relational operator semantics. Our algebra operators in-
clude the conventional aggregate and non-aggregate SQL op-
erators, likeselect , project , join , count , sum, and
average . Based on the semantics of Haar wavelet coef-
ficients, we develop novel query processing algorithms for
these operators that workentirely in the wavelet-coefficient
domain. This allows for extremely fast response times, since
our approximate query execution engine can do the bulk of
its processing over compact wavelet-coefficient synopses, es-
sentially postponing the expansion into relational tuples until
the end-result of the query. We also propose an efficient algo-
rithm for this finalrenderingstep, i.e., for expanding a set of
multi-dimensional Haar coefficients into an approximate re-
lation which is returned to the user as the final (approximate)
answer of the query.

• Extensive experiments validating our approach.We
have conducted an extensive experimental study with syn-
thetic as well as real-life data sets to determine the effective-
ness of our wavelet-based approach compared to sampling
and histograms. Our results demonstrate that: (1) the qual-
ity of approximate answers obtained from our wavelet-based
query processor is, in general, better than that obtained by
either sampling or histograms for a wide range ofselect ,
project , join , and aggregate queries; (2) query execution-
time speedups of more than two orders of magnitude are made
possible by our approximate query processing algorithms; and
(3) our wavelet decomposition algorithm is extremely fast and
scales linearly with the size of the data.

Roadmap.The remainder of this paper is organized as follows.
After reviewing some necessary background material on the
Haar wavelet decomposition, Sect.2 presents our I/O-efficient
wavelet decomposition algorithm for multi-attribute relational
tables. In Sect.3, we develop our query algebra and operator
processing algorithms for wavelet-coefficient data synopses.
Section 3 also proposes an efficient rendering algorithm for
multi-dimensional Haar coefficients. In Sect.4, we discuss the
findings of an extensive experimental study of our wavelet-
based approximate query processor using both synthetic and
real-life data sets. Finally, Sect.5 concludes the paper.

2 Building synopses of relational tables
using multi-dimensional wavelets

2.1 Background: the wavelet decomposition

Wavelets are a useful mathematical tool for hierarchically de-
composing functions in ways that are both efficient and theo-
retically sound. Broadly speaking, the wavelet decomposition

of a function consists of a coarse overall approximation to-
gether with detail coefficients that influence the function at
various scales [32]. The wavelet decomposition has excellent
energy compaction and de-correlation properties, which can
be used to effectively generate compact representations that
exploit the structure of data. Furthermore, wavelet transforms
can generally be computed in linear time, thus allowing for
very efficient algorithms.

The work in this paper is based on the multi-dimensional
Haar waveletdecomposition. Haar wavelets are conceptually
simple, very fast to compute, and have been found to perform
well in practice for a variety of applications ranging from im-
age editing and querying [24,32] to selectivity estimation and
OLAP approximations [21,33]. Recent work has also investi-
gated methods for dynamically maintaining Haar-based data
representations [22]. In this section, we discuss Haar wavelets
in both one and multiple dimensions.

One-dimensional Haar wavelets.Suppose we are given a one-
dimensional data vectorA containing the following four val-
uesA = [2, 2, 5, 7]. The Haar wavelet transform ofA can
be computed as follows. We first average the values together
pairwise to get a new “lower-resolution” representation of the
data with the following average values[2, 6]. In other words,
the average of the first two values (that is, 2 and 2) is 2 and that
of the next two values (that is, 5 and 7) is 6. Obviously, some
information has been lost in this averaging process. To be able
to restore the original four values of the data array, we need to
store somedetail coefficients, that capture the missing infor-
mation. In Haar wavelets, these detail coefficients are simply
the differences of the (second of the) averaged values from the
computed pairwise average. Thus, in our simple example, for
the first pair of averaged values, the detail coefficient is 0 since
2 − 2 = 0, while for the second we need to store−1 since
6−7 = −1. Note that it is possible to reconstruct the four val-
ues of the original data array from the lower-resolution array
containing the two averages and the two detail coefficients.
Recursively applying the above pairwise averaging and dif-
ferencing process on the lower-resolution array containing the
averages, we get the following full decomposition.

Resolution Averages Detail coefficients
2 [2, 2, 5, 7] –
1 [2, 6] [0, -1]
0 [4] [-2]

We define thewavelet transform(also known as the
wavelet decomposition) of A to be the single coefficient rep-
resenting the overall average of the data values followed by
the detail coefficients in the order of increasing resolution.
Thus, the one-dimensional Haar wavelet transform ofA is
given byWA = [4,−2, 0,−1]. Each entry inWA is called a
wavelet coefficient. The main advantage of usingWA instead
of the original data vectorA is that for vectors containing
similar values most of the detail coefficients tend to have very
small values. Thus, eliminating such small coefficients from
the wavelet transform (i.e., treating them as zeros) introduces
only small errors when reconstructing the original data, giving
a very effective form of lossy data compression.
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Note that, intuitively, wavelet coefficients carry different
weights with respect to their importance in rebuilding the orig-
inal data values. For example, the overall average is obviously
more important than any detail coefficient since it affects the
reconstruction of all entries in the data array. In order to equal-
ize the importance of all wavelet coefficients, we need tonor-
malizethe final entries ofWA appropriately. This is achieved
by dividing each wavelet coefficient by

√
2l, wherel denotes

the level of resolutionat which the coefficient appears (with
l = 0 corresponding to the “coarsest” resolution level). Thus,
the normalized wavelet transform for our example data array
becomesWA = [4,−2, 0,−1/

√
2].

Multi-dimensional Haar wavelets.There are two common
methods in which Haar wavelets can be extended to transform
the data values in amulti-dimensionalarray. Each of these
transforms is a generalization of the one-dimensional decom-
position process described above. To simplify the exposition
to the basic ideas of multi-dimensional wavelets, we assume
all dimensions of the input array to be of equal size.

The first method is known asstandard decomposition.
In this method, we first fix an ordering for the data dimen-
sions (say,1, 2, . . . , d) and then proceed to apply the complete
one-dimensional wavelet transform for each one-dimensional
“row” of array cells along dimensionk, for all k = 1, . . . , d.
The standard Haar decomposition forms the basis of the recent
results ofVitter et al., on OLAP data cube approximations [33,
34].

The work presented in this paper is based on the second
method of extending Haar wavelets to multiple dimensions,
namely thenonstandard decomposition. Abstractly, the non-
standard Haar decomposition alternates between dimensions
during successive steps of pairwise averaging and differenc-
ing: given an ordering for the data dimensions (1, 2, . . . , d),
we performone step of pairwise averaging and differencing
for each one-dimensional row of array cells along dimension
k, for eachk = 1, . . . , d. (The results of earlier averaging and
differencing steps are treated as data values for larger values of
k.) This process is then repeated recursively only on the quad-
rant containing averages across all dimensions. One way of
conceptualizing (and implementing [24]) this procedure is to
think of a2×2×· · ·×2(= 2d) hyper-box being shifted across
the data array, performing pairwise averaging and differenc-
ing, distributing the results to the appropriate locations of the
wavelet transform arrayWA (with the averages for each box
going to the “lower-left” quadrant ofWA) and, finally, recurs-
ing the computation on the lower-left quadrant ofWA. This
procedure is demonstrated pictorially for a (two-dimensional)
2m × 2m data arrayA in Fig.1a. More specifically, Fig.1a
shows the pairwise averaging and differencing step for one
positioning of the2 × 2 box with its “root”(i.e., lower-left
corner) located at the coordinates[2i1, 2i2] of A followed by
the distribution of the results in the wavelet transform array.
This step is repeated for every possible combination ofij ’s,
ij ∈ {0, . . . , 2m−1 − 1}. Finally , the process is recursed
only on the lower-left quadrant ofWA (containing the aver-
ages collected from all boxes). A detailed description of the
nonstandard Haar decomposition can be found in any standard
reference on the subject (e.g., [18,32]).

Example 1.Consider the4 × 4 arrayA shown in Fig.1b.1.
Figure 1b.2 shows the result of the first horizontal and verti-
cal pairwise averaging and differencing on the2 × 2 hyper-
boxes of the original array. During this first level of recur-
sion, the2 × 2 sliding hyper-box is placed at the four pos-
sible “root” positions onA, namely[0, 0], [0, 2], [2, 0], and
[2, 2], and pairwise averaging and differencing is performed
on each of them individually. For example, pairwise averag-
ing and differencing on the hyper-box with root position[2, 0]
(containing valuesA[2, 0] = 2, A[3, 0] = 4, A[2, 1] = 6,
andA[3, 1] = 8) produces the average coefficient(A[2, 0] +
A[3, 0] + A[2, 1] + A[3, 1])/4 = 5, and detail coefficients
(A[2, 0] + A[2, 1] − A[3, 0] − A[3, 1])/4 = −1, (A[2, 0] +
A[3, 0]−A[2, 1]−A[3, 1])/4 = −2, and(A[2, 0]+A[3, 1]−
A[3, 0]−A[2, 1])/4 = 0 (shown in the same positions (A[2, 0],
A[3, 0], A[2, 1], andA[3, 1]). The averages of the values for
each positioning of the hyper-box are then assigned to the
2 × 2 lower-left quadrant of the wavelet transform arrayWA,
while the detail coefficients are distributed in the three re-
maining2 × 2 quadrants ofWA, as shown in Fig.1b.3. As
an example, for the hyper-box with root position[2, 0] (i.e.,
i1 = 1, i2 = 0, andm = 2, using the notation of Fig.1a),
the results5,−1,−2, and0 are placed at positions[i1, i2] =
[1, 0], [2m−1 + i1, i2] = [3, 0], [i1, 2m−1 + i2] = [1, 2], and
[2m−1 + i1, 2m−1 + i2] = [3, 2], respectively. The process is
then recursed on the lower-left quadrant ofWA (containing
the average values2.5, 7.5, 5, and10 from the four hyper-
boxes), resulting in the average coefficient6.25 and detail
coefficients−1.25, −2.5, and0. That ends the recursive de-
composition process, producing the final wavelet transform
arrayWA shown in Fig.1b.4. 	


As noted in the wavelet literature, both methods for ex-
tending one-dimensional Haar wavelets to higher dimension-
alities have been used in a wide variety of application domains
and, to the best of our knowledge, none has been shown to be
uniformly superior. Our choice of the nonstandard method
was mostly motivated by our earlier experience with nonstan-
dard two-dimensional Haar wavelets in the context of effective
image retrieval [24]. An advantage of using the nonstandard
transform is that, as we explain later in the paper, it allows for
an efficient representation of the sign information for wavelet
coefficients. This efficient representation stems directly from
the construction process for a nonstandard Haar basis [32]. Us-
ing nonstandard Haar wavelets, however, also implies that the
standard decomposition algorithms ofVitter andWang [33] are
no longer applicable. We address this problem by proposing a
novel I/O-efficient algorithm for constructing the nonstandard
wavelet decomposition of a relational table (Sect.2.2). (We of-
ten omit the “nonstandard” qualification in what follows.)

Multi-dimensional Haar coefficients: semantics and represen-
tation. Consider a wavelet coefficientW generated during
the multi-dimensional Haar decomposition of ad-dimensional
data arrayA. From a mathematical standpoint, this coeffi-
cient is essentially a multiplicative factor for an appropriate
Haar basis functionwhen the data inA is expressed using
the d-dimensional Haar basis [32]. Thed-dimensional Haar
basis function corresponding toW is defined by: (1) ad-
dimensional rectangular support regionin A that captures
the region ofA’s cells thatW contributes to during recon-
struction; and (2) thequadrant sign informationthat defines
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the sign (+ or −) of W ’s contribution (i.e.,+W or −W ) to
any cell contained in a given quadrant of its support rectangle.
(Note that the wavelet decomposition process guarantees that
this sign can only change across quadrants of the support re-
gion.) As an example, Fig.2a depicts the support regions and
signs of the sixteen nonstandard, two-dimensional Haar basis
functions for coefficients in the corresponding locations of a
4 × 4 wavelet transform arrayWA. The blank areas for each
coefficient correspond to regions ofA whose reconstruction
is independent of the coefficient, i.e., the coefficient’s contri-
bution is0. Thus,WA[0, 0] is the overall average that con-
tributes positively (i.e.,“+WA[0, 0]”) to the reconstruction of
all values inA, whereasWA[3, 3] is a detail coefficient that
contributes (with the signs shown in Fig. 2a) only to values
in A’s upper right quadrant. Each data cell inA can be accu-
rately reconstructed by adding up the contributions (with the
appropriate signs) of those coefficients whose support regions
include the cell. Figure 2a also depicts the twolevels of reso-
lution (l = 0, 1) for our example two-dimensional Haar coef-
ficients; as in the one-dimensional case, these levels define the
appropriate constants for normalizing coefficient values (see,
e.g., [32]).

