An Architecture for Inter-Domain Troubleshooting *

David G. Thaler and Chinya V. Ravishankar
Electrical Engineering and Computer Science Department
The University of Michigan, Ann Arbor, Michigan 48109-2122

thalerd@eecs.umich.edu

Abstract

In this paper, we explore the constraints of a new
problem: that of coordinating network troubleshooting
among peer administrative domains and untrusted ob-
servers. Allowing unirusted observers permits any en-
tity to report problems, whether it is a Network Oper-
ations Center (NOC), end-user, or application. Our
goals are to define the inter-domain coordination prob-
lem clearly, and to develop an architecture which al-
lows observers to report problems and receive timely
feedback, regardless of thewr own locations and identi-
ties. By aulomating this process, we also relieve human
bottlenecks at help desks and NOCs whenever possible.

We present a troubleshooting methedology for coor-
dinating problem diagnosis, and describe GDT, a dis-
tributed protocol which realizes this methodology.

1 Introduction

Work to date in network management has concen-
trated on effectively managing a single network. To our
knowledge, little has been done to address the problem
of coordinated network management across adminis-
trative domains, although the need for such a global co-
ordination system has long been recognized [1, 2, 3, 4].

A recent study of routing instability [5] found that
in about 10% of the problems, all parties questioned
pointed to another party as the cause. Such problems
strongly underscore the need for inter-domain coordi-
nation. The true cause of a problem may be distant
from its effect. For example, failure to access a web
page may result from a problem anywhere between the
browser and the remote servér. One’s local help desk
can not help in this case.

In this paper, we investigate issues in such inter-
domain troubleshooting coordination, and address the
subproblem of developing a communication protocol
for detecting and reporting problems across adminis-
trative domains. We aim to provide timely feedback
to (dis)affected end-users, and to relieve human bottle-
necks at help desks and Network Operations Centers

*This work was supported in part by National Science Foun-
dation Grant NCR-9417032.

1095-2055/97 $10.00 © 1997 IEEE

ravi@eecs.umich.edu

(NOCs) whenever possible. We leave the problems of
inter-administration negotiation of repairs, and of no-
tifying organizations of scheduled future downtime to
future work. Work such as IPN [6] addresses the issue
of pre-notification, but pre-notification does not help
coordinate troubleshooting, since past announcements
may have been lost, ignored, forgotten, and may be
inaccessible during the problem.

Intra-administration management methods may not
apply to the inter-administration case. For exam-
ple, management entities may not be allowed to ac-
cess or trust observers actoss administrative domains.
New mechanisms are thus needed. We build inter-
administration coordination on top of the management
functionality existing within each administrative do-
main. We therefore need only concern ourselves with
the task of coordinating information between domains
in an effective manner. '

Our goal in this paper is to clearly define the inter-
domain coordination problem, and to provide a frame-
work and protocol which allows any entity (including
a user, a NOC, or an application) to report problems
and receive appropriate feedback, regardless of its own
location.

Our framework consists of three parts:

1. Domain-expertise modules: These are exist-
ing tools (such as Network Management Systems)
upon which we build. They apply traditional man-
agement techniques, usually within an administra-
tive domain.

2. Troubleshooting Methodology: This is the
theory and algorithm behind the protocol which
allows effective troubleshooting in an inter-domain
environment.

3. Coordination Protocol: This protocol conveys
information between management entities which
may be in different administrative domains, and
enables the methodology.

The remainder of this paper is organized as follows.
Section 2 outlines our design philosophy and describes
the constraints relevant to the inter-domain problem.

Section 3 presents a methodology for diagnosing prob-
lems. Section 4 describes our protocol, and Section 5
covers conclusions and the future.

2 Design Philosophy

We now discuss a number of design principles and
provide the motivation for the application of our
methodology.
2.1 Policy principles

We present the following principles as relevant in
the context of an inter-domain environment.

Principle 1 (Freedom of information): “Outage”
information should be available to those affected by it.

Users and applications can often benefit from infor-
mation such as the expected downtime, especially for
problems spanning administrative domains.
Principle 2 (Privacy): “Outage” information
should be available only to those affected by it.

Internet Service Providers (ISP’s) typically do not
want statistics on the number of problems observed
in their network to be publicly available. Hence, infor-
mation on problems is only distributed on a “need-to-
know” basis.

Principle 3 (Freedom of speech): Any entity
should be able to report a problem, whether or not it
is trusted.