Example 2.In light of Fig.2a, let us now revisit Example 1
and consider how the entries ofWA contribute to the recon-
struction of values inA. As we have already observed, co-
efficient WA[0, 0] = 6.25 is the overall average that con-
tributes positively (i.e.,+6.25) to the reconstruction of all
sixteen data values inA. On the other hand, the detail coef-
ficient WA[0, 2] = −1 affects the reconstruction of only the
four data values in the lower-left quadrant ofA, contribut-
ing −1 to A[0, 0] andA[1, 0], and−(−1) = +1 to A[0, 1]
andA[1, 1]. Similarly, the detail coefficientWA[2, 0] = −.5
contributes−.5 to A[0, 0] andA[0, 1], and+.5 to A[1, 0] and
A[1, 1]. For example, based on Fig.2a, the data valueA[0, 1]
can be reconstructed using the following formula:
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Fig. 2. aSupport regions and signs for the sixteen nonstandard two-
dimensional Haar basis functions. The coefficient magnitudes are
multiplied by+1 (−1) where a sign of+ (respectively,−) appears,
and0 in blank areas;b representing quadrant sign information for
coefficients using “per-dimension” sign vectors

A[0, 1] = +WA[0, 0] + WA[0, 1] + WA[1, 0] + WA[1, 1]
−WA[0, 2] + WA[2, 0] − WA[2, 2]

= 2.5 − (−1) + (−.5) = 3. 	

To simplify the discussion in this paper, we abstract away

the distinction between a coefficient and its corresponding
basis function by representing a Haar wavelet coefficient with
the tripleW = 〈R,S, v〉, where:

1. W.R is thed-dimensional support hyper-rectangle of W
enclosing all the cells in the data arrayA to which W
contributes (i.e., the support of the corresponding basis
function). We represent this hyper-rectangle by its low and
high boundary values (i.e., starting and ending array cells)
along each dimensionj, 1 ≤ j ≤ d; these are denoted by
W.R.boundary[j].lo andW.R.boundary[j].hi, respec-
tively. Thus, the coefficientW contributes to each data cell
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A[i1, . . . , id] satisfying the condition W.R.boun-
dary[j].lo ≤ ij ≤ W.R.boundary[j].hi for all di-
mensionsj, 1 ≤ j ≤ d. For example, for the detail
coefficientWA[1, 2] in Fig.2a,W.R.boundary[1].lo = 2,
W.R.boundary[1].hi = 3, W.R.boundary[2].lo = 0,
and W.R.boundary[2].hi = 1. The space required
to store the support hyper-rectangle of a coefficient is
2 logN bits, whereN denotes the total number of cells
of A.

2. W.S stores thesign information for all d-dimensional
quadrants of W.R. Storing the quadrant sign information
directly would mean a space requirement ofO(2d), i.e.,
proportional to the number of quadrants of ad-dimensional
hyper-rectangle. Instead, we use a more space-efficient
representation of the quadrant sign information (using only
2dbits) that exploits the regularity of the nonstandard Haar
transform. The basic observation here is that a nonstan-
dardd-dimensional Haar basis is formed by scaled and
translated products ofd one-dimensional Haar basis func-
tions [32]. Thus, our idea is to store a 2-bitsign vectorfor
each dimensionj, that captures the sign variation of the
corresponding one-dimensional basis function. The two
elements of the sign vector of coefficientW along dimen-
sionj are denoted byW.S.sign[j].lo andW.S.sign[j].hi,
and contain the sign that corresponds to the lower and
upper half ofW.R’s extent along dimensionj, respec-
tively. Given the sign vectors along each dimension and
treating a sign of+ (−) as being equivalent to+1 (re-
spectively,−1), the sign for eachd-dimensional quadrant
can be computed as the product of thed sign-vector en-
tries that map to that quadrant; that is, following exactly
the basis construction process. (Note that we will con-
tinue to make use of this “+1/-1” interpretation of signs
throughout the paper.) Our sign-computation methodol-
ogy is depicted in Fig.2b for two example coefficient
hyper-rectangles from Fig.2a. The sign vectors for the top-
most coefficient in Fig.2b areW.S.sign[1].lo = +1 and
W.S.sign[1].hi = −1 along dimension 1 (x-axis), and
W.S.sign[2].lo = +1 andW.S.sign[2].hi = −1 along
dimension 1 (y-axis); thus, the signs of the lower left, lower
right, upper left, and upper right quadrants of its support re-
gion are computed asW.S.sign[1].lo∗ W.S.sign[2].lo =
+1,W.S.sign[1].hi∗W.S.sign[2].lo =−1,W.S.sign[1].
lo ∗ W.S.sign[2].hi = −1, and W.S.sign[1].hi ∗
W.S.sign[2].hi = +1, respectively.

3. W.v is the (scalar) magnitude of coefficient W. This is
exactly the quantity thatW contributes (either positively
or negatively, depending onW.S) to all data array cells
enclosed inW.R. For example, the magnitude ofWA[0, 0]
in Fig.1b is6.25, and that ofWA[1, 2] is −2.

Thus, our view of ad-dimensional Haar wavelet coefficient
is that of ad-dimensional hyper-rectangle with a magnitude
and a sign that may change across quadrants. Note that, by
the properties of the nonstandard Haar decomposition, given
any pairof coefficients, their hyper-rectangles are eithercom-
pletely disjointor one iscompletely containedin the other;
that is, coefficient hyper-rectangles cannotpartially overlap.
As will be seen later, it is precisely these containment prop-
erties coupled with our sign-vector representation of quadrant

signs that enable us to efficiently performjoin operations
directly over wavelet-coefficient synopses.

2.2 Building and rendering wavelet-coefficient synopses

Consider a relational tableR with d attributesX1, X2, . . . Xd.
A straightforward way of obtaining a wavelet-based synop-
sis ofR would be to take the traditional two-dimensional ar-
ray view of a relational table (with attributes on thex-axis
and tuples on they-axis), apply a two-dimensional wavelet
decomposition onR, and retain a few large coefficients. It
is highly unlikely, however, that this solution will produce a
high-quality compression of the underlying data. The reason
is that wavelets (like most compression mechanisms) work by
exploiting locality (i.e., clusters of constant or similar values),
which is almost impossible when grouping together attributes
that can have vastly different domains (e.g., consider anage
attribute adjacent to asalary attribute). Similar problems
occur in the vertical grouping as well, since even sorting by
some attribute(s) cannot eliminate large “spikes” for others.
We address these problems by taking a slightly different view
of thed-attribute relational tableR. We can represent the in-
formation inR as ad-dimensional arrayAR, whosejth di-
mension is indexed by the values of attributeXj and whose
cells contain the count of tuples inR having the correspond-
ing combination of attribute values.AR is essentially thejoint
frequency distributionof all the attributes ofR. Figure 3a de-
picts the tuples of an example relation with two attributes (the
“Count” column simply records the number of tuple occur-
rences); the corresponding joint-frequency array is shown in
Fig.3b. We obtain the wavelet synopsis ofR by constructing
the nonstandard multi-dimensional wavelet decomposition of
AR (denoted byWR) and then retaining only some of the
coefficients (based on the desired size of the synopsis) using
a thresholding scheme. In this section, we propose a novel,
I/O-efficient algorithm for constructingWR. Note that, even
though our algorithm computes the decomposition ofAR, it in
fact works off the “set-of-tuples” (ROLAP) representation of
R. (As noted by Vitter and Wang [33], this is a requirement for
computational efficiency since the joint-frequency arrayAR

is typically very sparse, especially for the high-dimensional
data sets that are typical of DSS applications.) We also briefly
describe our thresholding scheme for controlling the size of a
wavelet-coefficient synopsis. We have also developed a time-
and space-efficient algorithm (termedrender ) for render-
ing (i.e., expanding) a synopsis into an approximate “set-of
tuples” relation (which is used during query processing as the
final step). We begin by summarizing the notational conven-
tions used throughout the paper.

Notation. Let D = {D1, D2, . . . , Dd} denote the set of di-
mensions ofAR, where dimensionDj corresponds to thevalue
domainof attributeXj . Without loss of generality, we as-
sume that each dimensionDj is indexed by the set of integers
{0, 1, · · · , |Dj |−1}, where|Dj | denotes the size of dimension
Dj . We assume that the attributes{X1, . . . , Xd} are ordinal
in nature, that is, their domains are naturally ordered. This
captures all numeric attributes (e.g., age, income) and some
categorical attributes (e.g., education). Such domains can al-
ways be mapped to the set of integers mentioned above while



K. Chakrabarti et al.: Approximate query processing using wavelets 205

Fig. 3. aAn example relationR with
two data attributes (X1 andX2); b the
corresponding joint-frequency array
AR; c one possible chunking ofAR;
all cells inside a chunk are stored con-
tiguously on disk;d the correspond-
ing chunked organization ofR; all tu-
ples belonging to the same chunk are
stored contiguously

preserving the natural domain order and, hence, the locality of
the distribution. It is also possible to map unordered domains
to integer values; however, such mappings do not always pre-
serve locality. For example, mapping countries to integers us-
ing alphabetic ordering can destroy data locality. There may
be alternate mappings that are more locality preserving, e.g.,
assigning neighboring integers to neighboring countries. (Ef-
fective mapping techniques for unordered attributes are an
open research issue that lies beyond the scope of this paper; a
methodology based on concept hierarchies has recently been
discussed in [6].) Thed-dimensional joint-frequency arrayAR

comprisesN =
∏d

i=1 |Di| cells with cellAR[i1, i2, . . . , id]
containing the count of tuples inR havingXj = ij for each
attribute1 ≤ j ≤ d. We defineNz to be the number of pop-
ulated (i.e., non-zero) cells ofAR (typically, Nz << N ).
Table 1 outlines the notation used in this paper with a brief
description of its semantics. We provide detailed definitions
of some of these parameters in the text. Additional notation
will be introduced when necessary.

Most of the notation pertaining to wavelet coefficients
W has already been described in Sect.2.1. The only ex-
ception is thesign-change value vectorW.S.signchange[j]
that captures the value along dimensionj (between
W.R.boundary[j].lo and W.R.boundary[j].hi) at which
a transition in the value of the sign vectorW.S.sign[j]
occurs, for each1 ≤ j ≤ d. That is, the sign
W.S.sign[j].lo (W.S.sign[j].hi) applies to the range
[W.R.boundary[j].lo, . . . ,W.S.signchange[j]−1] (respec-
tively, [W.S.signchange[j], . . . , W.R.boundary[j].hi]).
As a convention, we setW.S.signchange[j] equal to
W.R.boundary[j].lo when there is no “true” sign change
along dimensionj, i.e., W.S.sign[j] contains [+,+] or
[−,−]. Note that, for base Haar coefficients with a true
sign change along dimensionj, W.S.signchange[j] is
simply the midpoint betweenW.R.boundary[j].lo and
W.R.boundary[j].hi (Fig.2). This property, however, no
longer holds when arbitrary selections and joins are executed
over the wavelet coefficients. As a consequence, we need to
store sign-change values explicitly in order to support general
query processing operations in an efficient manner.

The ComputeWavelet decomposition algorithm. We
now present our I/O-efficient algorithm (calledCompute-
Wavelet) for constructing the wavelet decomposition of
R. Our algorithm exploits the interaction of nonstandard
wavelet decomposition and “chunk-based” organizations of
relational tables [30,5]. In chunk-based organizations, the
joint-frequency arrayAR is split into d-dimensionalchunks

and tuples ofR belonging to the same chunk are stored con-
tiguously on disk. Figures 3c,d depict an example chunking
of AR and the corresponding organization ofR’s tuples. IfR
is organized in chunks,ComputeWavelet can perform the
decomposition in asingle passover the tuples ofR. Note that
such data organizations have already been proposed in ear-
lier work (e.g., thechunked-file organizationof Deshpande et
al. [5] and Orenstein’sz-order linearization [17,25]), where
they have been shown to have significant performance benefits
for DSS applications due to their excellent multi-dimensional
clustering properties.

We present our I/O-efficientComputeWavelet algorithm
below assuming thatR’s tuples are organized ind-dimensional
chunks. IfR is not chunked, then an extra pre-processing step
is required to reorganizeR on disk. This pre-processing is no
more expensive than a sorting step (e.g., inz-order) which
requires a logarithmic number of passes overR. Thus, while
the wavelet decomposition requires just a single pass when
R is chunked, in the worst-case (i.e., whenR is not “chun-
ked”), the I/O complexity ofComputeWavelet matches that
of Vitter and Wang’s I/O-efficient algorithm for standard Haar
wavelet decomposition [33]. We also assume that each chunk
can individually fit in memory. We show that the extra mem-
ory required by our wavelet decomposition algorithm (in ad-
dition to the memory needed to store the chunk itself) is at
mostO(2d · log(maxj{|Dj |})). Finally, our implementation
of ComputeWavelet also employs a dynamic coefficient-
thresholding scheme that adjusts the number of wavelet co-
efficients maintained during the decomposition based on the
desired size of the synopsis. We do not discuss the details of
our dynamic-thresholding step below to keep the presentation
of ComputeWavelet simple.