This principle is a consequence of the Freedom of In-
formation principle and the fact that the cause of a
problem may be distant from its effect. No assump-
tion is made initially about the correctness (or the non-
maliciousness) of the problem report.

Principle 4 (Conservation of effort): One should
perform the minimum repairs required to fizr the prob-
lem in a timely fashion. In addition, no attempts
should be made to repair non-existent problems.

A repair should be performed close to the source of the
problem, to avoid reacting to each effect separately.
Also, problems reported by untrusted sources must be
confirmed before being acted upon.
2.2 Architectural Constraints

Our architecture follows the Internet design philoso-
phy described in [7], which we summarize with the fol-
lowing set of constraints ranked in order of importance:
high availability, allowing multiple services, networks,
and centers of administration, cost-effectiveness, low-
effort deployment, and accountability.

We paraphrase our foremost constraint (from
Rose [8]) as follows:
Constraint 1 (Reliability): When all else fails,
troubleshooting must continue to function, if at all pos-
stble.

517

This constraint implies that a global troubleshooting
system must require as few other services as possible
to be functional. For example, it should continue to
function (although not necessarily as well) if nameser-
vice, filesystems, or TCP are not available.
Constraint 2 (Scalability): The architecture must
be scalable to span the global Internet.

Many problems may exist simultaneously, and the net-
work may span many autonomous administrations.
The network configuration may also change over time.
Constraint 3 (Low-cost deployment): The archi-
tecture must be both simple to implement and deploy,
as well as consume resources at a reasonably low rate.
The requirements for entities to participate in trou-
bleshooting must be as simple as possible, and the
bandwidth and memory costs required must not out-
weigh the benefits of a troubleshooting architecture.
Constraint 4 (Security): The architecture must be
secure and adhere to the Privacy principle.

It must not publish information on current problems
to those unaffected by them, and must prevent unnec-
essary “repairs” from being performed.

3 Troubleshooting Methodology

We use the term object to denote a logical entity in
the network, such as a router or a stream of data. We
will refer to classes of objects, and instances of specific
classes. For example, a “TCP session” may be a class,
while an instance of that class would be identified by
a pair of IP addresses and port numbers.

3.1 Fault-propagation model

Faults may propagate both vertically as well as hor-
izontally through the network [9]. For the horizontal
direction, we use the term downstream to denote the di-
rection of data flow, and upstream to denote the reverse
direction. In the vertical direction, up and down are
defined with respect to the seven-layer protocol stack
defined by the ISO [10].

Our method uses resource dependency graphs, in
which each node represents an object, and directed
edges denote dependencies. The arrows show the di-
rection of a demand for the resources of one object by
another. In Figure 1 the audio client and server ap-
plications demand resources from the host CPU and
the filesystem, and as the router forwards packets, it
imposes a resource demand upon the downstream link.
The efficiency and correctness of an object thus depend
on whether its resource remands are met, and hence on
the efficiency and correctness of those objects below
and downstream of it.

Relationships between classes of objects are typi-
cally static, whereas relationships between specific in-
stances of objects are often dynamic. For example,

AUdio L e e e e [IDP atroam e s e m o Audio
Server »UDP stream ™ lient
N 4
Up \\ //
Stream__, Stream __ _, Stream /
¢ Link ™ Node ™ Link
Down . l

Host == == Link ===~ Router ===~ Link =~ -# Host

a /N

CPU Filesystem CPU Filesystem

Upstream == == Downstream

Figure 1. Sample Resource Dependency Graph

a UDP stream will always depend upon links and
routers, but the specific instances may change over
time. Our goal will be to statically know static re-
lationships, and to dynamically resolve dynamic rela-
tionships.

Let an object’s capacity denote the total amount
of resources it makes available. For example, a link’s
capacity might be measured in Mbps, and a file sys-
tem’s capacity might be measured in Gbytes. Let an
object’s utilization denote the total amount of its re-
sources in use. We adopt the concept of a “health func-
tion” from [11]. We let an object’s health be a measure
of its performance and its ability to-adequately meet
imposed demands. Low health is thus an indication of
degraded performance. We will use the term problem
to denote an object experiencing low health. The pre-
cise meaning of this depends on the definition of the
health function, and may be different for each class
of objects. For example, the health of a TCP session
.may be measured by latency (possibly in addition to
other factors), while the health of a filesystem might be
measured by average read and write access times. This
definition allows us to coordinate information relating
to both fault management and performance manage-
ment, as defined by the ISO [10].