Our I/O-efficient decomposition algorithm is based on the
following observation:

The decomposition of ad-dimensional arrayAR can
be computed by independentlycomputing the decom-
position for each of the2d d-dimensional subarrays
corresponding toAR’s quadrants and then performing
pairwise averaging and differencing on the computed
2d averages ofAR’s quadrants.

Due to the above property, when a chunk is loaded from the
disk for the first time,ComputeWavelet can perform the
entire computation required for decomposing the chunk right
away (hence no chunk is read twice). Lower resolution coef-
ficients are computed by first accumulating, in main memory,
averages from the2d quadrants (generated from the previous
level of resolution) followed by pairwise averaging and differ-
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Table 1.Notation

Symbol Semantics

d Number of attributes (i.e., dimensionality) of the input relational table

R, AR Relational table and correspondingd-dimensional joint-frequency array

Xj , Dj jth attribute of relationR and corresponding domain of values (1 ≤ j ≤ d)

D = {D1, . . . , Dd} Set of all data dimensions of the arrayAR

AR[i1, i2, · · · , id] Count of tuples inR with Xj = ij (ij ∈ {0, . . . , |Dj | − 1}) , ∀1 ≤ j ≤ d

N =
∏

j |Dj | Size (i.e., number of cells) ofAR

Nz Number ofnon-zerocells ofAR (Nz << N )

WR[i1, i2, · · · , id] Coefficient located at coordinates[i1, i2, · · · , id] of the wavelet transform arrayWR

W.R.boundary[j].{lo, hi} Support hyper-rectangle boundaries along dimensionDj for coefficientW (1 ≤ j ≤ d)

W.S.sign[j].{lo, hi} Sign vector information along dimensionDj for the wavelet coefficientW (1 ≤ j ≤ d)

W.S.signchange[j] Sign-change value along dimensionDj for the wavelet coefficientW (1 ≤ j ≤ d)

W.v Scalar magnitude of the wavelet coefficientW

l Current level of resolution of the wavelet decomposition

encing, thus requiring no extra I/O. Due to the depth-first na-
ture of the algorithm, the pairwise averaging and differencing
is performedas soon asall the2d averages are accumulated,
making the algorithm memory efficient (as, at any point in the
computation, there can be no more than one “active” subarray
(whose averages are still being accumulated) for each level of
resolution).

The outline of our I/O-efficient wavelet decomposition
algorithm ComputeWavelet is depicted in Fig.4. To sim-
plify the presentation, theComputeWavelet pseudo-code
assumes that all dimensions of the data arrayAR are of equal
size, i.e.,|D1| = |D2| = . . . = |Dd| = 2m. We discuss han-
dling of unequal dimension sizes later in this section. Besides
the input joint-frequency array (AR) and the logarithm of the
dimension size (m), ComputeWavelet takes two additional
arguments: (a) theroot (i.e., “lower-left” endpoint) coordi-
natesof the d-dimensional subarray for which the wavelet
transform is to be computed(i1, i2, . . . , id); and (b) the cur-
rent level of resolutionfor the wavelet coefficients (l). Note
that, for a given level of resolutionl, the extent (along each di-
mension) of thed-dimensional array rooted at(i1, i2, . . . , id)
being processed is exactly2m−l. The algorithm computes the
wavelet coefficients for the elements in the input subarray and
returns the overall average (Step 15). The wavelet-coefficient
computation is carried out by: (1) performing wavelet decom-
positionrecursivelyon each of the2d quadrants of the input
subarray (to produce the corresponding wavelet transforms
for the next level of resolution, i.e.,l + 1), and collecting the
quadrant averages returned in a2 × · · · × 2 = 2d temporary
hyper-boxT (Steps 2–4); (2) performing pairwise averaging
and differencing onT to produce the average and detail co-
efficients for the level-l decomposition of the input subarray
(Step 5); and, finally, (3) distributing these level-l wavelet co-
efficients to the appropriate locations of the wavelet trans-
form arrayWR (computing their support hyper-rectangles
and dimension sign vectors at the same time) (Steps 6–14).
The initial invocation ofComputeWavelet is done with root
(i1, i2, . . . , id) = (0, 0, . . . , 0) and levell = 0.

Example 3.Figure 5 illustrates the working of theCompute-
Wavelet algorithm on the example8 × 8 joint-frequency

procedureComputeWavelet(AR, m, (i1, i2, . . . , id), l)
begin
1. if l ≥ m return AR[i1, . . . , id]
2. for t1 := 0,1 · · · for td := 0,1
3. T [t1, . . . , td] := ComputeWavelet( AR, m,

(i1 + t1 · 2m−l−1, . . . , id + td · 2m−l−1), l + 1 )
4. end · · · end
5. perform pairwise averaging and differencing on the

2 × . . . × 2 = 2d hyper-boxT
6. for t1 := 0,1 · · · for td := 0,1
7. arrayIndex := ( t1 · 2l + i1

2m−l , . . . , td · 2l + id
2m−l )

8. WR[arrayIndex].v := T [t1, . . . , td]
9. for j := 1, . . . , d
10. WR[arrayIndex].R.boundary[j] := [ij , ij + 2m−l − 1]
11. WR[arrayIndex].S.sign[j] :=

(tj == 0) ? [+,+] : [+,−]
12. WR[arrayIndex].S.signchange[j] :=

(tj == 0) ? ij : ij + 2m−l

13. end
14. end · · · end
15. return T [0, . . . , 0]
end

Fig. 4.ComputeWavelet: an I/O-efficient wavelet decomposition
algorithm

arrayAR corresponding to the relation shown in Fig.3. The
recursive calls ofComputeWavelet for the four resolu-
tion levels l form a depth-first invocation tree; the root of
the tree (i.e.,l = 0) corresponds to the initial invocation
ComputeWavelet(AR, 3, (0, 0), 0) with the entire array
AR as the input subarray. The root then recursively invokes
ComputeWavelet on the subarrays corresponding to the four
4 × 4 quadrants ofAR “rooted” at cells(0, 0), (0, 4), (4, 0),
and(4, 4) to compute the wavelet coefficients at the next level
of resolution (l = 1). ComputeWavelet(AR, 3, (0, 0), 1) in
turn invokesComputeWavelet on the four2 × 2 quadrants
(rooted at(0, 0), (0, 2), (2, 0), and(2, 2)) of its input subarray
(l = 2). Similarly, ComputeWavelet(AR, 3, (0, 0), 2) in-
vokesComputeWavelet on its four1 × 1 “quadrants” (i.e.,
simple cells) located at(0.0), (0, 1), (1, 0), and(1, 1). Each of
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Fig. 5.Execution of theComputeWavelet algorithm for a8 × 8 joint-frequency array. Each invocation of theComputeWavelet procedure
is shown in a dotted box labeled by the procedure call with the right parameters

these four invocations (at resolutionl = 3) satisfies the “base
condition” of theComputeWavelet recursion (Step 1); thus,
each such invocation simply returns the value at its respec-
tive 1-cell subarray input (3, 0, 0, and1, respectively). The
caller (ComputeWavelet(AR, 3, (0, 0), 2)) collects these
four values in the “quadrant-averages array”T , performs pair-
wise averaging and differencing, distributes the results in the
wavelet-transform arrayWR, and returns the computed av-
erage (i.e.,1) to its caller (theComputeWavelet (AR, 3,
(0, 0), 1) invocation). The other three recursive invocations
made byComputeWavelet(AR, 3, (0, 0), 1) are processed
in the same manner. Similarly,ComputeWavelet (AR, 3,
(0, 0), 1) simply collects the returned averages (i.e.,1, 0, 0,
and 3) in the “quadrant-averages array”T , performs pairwise
averaging and differencing, distributes the results inWR, and
returns the computed average (i.e.,1) to its caller (theCom-
puteWavelet (AR, 3, (0, 0), 0) invocation). The other three
recursive invocations made byComputeWavelet (AR, 3,
(0, 0), 0) on the four4 × 4 quadrants ofAR are processed
in the same manner. As previously,ComputeWavelet(AR,

3, (0, 0), 0) collects the returned averages (i.e.,1, 0, 0.5, and
0.5) in the “quadrant-averages array”T , performs pairwise
averaging and differencing, distributes the results inWR, and
returns the overall average of0.5. 	


As we already observed,ComputeWavelet basically ex-
ploits chunked array organizations by working in a “depth-
first” manner – all the computation required for decompos-
ing an array chunk is done the first time the chunk is loaded
into memory. Thus, once ad-dimensional chunk ofAR is
loaded into memory,ComputeWavelet computes the (non-
standard) wavelet coefficientsat all levelsfor that chunk with
no additional I/O’s. This property essentially guarantees that
all computation is completed in a single pass over the chunks
of AR. Thus, assuming a chunked organization ofR’s tuples,
the time complexity ofComputeWavelet is O(Nz)1; if R

1 For simplicity, the pseudo-code in Fig.4 works on the joint-
frequency arrayAR, which seems to imply a complexity ofO(N)
for ComputeWavelet. Our implementation, as mentioned before,
works onR itself and hence has a time complexity of onlyO(Nz).
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is not chunked, then the complexity ofComputeWavelet is
O(Nz logNz), due to the extra pre-processing step discussed
above.

With respect to the memory requirements of our algorithm,
observe that the only extra memory required byCompute-
Wavelet (in addition to that needed to store the data chunk
itself) is the memory for storing the temporary “quadrant-
averages hyper-boxes”T . Each such hyper-box consists of
exactly2d entries and the number of distinct hyper-boxes that
can be “active” at any given point in time during the oper-
ation of ComputeWavelet is bounded by the depth of the
recursion, or equivalently, the number of distinct levels of co-
efficient resolution. Thus, the extra memory required byCom-
puteWavelet is at mostO(2d · m) (when |D1| = . . . =
|Dd| = 2m) orO(2d · log(maxj{|Dj |})) (for the general case
of unequal dimension extents).

We should note here that both the hyper-rectangle and the
sign information for any coefficient generated during the exe-
cution ofComputeWavelet over a base relationR can be eas-
ily derived from the location of the coefficient in the wavelet
transform arrayWR, based on the regular recursive structure of
the decomposition process. Thus, in order to conserve space,
hyper-rectangle boundaries and sign vectors are not explicitly
stored in the wavelet-coefficient synopses of base relations.
(All that we need are the coefficients’ coordinates inWR.) As
we will see later, however, this information does need to be
stored explicitly for intermediate collections of wavelet coef-
ficients generated during query processing.

Handling unequal dimension extents.If the sizes of the di-
mensions ofAR are not equal, then the recursive invocation
of ComputeWavelet for quadrant[t1, . . . , td] (Step 3) takes
place only if the inequalityij + tj · 2m−l−1 < |Dj | is satis-
fied, for eachj = 1, . . . , d. This means that, initially, quad-
rants along certain “smaller” dimensions are not considered
by ComputeWavelet; however, once quadrant sizes become
smaller than the dimension size, computation of coefficients
in quadrants for such smaller dimensions is initiated. Con-
sequently, the pairwise averaging and differencing computa-
tion (Step 5) is performed only along those dimensions that
are “active” in the current level of the wavelet decomposi-
tion. The support hyper-rectangles and dimension sign vec-
tors for such active dimensions are computed as described in
Steps 10–12, whereas for an “inactive” dimensionj the hyper-
rectangle boundaries are set atboundary[j] := (0, |Dj | − 1)
(the entire dimension extent) and the sign vector is set at
sign[j] = [+,+].

As mentioned in Sect.2.1, the coefficient values computed
by ComputeWavelet need to be properlynormalizedin or-
der to ensure that the Haar basis functions are orthonormal
and the coefficients are appropriately weighted according to
their importance in reconstructing the original data. This is
obviously crucial when thresholding coefficients based on a
given (limited) amount of storage space. When all dimensions
are of equal extent (i.e.,|D1| = |D2| = . . . = |Dd| = 2m),
we can normalize coefficient values by simply dividing each

coefficient with
√

2l
d
, wherel is the level of resolution for

the coefficient. As for one-dimensional wavelets, this normal-
ization ensures the orthonormality of the Haar basis [32]. The
following lemma shows how to extend the normalization pro-

cess for nonstandard Haar coefficients to the important case
of unequal dimension extents. (The proof follows by a simple
verification of the orthonormality property for the constructed
coefficients.)

Lemma 4. Let W be any wavelet coefficient generated by
pairwise averaging and differencing during the nonstandard
d-dimensional Haar decomposition ofA = |D1|×· · ·×|Dd|.
In addition, letW.R.length[j] := W.R.boundary[j].hi −
W.R.boundary[j].lo + 1 denote the extent ofW along di-
mensionj, for each1 ≤ j ≤ d. Then, dividing the valueW.v

of each coefficientW by the factor
∏

j

√
|Dj |

W.R.length[j] gives
anorthonormal basis. 	