With the above definitions, we are ready to analyze
fault propagation in more detail. We begin with the
following observations:

Observation 1 High utilization propagates in the di-
rection of resource dependencies.

Any object which is highly utilized may consequently
impose higher demands on those objects on which it
depends.

Observation 2 Low health propagates in the direction
opposite to resource dependencies.

Degraded performance at some object may degrade the
performarice of all objects depending on it.
Observation 3 High utilization can cause low health,
as utilization approaches the object’s capacity.

Low health may arise from soft failures (congestion) or
hard failures (hardware or software faults).

518

higherU ———— highU @above

—upstreamlU ———>highU@upstream
— highU —— ’

highD

lowC
lowH—

badHW
—lowerH ——————> lowH@below

— downstreamH -——lowH @ downstream

— badHW

Figure 2: Problem Taxonomy

3.2 Cause-effect graphs

Previous studies (e.g., [12]) have typically only
looked at one direction of fault propagation (i.e., “up”).
We introduce cause-effect graphs as a more comprehen-
sive model for representing fault propagation. Each
node in such a graph represents a problem, and di-
rected edges lead from effects to causes. We begin with
a taxonomy of problem types (Figure 2) based on our
discussions in Section 3.1.

Degraded performance (LowH) of an object can be
caused by congestion (highU, Observation 3), by de-
graded performance at a lower or downstream object
(lowerH, downstreamH, Observation 2), or by an ac-
tual hardware or software problem (badBW) with the
object itself. Similarly, congestion (highU) can be
caused by high utilization above or upstream (higherU,
upstreanU, Observation 1), by the object itself gener-
ating an unusually high demand (highD), by the object
having insufficient capacity to meet normal demands
(1owC), or by an actual hardware or software problem
(badHW) with the object itself.

Each of lowerH, higherU, downstreamH, and
upstreamU refer to specific problems at objects below,
above, downstream, and upstream from the affected
object, respectively. The taxonomy thus represents a
recursive method to trace problems back to one or more
root causes (i.e., those which are not effects of other
problems). A root cause can only be one of highb,
lowC, or badHW.

Figure 3 shows a sample network topology. In this
topology, nodes A, B, E, and F are connected via 10
Mbps full duplex links to nodes C and D which connect
to each other via a 500 Kbps full duplex link. Using
the taxonomy we described above, we can now con-
struct directed cause-effect graphs, where each node
represents a problem, and directed edges lead from an
effect to a cause (see Figure 4). The dotted lines in
this figure simply group all problems with the same
object, since the taxonomy refers to problem types at
a given object. (Note that, as we will see in Section 4,
this graph will be distributed in practice to provide
scalability and support privacy.)

higherts i

___________ hl
JowH — o lower A lowH —s lowerH | |

*********** 1
i

1stmam(A.E) stream(A,E) | : streamlink '}

‘ / ink(C.D)
1L AECD) AECD) 1\ . N

streamiink |
__________ 2 ——u high]

iy D ITTTITIILIC fiinkiC.D) Iink(C.D)\ |
i lowH E—*Imrﬂ d—:b lowH —lowerH” ' | fowC |
(B,E) i ink | |

|

|| BECD BECD | neO)
b1 L BECD BECD)

[
high! ——supstreamU
(stream(B,F) stream(BF)! |p

Figure 4: Cause-Effect Graph of Problems

We call a symptom from which cause-effect graph
construction begins a “leaf effect” (such as lowH of
stream(A E)), since diagnosis always proceeds from an
effect to its cause. A problem such as highD of pro-
cessstream(B) which is not an effect of any other prob-
lem is a “root cause.” If problems occur often enough
that the capacity is insufficient to support normal de-
mand, LowC will be another root cause, as shown. Since
each cause may have multiple effects, and vice versa,
the superposition of the trees constructed by tracing
back from each leaf effect forms the complete cause-
effect graph.

The problem types shown in Figure 2 are necessary
and sufficient for inter-domain coordination since they
enumerate and distinguish the different directions in
which fault and performance problems can be propa-
gated. Problems in real networks will simply be in-
stances of these types, and further subdivisions will
be specific to each class of objects. Since we are in-
terested in efficient coordination of troubleshooting ef-
forts, rather than the details of the efforts themselves,
the high-level classifications will suffice for our pur-
poses.

In addition, we observe that since problems can only
be propagated across resource dependencies, cycles can
occur in cause-effect graphs only if cycles are present in
the resource dependency graph. Cycles in cause-effect
graphs are particularly important. They may lead all
administrations involved to conclude it is “somebody
else’s problem”, as observed in the informal routing
instability study [5], resulting in no action taken at all.
We will return to this issue in Section 4.4.

3.2.1 Constructing cause-effect graphs

Given an initial problem (leaf effect) report, a cause-
effect graph can be constructed according to the fol-

519

highU lowH
stream(A,E) streamiink(A,E,A,C)
downstreamH lowH
stream(A,E) streamnode(A,E,C)
fowH » lowerH » lowH
stream(A,E) \stream(A,E) streamlink(A,E,C,D)
badHW fowH
stream(A,E) streamnode(A,E,D)
lowH

streamlink(A,E,D,E)

Figure 5: Generating Hypotheses

lowing procedure: (1) Run a test to confirm whether
the problem exists (this is done by a domain-expertise
module). If none exists, stop. Note that this step is
necessary when the origin of the report is either un-
trusted or unsure. In cases where the origin is both
trusted and sure of the problem’s existence, this step
can be omitted. (2) Generate hypotheses about possi-
ble causes by referring to the Problem Taxonomy (Fig-
ure 2) and the Resource Dependency Graph (Figure 1)
which includes the affected object. (3) Repeat from
step 1 for each new hypothesis generated.

Figure 5 gives an example, starting with a low-
health report for a stream object. If the report is
confirmed, hypotheses of highU, lowerH, and badHW
are generated in accordance with Figure 2. If lowerH
is confirmed, a lowH hypothesis will be generated for
each object below the stream object in the resource
dependency graph. We prune back branches for all
hypotheses which are rejected by tests or whose tests
were indeterminate, leaving only confirmed problems.

This process continues until all branches are pruned
back or reach either previously-confirmed problems or
root causes. Figure 4 shows the results of applying
this process to two leaf effects: low health of stream
(A,E) and stream (B,E). These effects are traced to a
common cause: low health of the C-D link, which is in
turn a result of B generating too much traffic.

4 Problem report coordination

In this section, we describe how the methodology
outlined in Section 3 can be applied in a scalable man-
ner to a distributed architecture which meets the re-
quirements in Section 2.

To scale to a global network composed of a large
number of administrative domains, we propose a so-
ciety of troubleshooting coordination agents which we
call experts. Experts communicate with each other and
with clients, which are agents acting on behalf of the
end-user, application, or NOC observing a problem.
Each expert has one or more areas of expertise. An
area of expertise is defined as knowledge about prob-
lems with a specific class of objects;, and the capabil-

lties and permissions necessary to diagnose a specific
set (e.g., a range or list) of 1nstances of that class.

For each class of objects in its areas of expertise, an
expert must have the ability to determine the set of ob-
Jects immediately above, below; upstream, and down-
stream from a given object, and the ability to test for
(at least) lowH, highU, highD, and LowC. The results of
each test should either confirm or deny the existence of
the problem, or report that the test was indeterminate.
Any test which is indeterminate is later considered to
be confirmed if an immediate effect was confirmed, and
all other potential hypotheses are rejected. For exam-
ple, badH¥ is frequently difficult to- test because of the
many ways in which hardware and software may be
faulty. If no test is available, then badHW is consid-
ered to be confirmed if lowH was confirmed but highU,
lowerH, and downstreamH were rejected.

Intermediate problem types (lowerH; downstreanH,
upstreamV, and higherU) are considered confirmed if
any hypothesis they generate is confirmed, rejected if
all hypotheses they generate are rejected (or if no hy-
potheses-are generated), and are indeterminate other-
wise. Note that the same strategy could be used for any
other indeterminate problem by testing the hypotheses
it would have generated if confirmed.

The cause-effect graph spans the society of experts,
with all nodes in the graph for the same object being
located at the same expert. The resource dependency
graph is likewise distributed, since each expert knows
the static relationships between classes in its areas of
expertise, and is able to dynamically determine which
objects relate to any given problematic object within
its areas of expertise. Finally, the same taxonomy is
used by all experts in generating hypotheses.

Each expert keeps a list of unresolved problems
within its areas of expertise which have been reported
to it. Each expert then locally follows the methodol-
ogy of Section 3 for the nodes of the global cause-effect
graph which it holds, and GDT protocol messages are
exchanged between experts to create and maintain the
distributed cause-effect graph.

We reiterate that each expert only keeps informa-
tion on its own problems, and only receives information
about problems which directly affect it or its problems.
This provides scalability as well as meets the privacy
requirement from Section 2.