Coefficient thresholding.Given a limited amount of storage
for maintaining the wavelet-coefficient synopsis ofR, we can
only retain a certain numberC of the coefficients stored in
WR. (The remaining coefficients are implicitly set to0.) Typ-
ically, we haveC << Nz, which implies that the chosenC
wavelet coefficients form a highly compressed approximate
representation of the original relational data. The goal of co-
efficient thresholding is to determine the “best” subset ofC
coefficients to retain, so that the error in the approximation is
minimized.

The thresholding scheme that we have employed for the
purposes of this study is to retain theC largest wavelet co-
efficients inabsolute normalized value. It is a well-known
fact that (for any orthonormal wavelet basis) this thresholding
method is in factprovably optimalwith respect to minimiz-
ing the overall mean squared error (i.e.,L2 error norm) in the
data compression [32]. Given that our goal in this work is to
support effective and accurategeneralquery processing over
such wavelet-compressed relational tables, we felt that the
L2 error norm would provide a reasonable aggregate metric
of the accuracy of the approximation over all the individual
tuples ofR. Our thresholding approach is also validated by
earlier results, where it has been proven that minimizing the
L2 approximation error is in fact optimal (on the average) for
estimating the sizes of join query results [15]. Note that it is
possible to optimize ourComputeWavelet algorithm forL2-
based coefficient thresholding to ensure that only coefficients
that make it into the final synopsis are maintained during the
decomposition process; for example, Steps 6–14 can be omit-
ted for coefficients with absolute normalized value less than
theC best coefficients found so far. We have chosen not to
incorporate such optimizations in our discussion here in order
to keep the presentation ofComputeWavelet simple and in-
dependent of the specifics of the thresholding scheme. For the
remainder of the paper, we use the symbolWR to denote the
set of wavelet coefficientsretainedfrom the decomposition of
relationR (i.e., thewavelet-coefficient synopsisof R).

Rendering a wavelet-coefficient synopsis.A crucial require-
ment for any lossy data-compression scheme is the ability to
reconstruct an approximate version of the original data from a
given compressed representation. In our context, this require-
ment translates torenderinga given set of wavelet coefficients
WT = {Wi = 〈Ri, Si, vi〉} corresponding to a relational
tableT , to produce an “approximate version” ofT that we
denote byrender (WT ). It is important to note thatT can
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correspond to either a base relation or the result of an arbi-
trarily complex SQL query on base relations. As we show in
Sect.3, our approximate query execution engine does the bulk
of its processing directly over the wavelet coefficient domain.
This means that producing the final approximate query answer
in “human-readable” form can always be done by placing a
render () operator at the root of the query plan or as a post-
processing step.

Abstractly, the approximate relationrender (WT ) can
be constructed by summing up the contributions of every
coefficientWi in WT to the appropriate cells of the (ap-
proximate) MOLAP arrayAT . Consider a cell inAT with
coordinates(i1, . . . , id) that is contained in theWi’s sup-
port hyper-rectangleWi.R. Then, the contribution ofWi to
AT [i1, . . . , id] is exactlyWi.v · ∏1≤j≤d sj , where sj =
W.S.sign[j].lo if ij < W.S.signchange[j]; otherwise,sj =
W.S.sign[j].hi. Once the counts for all the cells in the approx-
imate MOLAP arrayAT have been computed, the non-zero
cells can be used to generate the tuples in the approximate
relation render (WT ). In Sect.3.5, we present an efficient
algorithm for rendering a set of wavelet coefficientsWT to an
approximate MOLAP representation. (The tuple generation
step is then trivial.)

3 Processing relational queries
in the wavelet-coefficient domain

In this section, we propose a novel query algebra for wavelet-
coefficient synopses. The basic operators of our algebra cor-
respond directly to conventional relational algebra and SQL
operators, including the (non-aggregate)select ,project ,
andjoin , as well as aggregate operators likecount , sum,
andaverage . There is, however, one crucial difference: our
operators are definedover the wavelet-coefficient domain; that
is, their input(s) and output aresets of wavelet coefficients
(rather than relational tables). The motivation for defining a
query algebra for wavelet coefficients comes directly from the
need for efficient approximate query processing. To see this,
consider ann-ary relational queryQ over R1, . . . , Rn and
assume that each relationRi has been reduced to a (truncated)
set of wavelet coefficientsWRi . A simplistic way of process-
ing Q would be to render each synopsisWRi into the corre-
sponding approximate relation (denotedrender (WRi)) and
process the relational operators inQ over the resulting sets
of tuples. This strategy, however, is clearly inefficient: the ap-
proximate relationrender (WRi

) may contain just as many
tuples as the originalRi itself, which implies that query exe-
cution costs may also be just as high as those of the original
query. Therefore, such a “render-then-process” strategy essen-
tially defeats one of the main motivations behind approximate
query processing.

On the other hand, the synopsisWRi is a highly-
compressed representation ofrender (WRi) that is typically
orders of magnitude smaller thanRi. ExecutingQ in the com-
pressed wavelet-coefficient domain (essentially, postponing
render -ing until the final query result) can offer tremen-
dous speedups in query execution cost. We therefore de-
fine the operatorsop of our query processing algebra over
wavelet-coefficient synopses, while guaranteeing the valid
semantics depicted pictorially in the transition diagram of

T1 T2 Tk, ,. . . ,

T1 T2 Tk, ,. . . ,
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Fig. 6. Valid semantics for processing query operators over the
wavelet-coefficient domain

Fig.6. (These semantics can be translated to the equivalence
render (op(T1, . . . , Tk)) ≡ op(render (T1, . . . , Tk)), for
each operatorop .) Our algebra allows the fast execution of
any relational queryQ entirely over the wavelet-coefficient
domain, while guaranteeing that the final (rendered) result is
identical to that obtained by executingQ on the approximate
input relations.

In the following subsections, we describe our algorithms
for processing the SQL operators in the wavelet-coefficient do-
main. Each operator takes as input one or more set(s) of multi-
dimensional wavelet coefficients and appropriately combines
and/or updates the components (i.e., hyper-rectangle, sign in-
formation, and magnitude) of these coefficients to produce
a “valid” set of output coefficients (Fig.6). Note that, while
the wavelet coefficients (generated byComputeWavelet) for
base relational tables have a very regular structure, the same is
not necessarily true for the set of coefficients output by an ar-
bitrary select or join operator. Nevertheless, we loosely
continue to refer to the intermediate results of our algebra op-
erators as “wavelet coefficients” since they are characterized
by the exact same components as base-relation coefficients
(e.g., hyper-rectangle, sign-vectors) and maintain the exact
same semantics with respect to the underlying intermediate
relation (i.e., the rendering process remains unchanged).

3.1 Selection operator (select )

Our selection operator has the general formselect pred

(WT ), wherepred represents a generic conjunctive predi-
cate on a subset of thed attributes inT ; that is, pred =
(li1 ≤ Xi1 ≤ hi1) ∧ . . . ∧ (lik

≤ Xik
≤ hik

), wherelij

andhij denote the low and high boundaries of the selected
range along each selection dimensionDij , j = 1, 2, · · · , k,
k ≤ d. This is essentially ak-dimensional range selection,
where the queried range is specified alongk dimensionsD′ =
{Di1 , Di2 , . . . , Dik

} and left unspecified along the remain-
ing (d − k) dimensions(D − D′). (D = {D1, D2, . . . , Dd}
denotes the set of all dimensions ofT .) Thus, for each unspec-
ified dimensionDj , the selection range spans the full index
domain along the dimension; that is,lj = 0 andhj = |Dj |−1,
for eachDj ∈ (D − D′).

Theselect operator effectively filters out the portions
of the wavelet coefficients in the synopsisWT that do not
overlap with thek-dimensional selection range, and thus do
not contribute to cells in the selected hyper-rectangle. This
process is illustrated pictorially in Fig.7. More formally, let
W ∈ WT denote any wavelet coefficient in the input set of
our select operator. Our approximate query execution en-
gine processes the selection overW as follows. IfW ’s sup-
port hyper-rectangleW.R overlaps thek-dimensional selec-
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tion hyper-rectangle; that is, iffor everydimensionDij ∈ D′,
the following condition is satisfied:

lij
≤ W.R.boundary[ij ].lo ≤ hij

OR

W.R.boundary[ij ].lo ≤ lij
≤ W.R.boundary[ij ].hi,

then

1. For all dimensionsDij ∈ D′ do
1.1. Set W.R.boundary[ij ].lo := max{ lij ,

W.R.boundary[ij ].lo } and W.R.boundary[ij ].hi :=
min{hij , W.R.boundary[ij ].hi }.

1.2. If W.R.boundary[ij ].hi < W.S.signchange[ij ] then
set W.S.signchange[ij ] := W.R.boundary[ij ].lo and
W.S.sign[ij ] := [W.S.sign[ij ].lo,W.S.sign[ij ].lo].

1.3. Else if W.R.boundary[ij ].lo ≥ W.S.signchange[ij ]
then set W.S.signchange[ij ] := W.R.boundary[ij ].lo

and W.S.sign[ij ] := [W.S.sign[ij ].hi,W.S.sign[ij ].hi].
2. Add the (updated)W to the set of output coefficients; that is, set

WS := WS ∪ {W}, whereS = select pred(T ).

Ourselect processing algorithm chooses (and appropri-
ately updates) only the coefficients inWT that overlap with the
k-dimensional selection hyper-rectangle. For each such coef-
ficient, our algorithm: (a) updates the hyper-rectangle bound-
aries according to the specified selection range (Step 1.1); and
(b) updates the sign information, if such an update is neces-
sary (Steps 1.2–1.3). Briefly, the sign information along the
queried dimensionDij

needs to be updated only if the se-
lection range alongDij

is completely contained in either the
low (1.2) or the high (1.3) sign-vector range of the coefficient
alongDij

. In both cases, the sign-vector of the coefficient is
updated to contain only the single sign present in the selection
range and the coefficient’s sign-change is set to its leftmost
boundary value (since there is no change of sign alongDij

after the selection). The sign-vector and sign-change of the
result coefficient remain untouched (i.e., identical to those of
the input coefficient) if the selection range spans the original
sign-change value.

Example 5.Figure 7a depicts the semantics of a selection op-
eration in the relation domain using an example relationT
with two dimensions (|D1| = 16, |D2| = 16) shown in its
joint-frequency array representationAT . Theselect oper-
ator defines a two-dimensional selection hyper-rectangle over
T with boundaries[l1, h1] = [4, 13] and [l2, h2] = [5, 10]
along dimensionsD1 andD2, respectively. The output of the
operation consists of only those tuples ofT that fall inside the
selection hyper-rectangle.

Figure 7b shows the semantics of the same selection oper-
ation in the wavelet-coefficient domain. We describe the pro-
cessing for one of our example coefficients; the others are
processed similarly. Consider the wavelet coefficientW3 hav-
ing hyper-rectangle rangesW3.R.boundary[1] = [9, 15] and
W3.R.boundary[2] = [2, 7]. The sign information forW3 is
W3.S.sign[1] = [+,−], W3.S.sign[2] = [+,−] (Fig.2b),
W3.S.signchange[1] = 12, and W3.S.signchange[2] =
4. Since W3’s hyper-rectangle overlaps with the selec-
tion hyper-rectangle, it is processed by theselect op-
erator as follows. First, in Step 1.1, the hyper-rectangle
boundaries ofW3 are updated toW3.R.boundary[1] :=
[9, 13] and W3.R.boundary[2] := [5, 7] (i.e., the region
that overlaps with the select ranges alongD1 and D2).

SinceW3.S.signchange[1] = 12 which is between9 and
13 (the new boundaries alongD1), the sign information
along D1 is not updated. Along dimensionD2, however,
we haveW3.S.signchange[2] = 4 which is less than
W3.R.boundary[2].lo = 5, and so Step 1.3 updates the
sign information alongD2 to W3.S.sign[2] := [−,−] and
W3.S.signchange[2] := 5 (i.e., the low boundary along
D2). 	


3.2 Projection operator (project )

Our projection operator has the formproject Xi1 ,... ,Xik

(WT ), where thek projection attributesXi1 , . . . , Xik
form a

subset of thed attributes ofT . LettingD′ = {Di1 , . . . , Dik
}

denote thek ≤ d projection dimensions, we are interested
in projecting out the d − k dimensions in(D − D′). We
give a general method for projecting out a single dimension
Dj ∈ D − D′. This method can then be applied repeatedly to
project out all the dimensions in(D − D′), one dimension at
a time.

Consider T ’s corresponding multi-dimensional joint-
frequency arrayAT . Projecting a dimensionDj out ofAT is
equivalent to summing up the counts for all the array cells in
each one-dimensional row ofAT along dimensionDj and then
assigning this aggregated count to the single cell correspond-
ing to that row in the remaining dimensions (D − {Dj}). The
above process is illustrated with an example two-dimensional
arrayAT in Fig.8a. Consider anyd-dimensional wavelet coef-
ficientW in theproject operator’s input setWT . Remem-
ber thatW contributes a value ofW.v to every cell in its sup-
port hyper-rectangleW.R. Furthermore, the sign of this con-
tribution for every one-dimensional row along dimensionDj

is determined as eitherW.S.sign[j].hi (if the cell lies above
W.S.signchange[j]) orW.S.sign[j].lo (otherwise).Thus, we
can work directly on the coefficientW to project out dimen-
sionDj by simply adjusting the coefficient’s magnitude with
an appropriate multiplicative constantW.v := W.v∗pj , where
pj is defined as (we omit the “W.” prefix for clarity):

(R.boundary[j].hi− S.signchange[j] + 1) ∗ S.sign[j].hi+
(S.signchange[j] −R.boundary[j].lo) ∗ S.sign[j].lo. (1)

A two-dimensional example of projecting out a dimension in
the wavelet-coefficient domain is depicted in Fig.8b. Multi-
plying W.v with pj (Eq. (1)) effectively projects out dimen-
sionDj from W by summing upW ’s contribution on each
one-dimensional row along dimensionDj . Of course, besides
adjustingW.v, we also need to discard dimensionDj from the
hyper-rectangle and sign information forW , since it is now a
(d − 1)-dimensional coefficient (on dimensionsD − {Dj}).
Note that if the coefficient’s sign-change lies in the middle of
its support range along dimensionDj (e.g., see Fig.2a), then
its adjusted magnitude will be0, which means that it can safely
be discarded from the output set of the projection operation.

Repeating the above process for each wavelet coefficient
W ∈ WT and each dimensionDj ∈ D − D′ gives the set of
output wavelet coefficientsWS , whereS = project D′(T ).
Equivalently, given a coefficientW , we can simply setW.v :=
W.v ∗∏Dj∈D−D′ pj (wherepj is as defined in Eq. (1)) and
discard dimensionsD − D′ from W ’s representation.
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Example 6.Figure 8a depicts the semantics of a projection
operation in the relation domain, showing the two-dimensional
relationT (|D1| = 16, |D2| = 16) from Example 5 and the
result of its projection on dimensionD1.

Figure 8b illustrates the semantics of the same pro-
jection operation in the wavelet-coefficient domain. Con-
sider the wavelet coefficientW whose hyper-rectangle
and sign information along dimensionD2 are as follows:
W.R.boundary[2] = [4, 11], W.S.sign[2] = [−,+], and
W.S.signchange[2] = 10. In addition, let the magnitude of
W beW.v = 2. Then, projectingW on dimensionD1 causes
W.v to be updated toW.v := 2 · ((11−10+1)− (10−4)) =
−8. 	


3.3 Join operator (join )

Our join operator has the general formjoin pred(WT1 ,WT2),
whereT1 andT2 are (approximate) relations of arityd1 andd2,
respectively, andpred is a conjunctivek-ary equi-join predi-
cate of the form(X1

1 = X2
1 ) ∧ . . . ∧ (X1

k = X2
k), whereXi

j

(Di
j) (j = 1, . . . , di) denotes thejth attribute (respectively,

dimension) ofTi (i = 1, 2). (Without loss of generality, we
assume that the join attributes are the firstk ≤ min{d1, d2}
attributes of each joining relation.) Note that the result of the
join operationWS is a set of(d1+d2−k)-dimensional wavelet
coefficients; that is, the join operation returns coefficients of
(possibly) different arity than any of its inputs.

To see how our join processing algorithm works, con-
sider the multi-dimensional arraysAT1 andAT2 correspond-
ing to the join operator’s input arguments. Let(i11, . . . , i

1
d1

)
and(i21, . . . , i

2
d2

) denote the coordinates of two cells belong-

ing to AT1 andAT2 , respectively. If the indexes of the two
cells match on the join dimensions, i.e.,i11 = i21, . . . , i

1
k = i2k,

then the cell in the join result arrayAS with coordinates
(i11, . . . , i

1
d1
, i2k+1, . . . , i

2
d2

) is populated with theproductof
the count values contained in the two joined cells. Figure 9a il-
lustrates the above process with two example two-dimensional
joint-frequency arraysAT1 (with dimensionsD1 andD2, |D1|
= |D2| = 16) andAT2 (with dimensionsD1 andD3, |D1| =
|D3| = 16) and join dimensionD1 (shown vertically for both
arrays). For example, the cells(9, 6) in AT1 (count value 2)
and(9, 2) in AT2 (count value 6) match on the join dimension
D1 (both have aD1 coordinate of9); hence, the join output
is populated with the cell(9, 6, 2) (count value =2 ∗ 6 = 12).
Since the cell counts forATi are derived by appropriately sum-
ming the contributions of the wavelet coefficients inWTi and,
of course, a numeric product can always be distributed over
summation, we can process thejoin operator entirely in the
wavelet-coefficient domain by considering all pairs of coef-
ficients fromWT1 andWT2 . Briefly, for any two coefficients
from WT1 andWT2 that overlap in the join dimensions and,
therefore, contribute to joining data cells, we define an out-
put coefficient with magnitude equal to the product of the two
joining coefficients and a support hyper-rectangle with ranges
that are: (a) equal to the overlap of the two coefficients for
thek (common) join dimensions; and (b) equal to the original
coefficient ranges along any of thed1 +d2 −2k remaining di-
mensions. The sign information for an output coefficient along
any of thek join dimensions is derived by appropriately mul-
tiplying the sign-vectors of the joining coefficients along that
dimension, taking care to ensure that only signs along the over-
lapping portion are taken into account. (The sign information
along non-join dimensions remains unchanged.) An example
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Fig. 9. aProcessing ajoin operation in the relation domain;b processing ajoin operation in the wavelet-coefficient domain;c computing
sign information forjoin output coefficients

of this process in two dimensions (d1 = d2 = 2, k = 1) is
depicted in Fig.9b.

More formally, our approximate query execution strategy
for joins can be described as follows. (To simplify the no-
tation, we ignore the “1/2” superscripts and denote the join
dimensions asD1, . . . , Dk, and the remainingd1+d2−2k di-
mensions asDk+1, . . . , Dd1+d2−k.) For each pair of wavelet
coefficientsW1 ∈ WT1 andW2 ∈ WT2 , if the coefficients’
support hyper-rectangles overlap in thek join dimensions;
that is, if for everydimensionDi, i = 1 . . . , k, the following
condition is satisfied:

( W1.R.boundary.lo[i] ≤ W2.R.boundary.lo[i] AND

W2.R.boundary.lo[i] ≤ W1.R.boundary.hi[i] )
OR

( W2.R.boundary.lo[i] ≤ W1.R.boundary.lo[i] AND

W1.R.boundary.lo[i] ≤ W2.R.boundary.hi[i] ),

then the corresponding output coefficientW ∈ WS is defined
in the following steps.

1. For all join dimensionsDi, i = 1, . . . , k do
1.1. SetW.R.boundary[i].lo :=max{W1.R.boundary[i].lo,

W2.R.boundary[i].lo} and W.R.boundary[i].hi :=
min{ W1.R.boundary[i].hi, W2.R.boundary[i].hi}.

1.2. Forj = 1, 2 /* sj is a temporary sign-vector variable */
1.2.1. If W.R.boundary[i].hi < Wj .S.signchange[i]

then set sj := [Wj .S.sign[i].lo,Wj .S.sign[i].lo].

1.2.2. Else ifW.R.boundary[i].lo ≥ Wj .S.signchange[i]
then set sj := [Wj .S.sign[i].hi,Wj .S.sign[i].hi].

1.2.3. Else setsj := Wj .S.sign[i].
1.3. Set W.S.sign[i] := [s1.lo ∗ s2.lo , s1.hi ∗ s2.hi].
1.4. If W.S.sign[i].lo == W.S.sign[i].hi then set

W.S.signchange[i] := W.R.boundary[i].lo.
1.5 Else set W.S.signchange[i] := maxj=1,2{

Wj .S.signchange[i] : Wj .S.signchange[i] ∈
[W.R.boundary[i].lo, W.R.boundary[i].hi] }.

2. For each (non-join) dimensionDi, i = k + 1, . . . , d1

do: Set W.R.boundary[i] := W1.R.boundary[i],
W.S.sign[i] := W1.S.sign[i] , andW.S.signchange[i] :=
W1.S.signchange[i].

3. For each (non-join) dimensionDi, i = d1 + 1, . . . , d1 +
d2 − k do: Set W.R.boundary[i] := W2.R.boundary[i −
d1 + k], W.S.sign[i] := W2.S.sign[i − d1 + k] , and
W.S.signchange[i] := W2.S.signchange[i− d1 + k].

4. Set W.v := W1.v ∗ W2.v and WS := WS ∪ {W}, where
S = join pred(T1, T2).

Note that the bulk of our join processing algorithm concen-
trates on the correct settings for the output coefficientW along
thek join dimensions (Step 1), since the problem becomes triv-
ial for thed1 + d2 − 2k remaining dimensions (Steps 2–3).
Given a pair of joining input coefficients and a join dimension
Di, our algorithm starts out by setting the hyper-rectangle
range of the output coefficientW alongDi equal to the over-
lap of the two input coefficients alongDi (Step 1.1). We then
proceed to computeW ’s sign information along join dimen-
sion Di (Steps 1.2–1.3) , which is slightly more involved.
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(Remember thatT1 andT2 are (possibly) the results of ear-
lier select and/orjoin operators, which means that their
rectangle boundaries and signs alongDi can be arbitrary.) The
basic idea is to determine, for each of the two input coefficients
W1 andW2, where the boundaries of the join range lie with
respect to the coefficient’s sign-change value along dimension
Di. Given an input coefficientWj (j = 1, 2), if the join range
alongDi is completely contained in either the low (1.2.1) or
the high (1.2.2) sign-vector range ofWj alongDi, then a tem-
porary sign-vectorsj is appropriately set (with the same sign
in both entries). Otherwise, i.e., if the join range spansWj ’s
sign-change (1.2.3), thensj is simply set toWj ’s sign-vector
alongDi. Thus,sj captures the sign of coefficientWj in the
joining range, and multiplyings1 ands2 (element-wise) yields
the sign-vector for the output coefficientW along dimension
Di (Step 1.3). If the resulting sign vector forW does not con-
tain a true sign change (i.e., the low and high components of
W.S.sign[i] are the same), thenW ’s sign-change value along
dimensionDi is set equal to the low boundary ofW.R along
Di, according to our convention (Step 1.4). Otherwise, the
sign-change value for the output coefficientW alongDi is set
equal to the maximum of the input coefficients’ sign-change
values that are contained in the join range (i.e.,W.R’s bound-
aries) alongDi (Step 1.5).

In Fig.9c, we illustrate three common scenarios for the
computation ofW ’s sign information along the join dimen-
sionDi. The left-hand side of the figure shows three possibil-
ities for the sign information of the input coefficientsW1 and
W2 along the join range of dimensionDi (with crosses denot-
ing sign changes). The right-hand side depicts the resulting
sign information for the output coefficientW along the same
range. The important thing to observe with respect to our sign-
information computation in Steps 1.3–1.5 is that the join range
along any join dimensionDi can containat most onetrue sign
change. By this, we mean that if the sign for input coefficient
Wj actually changes in the join range alongDi, then this
sign-change value is unique; that is, the two input coefficients
cannot have true sign changes at distinct points of the join
range. This follows from thecomplete containmentproperty
of the base coefficient ranges along dimensionDi (Sect.2.1).
(Note that our algorithm forselect retains the value of a
true sign change for a base coefficient if it is contained in the
selection range, and sets it equal to the value of the left bound-
ary otherwise.) This range containment alongDi ensures that
if W1 andW2 both contain a true sign change in the join range
(i.e., their overlap) alongDi, then that will occurat exactly
the same valuefor both (as illustrated in Fig.9(c.1)). Thus, in
Step 1.3,W1’s andW2’s sign vectors in the join range can
be multiplied to deriveW ’s sign-vector. If, on the other hand,
one ofW1 andW2 has a true sign change in the join range (as
shown in Fig.9(c.2)), then themax operation of Step 1.5 will
always set the sign change ofW alongDi correctly to the true
sign-change value (since the other sign change will either be at
the left boundary or outside the join range). Finally, if neither
W1 norW2 have a true sign change in the join range, then the
high and low components ofW ’s sign vector will be identical
and Step 1.4 will setW ’s sign-change value correctly.

Example 7.Figure 9a depicts the semantics of a join operation
in the relation domain as described above. Figure 9b illustrates
the semantics of the same operation in the wavelet-coefficient

domain. Consider the wavelet coefficientsW1 andW2. Let
the boundaries and sign information ofW1 andW2 along
the join dimensionD1 be as follows:W1.R.boundary[1]
= [4, 15], W2.R.boundary[1] = [8, 15], W1.S.sign[1] =
[−,+], W2.S.sign[1] = [−,+], W1.S.signchange[1] = 8,
andW2.S.signchange[1] = 12. In the following, we illustrate
the computation of the hyper-rectangle and sign information
for join dimensionD1 for the coefficientW that is output by
our algorithm whenW1 andW2 are “joined”. Note that for
the non-join dimensionsD2 andD3, this information forW
is identical to that ofW1 andW2 (respectively), so we focus
solely on the join dimensionD1.

First, in Step 1.1,W.R.boundary[1] is set to [8, 15],
i.e., the overlap range betweenW1 and W2 along D1. In
Step 1.2.2, sinceW.R.boundary[1].lo = 8 is greater than
or equal toW1.S.signchange[1] = 8, we sets1 = [+,+]. In
Step 1.2.3, sinceW2.S.signchange[1] = 12 lies in between
W.R’s boundaries, we sets2 = [−,+]. Thus, in Step 1.3,
W.S.sign[1] is set to the product ofs1 ands2 which is[−,+].
Finally, in Step 1.5,W.S.signchange[1] is set to the maximum
of the sign change values forW1 andW2 along dimensionD1,
or W.S.signchange[1] := max{8, 12} = 12. 	


3.4 Aggregate operators

In this section, we show how conventional aggregation oper-
ators, likecount , sum, andaverage , are realized by our
approximate query execution engine in the wavelet-coefficient
domain2. As before, the input to each aggregate operator is
a set of wavelet coefficientsWT . If the aggregation is not
qualified with aGROUP-BYclause, then the output of the
operator is a simple scalar value for the aggregate. In the
more general case, where aGROUP-BYclause over dimen-
sionsD′ = {D1, . . . , Dk} has been specified, the output of
the aggregate operator consists of ak-dimensional array span-
ning the dimensions inD′, whose entries contain the computed
aggregate value for each cell.

Note that, unlike our earlier query operators, we define
our aggregate operators to provide output that is essentially a
rendered data array, rather than a set of (un-rendered) wavelet
coefficients. This is because there is no clean, general method
to map the computed aggregate values (e.g., attribute sums or
averages) onto the semantics and structure of wavelet coeffi-
cients.We believe, however, that exiting the coefficient domain
after aggregation has no negative implications for the effec-
tiveness of our query execution algorithms. The reason is that,
for most DSS queries containing aggregation, the aggregate
operator is the final operator at the root of the query execution
plan, which means that its result would have to be rendered
anyway.

While the earlier work of Vitter and Wang [33] has
addressed the computation of aggregates over a wavelet-
compressed relational table, their approach is significantly

2 Like most conventional data reduction and approximate querying
techniques (e.g., sampling and histograms), wavelets are inherently
limited to “trivial answers” when it comes tomin ormaxaggregate
functions (see, for example, [16]). In our case, this would amount
to selecting thenon-zerocell in the reconstructed array with mini-
mum/maximum coordinate along the specified query range. We do
not considermin ormaxaggregates further in this paper.
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different from ours. Vitter and Wang focus on a very spe-
cific form of aggregate queries, namelyrange-sum queries,
where the range(s) are specified over one or morefunctional
attributeand the summation is done over a prespecifiedmea-
sure attribute. Their wavelet decomposition and aggregation
algorithm are both geared towards this specific type of queries
that essentially treats the relation’s attributes in an “asymmet-
ric” manner (by distinguishing the single measure attribute).
Our approach, on the other hand, has a much broader query
processing scope. As a result, all attributes are treated in a
completely symmetric fashion, thus enabling us to perform a
broad range of aggregate (and non-aggregate) operations over
anyattribute(s).

Count operator (count ). Our count operator has the gen-
eral formcount D′(WT ), where thek GROUP-BYdimen-
sionsD′ = {Di1 , . . . , Dik

} form a (possibly empty) subset
of thed attributes ofT . Counting is the most straightforward
aggregate operation to implement in our framework, since
each cell in our approximate multi-dimensional array already
stores the count information for that cell. Thus, processing
count D′(WT ) is done by simply projecting each input coef-
ficient onto theGROUP-BYdimensionsD′ and rendering the
result into a multi-dimensional array of counts, as follows.

1. LetWS := project D′(WT ) (see Sect.3.2).
2. LetAS := render (WS) and output the cells in the|D′|-

dimensional arrayAS with non-zero counts.

Sum operator (sum). The general form of our summation
operator issumD′(WT , Dj), whereD′ = {Di1 , . . . , Dik

}
denotes the set ofGROUP-BYdimensions andDj �∈ D′ cor-
responds to the attribute ofT whose values are summed. The
sum operator is implemented in three steps. First, we project
the input coefficientsWT on dimensionsD′ ∪ {Dj}. Second,
for each coefficientW output by the first step and for each
row of cells along the summation attributeDj , we compute
the sum of the product of the coefficient’s magnitudeW.v and
the index of the cell alongDj

3. This sum (essentially, an
integralalongDj) is then assigned to the coefficient’s magni-
tudeW.v and the summing dimensionDj is discarded. Thus,
at the end of this step,W.v stores the contribution ofW to
the summation value for every|D′|-dimensional cell inW.R.
Third, the resulting set of wavelet coefficients is rendered to
produce the output multi-dimensional array on dimensionsD′.
More formally, oursumD′(WT , Dj) query processing algo-
rithm comprises the following steps.

1. LetWS := project D′∪{Dj}(WT ) (Sect.3.2).
2. For each wavelet coefficientW ∈ WS do

2.1. SetW.v according to the following equation:

W.v := W.v ∗

W.S.sign[j].lo ∗

W.S.signchange[j]−1∑
k=W.R.boundary[j].lo

k +

W.S.sign[j].hi ∗
W.R.boundary[j].hi∑
k=W.S.signchange[j]

k


 .

3 To simplify the exposition, we assume that the (integer) cell index
values along dimensionDj are identical to the domain values for the
corresponding attributeXj of T . If that is not the case, then a reverse
mapping from theDj index values to the corresponding values of
Xj is needed to sum the attribute values along the boundaries of a
coefficient.

Note that, the summations of the index values alongDj in
the above formula can be expressed in closed form using
straightforward algebraic methods.

2.2. Discard dimensionDj from the hyper-rectangle and sign
information forW .

3. Let AS := render (WS) and output the cells in the|D′|-
dimensional arrayAS with non-zero values for the summation.

Average operator (average ). The averaging operator
average D′(WT , Dj) (whereD′ is the set ofGROUP-BY
dimensions andDj �∈ D′ corresponds to the averaged at-
tribute ofT ) is implemented by combining the computation
of sumD′(WT , Dj) andcount D′(WT ). The idea is to com-
pute the attribute sums and tuple counts for every cell over the
data dimensions in theGROUP-BYattributesD′, as described
earlier in this section. We then render the resulting coefficients
and output the average value (i.e., the ratio of sum over count)
for every cell with non-zero sum and count.

3.5 Rendering a set of wavelet coefficients

Since our approximate query execution engine does the bulk
of its processing in the wavelet coefficient domain, an es-
sential final step for every user query is torender an out-
put setWS of d-dimensional wavelet coefficients (over, say,
D = {D1, . . . , Dd}) to produce the approximate query an-
swer in a “human-readable” form. (Note that rendering is re-
quired as a final step even for the aggregate processing algo-
rithms described in the previous section.) The main challenge
in the rendering step is how toefficientlyexpand the input set of
d-dimensional wavelet coefficientsWS into the corresponding
(approximate)d-dimensional array of countsAS .

A naive approach to renderingWS would be to simply con-
sider each cell in the multi-dimensional arrayAS and sum the
contributions of every coefficientW ∈ WS to that cell in order
to obtain the corresponding tuple count. However, the number
of cells inAS is potentially huge, which implies that such a
naive rendering algorithm could be extremely inefficient and
computationally expensive (typically, of orderO(N · |WS |),
whereN =

∏d
i=1 |Di| is the number of array cells). Instead

of following this naive and expensive strategy, we propose a
more efficient algorithm (termedrender ) for rendering an
input set of multi-dimensional wavelet coefficients. (Note that
render can be seen either as a (final) query processing oper-
ator or as a post-processing step for the query.) Our algorithm
exploits the fact that the number of coefficients inWS is typ-
ically much smallerthan the number of array cellsN . This
implies that we can expectAS to consist of large, contiguous
multi-dimensional regions, where all the cells in each region
contain exactly the same count. (In fact, because of the spar-
sity of the data, many of these regions will have counts of
0.) Furthermore, the total number of such “uniform-count” re-
gions inAS is typically considerably smaller thatN . Thus,
the basic idea of our efficient rendering algorithm is to parti-
tion the multi-dimensional arrayAS , one dimension at a time,
into such uniform-count data regions and output the (single)
count value corresponding to each such region (the same for
all enclosed cells).

Our render algorithm (depicted in Fig.10) recursively
partitions thed-dimensional data arrayAS , one dimension
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procedure render (coeff, i)
begin
1. if (i > d) {
2. count := 0
3. for eachcoefficientW in coeff
4. sign :=

∏
Dj∈D signj

/* signj := W.S.sign[j].lo if W.R.boundary[j].lo <
W.S.signchange[j]; else,signj := W.S.sign[j].hi */

5. count := count+ sign ∗W.v
6. end
7. output (W.R.boundary, count)

/* W is any coefficient incoeff */
8. return
9. }
10. Q := ∅ /* elementse in priority queueQ are sorted

in increasing order ofe.key */
11. for eachcoefficientW in coeff
12. insert elemente intoQ wheree.key :=

W.R.boundary[i].lo− 1 ande.val := W
13. insert elemente intoQ wheree.key :=

W.R.boundary[i].hi ande.val := W
14. if (W.R.boundary[i].lo < W.S.signchange[i] ≤

W.R.boundary[i].hi)
15. insert elemente intoQ wheree.key :=

W.S.signchange[i] − 1 ande.val := W
16. end
17. prev := −∞, temp1 := ∅
18. while (Q is not empty)do
19. temp2 := ∅, topkey := e.key for elemente at head ofQ
20. dequeue all elementse with e.key = topkey at the head

of Q and inserte.val into temp1
21. for eachcoefficientW in temp1
22. deleteW from temp1 if W.R.boundary[i].hi < prev + 1
23. if ( W.R.boundary[i] overlaps with the interval

[prev + 1, topkey] along dimensionDi ) {
24. W ′ := W , W ′.R.boundary[i].lo := prev + 1

W ′.R.boundary[i].hi := topkey
25. insertW ′ into temp2
26. }
27. end
28. render (temp2, i+ 1)
29. prev := topkey
30. end /* while */
end

Fig. 10. render : an efficient algorithm for rendering multi-
dimensional wavelet coefficients

at a time and in the dimension orderD1, . . . , Dd. Algorithm
render takes two input arguments: (a) the index (i) of the
next dimensionDi along which the arrayAS is to be parti-
tioned; and (b) the set of wavelet coefficients (coeff) in the
currently processed partition ofAS (generated by the earlier
partitionings along dimensionsD1, . . . , Di−1). The initial in-
vocation ofrender is done withi = 1 andcoeff = WS .

When partitioningAS into uniform-count ranges along
dimensionDi, the only points that should be considered
are those where the cell counts alongDi could potentially
change. These are precisely the points where a new coeffi-
cientW starts contributing (W.R.boundary[i].lo), stops con-
tributing (W.R.boundary[i].hi), or the sign of its contribution
changes (W.S.signchange[i]). Algorithm render identifies
these points along dimensionDi for each coefficient incoeff
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Fig. 11.Partitioning a two-dimensional array by procedurerender

and stores them in sorted order in a priority queueQ (Steps 11–
16). Note that, for any pair of consecutive partitioning points
alongDi, the contribution ofeachcoefficient incoeff (and,
therefore, their sum) is guaranteed to beconstantfor any row
of cells alongDi between the two points. Thus, abstractly, our
partitioning generates one-dimensional uniform-count ranges
alongDi. Once the partitioning points along dimensionDi

have been determined, they are used to partition the hyper-
rectangles of the wavelet coefficients incoeff alongDi (Steps
18–30). Algorithmrender is then recursively invoked with
the set of (partial) coefficients in each partition ofDi to fur-
ther partition the coefficients along the remaining dimensions
Di+1, . . . , Dd. Once the array has been partitioned along all
dimensions inD (i.e., render is invoked with parameter
i > d), a coefficientW in the input set of coefficientscoeff is
guaranteed to have a constant contribution to every cell in the
correspondingd-dimensional partition.This essentially means
that we have discovered ad-dimensional uniform-count par-
tition in AS , and we can output the partition boundaries and
the corresponding tuple count (Steps 2–8).

Figure 11b depicts the partitioning of a two-dimensional
data array generated byrender for the input set consisting
of the four wavelet coefficients shown in Fig.11a. The time
complexity of ourrender algorithm can be shown to be
O(|WS | · P ), whereP is the number of uniform-count parti-
tions inAS .As we have already observed,P is typically much
smaller than the number of array cellsN . In addition, note that
render requires onlyO(|WS | · d) of memory, since it only
needs to keep track of the coefficients in the partition currently
being processed for each dimension.

4 Experimental study

In this section, we present the results of an extensive empirical
study that we have conducted using the novel query process-
ing tools developed in this paper. The objective of this study is
twofold: (1) to establish the effectiveness of our wavelet-based
approach to approximate query processing; and (2) to demon-
strate the benefits of our methodology compared to earlier ap-
proaches based on sampling and histograms. Our experiments
consider a wide range of queries executed on both synthetic
and real-life data sets. The major findings of our study can be
summarized as follows.

• Improved answer quality.The quality/accuracy of the ap-
proximate answers obtained from our wavelet-based query
processor is, in general, better than that obtained by either sam-
pling or histograms for a wide range of data sets andselect ,
project , join , and aggregate queries.
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• Lowsynopsis construction costs.Our I/O-efficient wavelet
decomposition algorithm is extremely fast and scales linearly
with the size of the data (i.e., the number of cells in the MO-
LAP array). In contrast, histogram construction costs increase
explosively with the dimensionality of the data.

• Fast query execution.Query execution-time speedups of
more than two orders of magnitude are made possible by our
approximate query processing algorithms. Furthermore, our
query execution times are competitive with those obtained by
the histogram-based methods of Ioannidis and Poosala [16],
and sometimes significantly faster (e.g., forjoin s).

Thus, our experimental results validate the thesis of this
paper that wavelets are a viable, effective tool for general-
purpose approximate query processing in DSS environments.
All experiments reported in this section were performed on
a Sun Ultra-2/200 machine with 512MB of main memory,
running Solaris 2.5.

4.1 Experimental testbed and methodology

Techniques.We consider three approximate query answering
techniques in our study.

• Sampling.A random sample of the non-zero cells in the
multi-dimensional array representation for each base relation
is selected , and the counts for the cells are appropriately
scaled. Thus, if the total count of all cells in the array ist
and the sum of the counts of cells in the sample iss, then the
count of every cell in the sample is multiplied byts . These
scaled counts give the tuple counts for the corresponding ap-
proximate relation.

• Histograms.Each base relation is approximated by a multi-
dimensional MaxDiff(V,A) histogram. Our choice of this his-
togram class is motivated by the recent work of Ioannidis and
Poosala [16], where it is shown that MaxDiff(V,A) histograms
result in higher-quality approximate query answers compared
to other histogram classes (e.g., EquiDepth or EquiWidth).
We processselect s, join s, and aggregate operators on
histograms as described in [16]. For instance, whileselect s
are applied directly to the histogram for a relation, ajoin be-
tween two relations is done by first partially expanding their
histograms to generate the tuple-value distribution of the each
relation. An indexed nested-loopjoin is then performed on
the resulting tuples.

• Wavelets. Wavelet-coefficient synopses are constructed
on the base relations (using algorithmComputeWavelet)
and query processing is performed entirely in the wavelet-
coefficient domain, as described in Sect.3. In ourjoin imple-
mentation, overlapping pairs of coefficients are determined us-
ing a simple nested-loop join. Furthermore, during the render-
ing step for non-aggregate queries, cells with negative counts
are not included in the final answer to the query.

Since we assumed dimensions in the multi-dimensional
array for ad-attribute relation,c random samples requirec ∗
(d + 1) units of space;d units are needed to store the index
of the cell and 1 unit is required to store the cell count. Stor-
ing c wavelet coefficients also requires the same amount of

space, since we needd units to specify the position of the co-
efficient in the wavelet transform array and 1 unit to specify
the value for the coefficient. (Note that the hyper-rectangle
and sign information for a base coefficient can easily be de-
rived from its location in the wavelet transform array.) On the
other hand, each histogram bucket requires3 ∗ d + 1 units of
space;2 ∗ d units to specify the low and high boundaries for
the bucket along each of thed dimensions,d units to specify
the number of distinct values along each dimension, and 1 unit
to specify the average frequency for the bucket [27]. Thus, for
a given amount of space corresponding toc samples/wavelet
coefficients, we storeb ≈ c

3 histogram buckets to ensure a fair
comparison between the methods.

Queries. The workload used to evaluate the various approx-
imation techniques consists of four main query types: (1)
SELECTqueries: ranges are specified for (a subset of) the
attributes in a relation and all tuples that satisfy the conjunc-
tive range predicate are returned as part of the query result:
(2) SELECT-SUMqueries: the totalsum of a particular at-
tribute’s values is computed for all tuples that satisfy a con-
junctive range predicate over (a subset of) the attributes; (3)
SELECT-JOIN queries: after performing selections on two
input relations, an equi-join on a single join dimension is per-
formed and the resulting tuples are output; and (4)SELECT-
JOIN-SUM queries: the totalsum of an attribute’s values is
computed over all the tuples resulting from aSELECT-JOIN .

For each of the above query types, we have conducted
experiments with multiple different choices for: (a)select
ranges; and (b)select , join , andsum attributes. The re-
sults presented in the next section are indicative of the overall
observed behavior of the schemes. Furthermore, the queries
presented in this paper are fairly representative of typical
queries over our data sets.

Answer-quality metrics.In our experiments with aggregate
queries (e.g.,SELECT-SUMqueries), we use theabsolute rel-
ative error in the aggregate value as a measure of the accuracy
of the approximate query answer. That is, ifactualaggr is the
result of executing the aggregation query on the actual base
relations, whileapproxaggr is the result of running it on the
corresponding synopses, then the accuracy of the approximate
answer is given by|actual aggr−approx aggr|

actual aggr .
Deciding on an error metric for non-aggregate queries is

slightly more involved.The problem here is that non-aggregate
queries do not return a single value, but rather a set of tuples
(with associated counts). Capturing the “distance” between
such an answer and the actual query result requires that we
take into account how these two (multi)sets of tuples differ
in both: (a) the tuple frequencies; and (b) the actual values
in the tuples [16]. (Thus, simplistic solutions like “symmetric
difference” are insufficient.) When deciding on an error metric
for non-aggregate results, we considered both theMatch And
Compare(MAC) error of Ioannidis and Poosala [16] and the
network-flow-basedEarth Mover’s Distance(EMD) error of
Rubner et al. [29]. We eventually chose a variant of the EMD
error metric, since it offers a number of advantages over MAC
error (e.g., computational efficiency, natural handling of non-
integral counts) and, furthermore, we found that MAC error
can show unstable behavior under certain circumstances [13].
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We briefly describe the MAC and EMD error metrics below
and explain why we chose the EMD metric.

The EMD and MAC set-error metrics.One of the main obser-
vations of Ioannidis and Poosala [16] was that a correct error
metric for capturing the distance between two set-valued query
answers (i.e., multisets of tuples) should take into account how
these two (multi)sets of tuples differ in both: (a) the tuple fre-
quencies; and (b) the actual values in the tuples.A naive option
is to simply define the distance between two sets of elements
S1 andS2 as|(S1−S2)∪(S2−S1)|. However, as discussed in
[16], this measure does not take into account the frequencies
of occurrences of elements or their values. For example, by
the above measure, the two sets{5} and{5, 5, 5} would be
considered to be at a distance of 0 from each other, while the
set{5} would be at the same distance from both{5.1} and
{100}.

In [16], the authors define the notion ofMatch And Com-
pare (MAC) distance to measure the error between two mul-
tisetsS1 andS2. Letdist(e1, e2) denote the distance between
elementse1 ∈ S1 ande2 ∈ S2 (in this paper, we use the Eu-
clidean distance between elements). The MAC error involves
matching pairs of elements fromS1 andS2 such that each ele-
ment appears in at least one matching pair, and the sum of the
distances between the matching pairs is minimum. The sum of
the matching pair distances, each weighted by the maximum
number of matches an element in the pair is involved in, yields
the MAC error. Though the MAC error has a number of nice
properties and takes both frequency and value of elements in
the sets into account, in some cases, it may be unstable [13].
In addition, the MAC error, as defined in [16], could become
computationally expensive, since multiple copies of a cell need
to be treated separately, thus making set sizes potentially large.

Due to the stability and computational problems of the
MAC error, in our experiments, we use theEarth Mover’s
DistanceEMD error instead, which we have found to solve
the above-mentioned problems. The EMD error metric was
proposed by Rubner et al. [29] for computing the dissimi-
larity between two distributions of points and was applied to
computing distances between images in a database. The main
idea is to formulate the distance between two (multi)sets as a
bipartite network flow problem, where the objective function
incorporates the distance in the values of matched elements
and the flow captures the distribution of element counts. More
formally, the EMD error involves solving the bipartite network
flow problem which can be formalized as the following linear
programming problem. LetS1 andS2 be two sets of elements
and letci denote the count of elementei. Without loss of gen-
erality, let the sum of the counts of elements inS1 be greater
than or equal to the sum of counts of elements inS2. Consider
an assignment of non-negative flowsf(ei, ej) such that the
following sum is minimized:

∑
ei∈S1

∑
ej∈S2

f(ei, ej) ∗ dist(ei, ej) (2)

subject to the following constraints:

∑
ei∈S1

f(ei, ej) = cj (3)

∑
ej∈S2

f(ei, ej) ≤ ci (4)

The EMD error, that we employ in this paper4 is as follows:

EMD(S1, S2) =
∑

ei∈S1

∑
ej∈S2

f(ei, ej) ∗ dist(ei, ej)

∗
(∑

ei∈S1
ci∑

ej∈S2
cj

)

Thus, intuitively, the flowsf(ei, ej) distribute the counts of
elements inS1 across elements inS2 in a manner that the sum
of the distances over the flows is minimum. Note that since
S2 has a smaller count thanS1, we require that the inflow into
each elementej ofS2 is equal tocj (Constraint 3). In addition,
the outflow out of each elementei in S1 cannot exceedci

(Constraint 4). In addition, observe that since the count ofS1
could be much larger than that ofS2, we scale the sum in Eq. 2
by the ratio of the sum of counts ofS1 andS2. This ensures
that counts for elements inS1 that are not covered as part of
the flows get accounted for in the EMD error computation.

Thus, the EMD naturally extends the notion of distance
between single elements to distance between sets of elements.
In addition, the EMD has the nice property that if the counts of
S1 andS2 are equal, then the EMD is a true metric. There are
efficient algorithms available to compute the flowsf(ei, ej)
such that constraints (2), (3) and (4) are satisfied. Another
added benefit of the EMD error is that it is naturally applicable
to the cases when elements in the sets have non-integral counts.
Since in a number of cases, the number of tuples computed
by the approximation techniques can be fractions, this is an
advantage. Hence we chose EMD as the error metric for non-
aggregate queries.

4.2 Experimental results – synthetic data sets

The synthetic data sets we use in our experiments are similar
to those employed in the study of Vitter and Wang [33]. More
specifically, our synthetic data generator works by populating
randomly-selected rectangular regions of cells in the multi-
dimensional array. The input parameters to the generator along
with their description and default values are as illustrated in
Table 2. The generator assigns non-zero counts to cells inr
rectangular regions each of whose volume is randomly cho-
sen betweenvmin andvmax (the volume of a region is the
number of cells contained in it). The regions themselves are
uniformly distributed in the multi-dimensional array. The sum
of the counts for all the cells in the array is specified by the
parametert. Portiont · (1 − nc) of the count is partitioned
across ther regions using a Zipfian distribution with valuez.
Within each region, each cell is assigned a count using a Zip-
fian distribution with value betweenzmin andzmax, and based
on theL1 distance of the cell from the center of the region.
Thus, the closer a cell is to the center of its region, the larger is
its count value. Finally, we introduce noise into the data set by
randomly choosing cells such that these noise cells constitute

4 Rubner et al. [29] define the EMD error as the ratio∑
ei∈S1

∑
ej∈S2

f(ei,ej)∗dist(ei,ej)
∑

ej∈S2
cj

.
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Table 2. Input parameters to synthetic data generator

Parameter Description Default value

d Number of dimensions 2

s Size of each dimension 1,024

(equal for all dimensions)

r Number of regions 10

vmin, vmax Minimum and maximum 2,500, 2,500

volume of each region

z Skew across regions 0.5

zmin, zmax Minimum and maximum 1.0, 1.0

skew within each region

nv, nc Noise volume and noise count 0.05, 0.05

t Total count 1,000,000

c Number of coefficients/ 1,250

samples retained

b Number of histogram buckets 420

sel Selectivity in terms of volume 4%

Table 3.Wavelet transform computation times

No. of Cells in multi-dimensional array

250×103 1×106 4×106 16×106

Exec. time (sec 6.3 26.3 109.9 445.4

a fractionnv of the total number of non-zero cells. The noise
countt · nc is then uniformly distributed across these noise
cells.

Note that with the default parameter settings described in
Table 2, there are a total of a million cells of which about
25,000 have non-zero counts. Thus, the density of the multi-
dimensional array is approximately 2.5%. Further, in the de-
fault case, the approximate representations of the relations
occupy only 5% of the space occupied by the original relation
– this is because we retain 1,250 samples/coefficients out of
25,000 non-zero cells which translates to a compression ra-
tio of 20. The same is true for histograms. Finally, we set the
default selectivity of range queries on the multi-dimensional
array to be 4% – theSELECTquery range along each dimen-
sion was set to (512,720).

Time to compute the wavelet transform.In order to demon-
strate the efficiency of our algorithm for computing the wavelet
transform of a multi-dimensional array, in Table 3, we present
the running times ofComputeWavelet as the number of cells
in the multi-dimensional array is increased from 250,000 to
16 million. The density of the multi-dimensional array is kept
constant at 2.5% by appropriately scaling the number of cells
with non-zero counts in the array. From the table, it follows
that the computation time of ourComputeWavelet algorithm
scales linearly with the total number of cells in the array. We
should note that the times depicted in Table 3 are actually
dominated by CPU-computation costs –ComputeWavelet
required a single pass over the data in all cases.

SELECT queries.In our first set of experiments, we carry out
a sensitivity analysis of the EMD error forSELECTqueries

to parameters like storage space, skew in cell counts within a
region, cell density, and query selectivity. In each experiment,
we vary the parameter of interest while the remaining param-
eters are fixed at their default values. Our results indicate that
for a broad range of parameter settings, wavelets outperform
both sampling and histograms – in some cases, by more than
an order of magnitude.

• Storage space. Figure 12a depicts the behavior of the EMD
error for the three approximation methods as the space (i.e.,
number of retained coefficients) allocated to each is increased
from 2% to 20% of the relation. For a given value of the num-
ber of wavelet coefficientsc along thex-axis, histograms are
allocated space for≈ c

3 buckets. As expected, the EMD error
for all the cases reduces as the amount of space is increased.
Note that for 500 coefficients, the EMD error for histograms
is almost five times worse that the corresponding error for
wavelets. This is because the few histogram buckets are un-
able to accurately capture the skew within each region (in our
default parameter settings, the Zipfian parameter for the skew
within a region is 1).

• Skew within regions. In Fig.12b, we plot the EMD error as
the Zipfian parameterzmax that controls the maximum skew
within each region is increased from 0 to 2.0. Histograms per-
form the best for values ofzmax between 0 and 0.5 when
the cell counts within each region are more or less uniformly
distributed. However, once the maximum skew increases be-
yond 0.5, the histogram buckets can no longer capture the data
distribution in each region accurately. As a consequence, we
observe a spike in the EMD error for region skew correspond-
ing to a value ofzmax = 1.5. Incidentally, a similar behavior
for MaxDiff histograms has been reported earlier in [16].

• Cell density. In Fig.13a, we plot the graphs for EMD error as
vmax, the maximum volume of regions is varied between 1,000
(1% density) and 5,000 (5% density) (vmin is fixed at 1,000).
As the number of non-zero cells in the multi-dimensional array
increases, the number of coefficients, samples and histogram
buckets needed to approximate the underlying data also in-
creases. As a consequence, in general, the EMD error is more
when regions have larger volumes. Note the sudden jump in the
EMD error for histograms when the volume becomes 5,000.
This is because the histogram buckets overestimate the total of
the cell counts in the query region by almost 50%. In contrast,
the error in the sum of the cell counts within the query range
with wavelets is less than 0.1%.

• Selectivity of query. Figure 13b illustrates the EMD er-
rors for the techniques as the selectivity of range queries is
increased from 2% to 25%. Since the number of tuples in both
the accurate as well as the approximate answer increase, the
EMD error increases as the selectivity of the query is increased
(recall that the EMD error is the sum of the pairwise distances
between elements in the two sets of answers weighted by the
flows between them).

SELECT-SUM queries.Figure 14a depicts the performance of
the various techniques forSELECT-SUMqueries as the allo-
cated space is increased from 2% to 20% of the relation. Both
wavelets and histograms exhibit excellent performance com-
pared to random sampling; the relative errors are extremely
low for both techniques – 0.2% and 0.6%, respectively. These
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Fig. 13.SELECTqueries: sensitivity toa cell density;b query selectivity

results are quite different from the EMD error curves for the
three schemes (see Fig.12a). We can thus conclude that al-
though histograms are excellent at approximating aggregate
frequencies, they are not as good as wavelets at capturing the
distribution of values accurately. In [33], wavelets were shown
to be superior to sampling for aggregation queries – however,
the work in [33] did not consider histograms.

SELECT-JOIN and SELECT-JOIN-SUM queries.For join
queries, in Fig.14b, we do not show the errors for sampling
since in almost all cases, the final result contained zero tu-
ples. In addition, we only plot the relative error results for
SELECT- JOIN-SUM queries, since the EMD error graphs
for SELECT- JOIN queries were similar.

When the number of coefficients retained is 500, the rel-
ative error with wavelets is more than four times better than
the error for histograms – this is because the few histogram
buckets are not as accurate as wavelets in approximating the
underlying data distribution. For histograms, the relative er-
ror decreases for 1,000 and 2,000 coefficients, but shows an
abrupt increase when the number of coefficients is 5,000. This
is because at 5,000 coefficients, when we visualized the his-
togram buckets, we found that a large bucket appeared in the
query region (that was previously absent), in order to capture

the underlying noise in the data set. Cells in this bucket con-
tributed to the dramatic increase in the join result size, and
subsequently, the relative error.

We must point out that although the performance of his-
tograms is erratic for the query region in Fig.14b, we have
found histogram errors to be more stable on other query re-
gions. Even for such regions, however, the errors observed for
histograms were, in most cases, more than an order of magni-
tude worse than those for wavelets. Note that the relative error
for wavelets is extremely low (less than 1%) even when the
coefficients take up space that is about 4% of the relation.

Query execution times.In order to compare the query process-
ing times for the various approaches, we measured the time
(in seconds) for executing aSELECT-JOIN-SUM query us-
ing each approach. We do not consider the time for random
sampling since the join results with samples did not generate
any tuples, except for very large sample sizes. The running
time of the join query on the original base relations (using an
indexed nested-loop join) to produce an exact answer was 3.6
s. In practice, we expect that this time will be much higher
since in our case, the entire relations fit in main memory. As
is evident from Fig.15a, our wavelet-based technique is more
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Fig. 15. aSELECT-JOIN-SUM query execution times;b SELECTquery errors on real-life data

than two orders of magnitude faster compared to running the
queries on the entire base relations.

In addition, note that the performance of histograms is
much worse than that of wavelets. The explanation lies in the
fact that thejoin processing algorithm of Ioannidis and Poos-
ala [16] requires joining histograms to be partially expanded to
generate the tuple-value distribution for the corresponding ap-
proximate relations. The problem with this approach is that the
intermediate relations can become fairly large and may even
contain more tuples than the original relations. For example,
with 500 coefficients, the expanded histogram contains almost
five times as many tuples as the base relations. The sizes of the
approximate relations decrease as the number of buckets in-
crease, and thus execution times for histograms drop for larger
numbers of buckets. In contrast, in our wavelet approach, join
processing is carried out exclusively in the compressed do-
main, that is, joins are performed directly on the wavelet coef-
ficients without ever materializing intermediate relations. The
tuples in the final query answer are generated at the very end
as part of the rendering step and this is the primary reason for
the superior performance of the wavelet approach.

4.3 Experimental results – real-life data sets

We obtained our real-life data set from the US Census Bureau
(www.census.gov ). We employed the Current Population
Survey (CPS) data source and within it the Person Data Files
of the March Questionnaire Supplement. We used the 1992
data file for the select and select sum queries, and the 1992
and 1994 data files for the join and join sum queries. For both
files, we projected the data on the following four attributes
whose domain values were previously coded:age(with value
domain 0 to 17),educational attainment(with value domain
0 to 46),income(with value domain 0 to 41), andhours per
week(with value domain 0 to 13).Along with each tuple in the
projection, we stored a count which is the number of times it
appears in the file. We rounded the maximum domain values
off to the nearest power of 2 resulting in domain sizes of 32,
64, 64, and 16 for the four dimensions, and a total of 2 mil-
lion cells in the array. The 1992 and the 1994 collections had
16,271 and 16,024 cells with non-zero counts, respectively, re-
sulting in a density of≈ 0.001. (The data-file sizes for our CPS
data projections were approximately 318kB (1992 collection)
and 313kB (1994 collection).) Even though the density of the
resulting joint-frequency arrays is very low, we did observe
large dense regions within the arrays when we visualized the
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Fig. 16. aSELECT-SUMandb SELECT-JOIN-SUM queries on real-life data

data – these dense regions spanned the entire domains of the
ageandincomedimensions.

For all the queries, we used the following select range:
5 ≤ age < 10 and10 ≤ income < 15 that we found to be
representative of several select ranges that we considered (the
remaining two dimensions were left unspecified). The selec-
tivity of the query was 1,056/16,271= 6%. Forsum queries,
thesum operation was performed on theagedimension. For
join queries, thejoin was performed on theagedimension
between the 1992 and 1994 data files.

SELECT queries.In Figs.15b and 16a, we plot the EMD error
and relative error forSELECTandSELECT-SUMqueries, re-
spectively, as the space allocated for the approximations is in-
creased from 3% to 25% of the relation. From the graphs, it fol-
lows that wavelets result in the least value for the EMD error,
while sampling has the highest EMD error. ForSELECT-SUM
queries, wavelets exhibit more than an order of magnitude
improvement in relative error compared to both histograms
and sampling (the relative error for wavelets is between 0.5%
and 3%). Thus, the results for the select queries indicate that
wavelets are effective at accurately capturing both the value as
well as the frequency distribution of the underlying real-life
data set.

Note that unlike the EMD error and the synthetic data
cases, the relative error for sampling is better than for his-
tograms. We conjecture that one of the reasons for this is
the higher dimensionality of the real-life data sets, where his-
tograms are less effective.

JOIN queries. We only plot the results of theSELECT-
JOIN-SUM queries in Fig.16b, since the EMD error graphs
forSELECT-JOIN queries were similar. Over the entire range
of coefficients, wavelets outperform sampling and histograms,
in most cases by more than an order of magnitude. With the
real-life data set, even after thejoin , the relative aggregate
error using wavelets is very low and ranges between 1% to
6%. The relative error of all the techniques improve as the
amount of allocated space is increased. Note that compared to
the synthetic data sets, where the result of ajoin over sam-
ples contained zero tuples in most cases, for the real-life data
sets, sampling performs quite well. This is because the size of

the domain of theageattribute on which the join is performed
is only 18, which is quite small. Consequently, the result of
the join query over the samples is no longer empty.

4.4 Summary

In summary, our experimental results have demonstrated that
our wavelet-based approach consistently outperforms earlier
approaches based on random sampling and histograms. Sam-
pling suffers mainly for non-aggregate queries since it al-
ways produces small subsets of the exact query answer. As
we expected, this problem with random sampling is partic-
ularly acute whenjoin operations are involved, as the re-
sult of joining sample synopses is often theempty set(espe-
cially for sparse, multi-dimensional data). On the other hand,
histograms give poor approximate-querying performance for
non-uniform, high-dimensional data sets, as such data distri-
butions cannot be accurately captured with a small number of
disjoint rectangular buckets containing uniformly distributed
points. Our results prove that out wavelet-based approach does
not suffer from such problems. More specifically, even though
wavelets have their weaknesses (e.g., they can behave poorly
for very “spiky” distributions), we have found that they are
very effective in capturinglocalities in the input data distri-
bution, that is, regions of neighboring data cells with similar
frequencies. Further, the hierarchical nature of the wavelet
decomposition allows wavelet coefficients to capture such lo-
calities at different levels of resolution in a very concise and
accurate manner. Based on our experience, most data sets in
real-life DSS applications do exhibit such localities; thus, we
firmly believe that the wavelet-based approach proposed in
this paper is an effective approximate query processing solu-
tion for DSS applications.

5 Conclusions

Approximate query processing is slowly emerging as an es-
sential tool for numerous data-intensive applications requir-
ing interactive response times. Most work in this area, how-
ever, has so far been limited in its scope and conventional
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approaches based on sampling or histograms appear to be
inherently limited when it comes to complex approximate
queries over high-dimensional data sets. In this paper, we
have proposed the use of multi-dimensional wavelets as an
effective tool for general-purpose approximate query process-
ing in modern, high-dimensional applications. Our approach
is based on building wavelet-coefficient synopses of the data
and using these synopses to provide approximate answers to
queries.We have developed novel query processing algorithms
that operate directly on the wavelet-coefficient synopses of
relational data, allowing us to process arbitrarily complex
queriesentirely in the wavelet-coefficient domain. This guar-
antees extremely fast response times since our approximate
query execution engine can do the bulk of its processing over
compact sets of wavelet coefficients, essentially postponing
the expansion into relational tuples until the end-result of the
query. We have also proposed a novel I/O-efficient wavelet de-
composition algorithm for building the synopses of relational
data. Finally, we have conducted an extensive experimental
study with synthetic as well as real-life data sets to determine
the effectiveness of our wavelet-based approach compared to
sampling and histograms. Our results demonstrate that our
wavelet-based query processor: (a) provides approximate an-
swers of better quality than either sampling or histograms; (b)
offers query execution-time speedups of more than two orders
of magnitude; and (c) guarantee fast synopsis construction
times that scale linearly to the size of the relation.
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