4.1

The following considerations are important in de-
signing a scalable mechanism for locating appropriate
experts to which to submit problem reports. First,
an expert location service will be used precisely when
problems exist. The Reliability constraint (see Sec-
tion 2.2) thus mandates that the expert location ser-

Expert Location

520

vice should not make use of any existing system for
service location. For example, it should not require
multicast, or else it cannot diagnose problems with
multicast routing. Therefore, we must construct an ex-
pert location service tailored specifically to our needs.
Note that we do not preclude the use of multicast as an
optimization when it is available. We simply present
a method below which is able to function without the
use of multicast. An analysis of optimizations which
introduce such additional ‘dependencies is a topic for
future work. '

In our scheme, object names are attribute-based
and correspond to individual points in the namespace.
The name of an object consists of two sets of ai-
tribute=value pairs: a mandatory set which uniquely
1dentifies the 1nstance, and an optional set to provide
additional information. For example, the name of a
specific UDP stream might be “class=UDPstream,
sourcelAddr=141.213.10.41, sourcePort=1234,
destAddr=204.140.133.4, destPort=5678,
application=vat”, where application is an
optional attribute. To report a problem with a specific
object, all required attributes must be specified.

Areas of expertise, on the - other hand, corre-
spond to regions in the namespace. The de-
scription of a region contains = aftribute=set or
attribute=range - pairs, and need not specify re-
quired attributes. For example, one area of
expertise might be “capability=diagnosisOnly,
class=UDPstream, sourceAddr=141.213/16". To
submit a hypothesis, one must be able to map the name
of a problematic object to one or more experts whose
areas of expertise include the given object. This prob-
lem 1s analogous to that of performing a point query in
a spatial database to get a list of regions covering the
given point.)

Traditional spatial database techniques such as R-
trees [13] are not directly applicable, however, since
scalability ‘requires that the database of regions be
physically distributed. In addition, it doesn’t matter
whether a region is matched if the associated expert
isn’t reachable. Thus, there are fundamental differ-
ences imposed by our constraints' which make tradi-
tional approaches less applicable.

We summmarize our design requirements for name-
service below, in order of importance:

1. Allow availability during network partitions (i.e.
locate reachable experts).

3

2. Minimize - point query time by minimizing the
number of exchanges of network messages.

3. Maintain low bandwidth and memory overhead
(thus trying not to exacerbate congestion prob-
lems, and interfering as little as possible with other
objects). :

The first constraint suggests that a hierarchy of
servers corresponding to a hierarchy in the namespace
(as is used by DNS [14], X.500 [15], etc) will not work,
since we must have successful queries even when we are
partitioned from a large part of the network. Replicat-
ing such servers everywhere will not keep the band-
width overhead low. We also want to avoid mandat-
ing a hierarchical namespace to preserve domain au-
tonomy and class independence. On the other hand,
we desire some structure to the servers so that expert
location can provide higher availability, and be eas-
ily adapted to changing conditions without manual re-
configuration. Many existing attribute-based naming
schemes (e.g., [16]) provide no structure to servers and
hence rely on manual configuration.

The solution we adopt is as follows. Expert location
servers (ELS’s) are organized into a hierarchy accord-
ing to their location. Informally, each ELS is responsi-
ble for knowing the namespace regions (areas of exper-
tise) in the subtree rooted at itself. To avoid manual
configuration, such a hierarchy may be formed by a
self-configuring process such as TDH {17].

Experts form the actual leaves of the tree so formed,
with each expert’s parent being the closest expert loca-
tion server. We will refer to a server whose children are
experts (as opposed to other servers) as a leaf server.
Each expert periodically advertises its areas of exper-
tise to its parent. Each server then reports to its own
parent, either the bounding box covering the regions it
has, with its own address as the “owner” (or expert to
contact), or preferably, the union of the regions. Trade-
offs exist between the amount of bandwidth and state
used, and the speed of queries. In general, we prefer
to keep a greater amount of more accurate state, so as
to minimize the query time.

To perform a point query, one starts at one’s local
leaf server. If any matches occur, the query is com-
pleted and returns. Otherwise, the next higher server
in the hierarchy is consulted to determine if any knowl-
edgeable experts exist in a wider area. This procedure
ensures that closer experts will be found before more
distant experts. This approach both helps to ensure
availability of experts matched, and minimizes latency
and bandwidth used.

A second issue is the ordering of the list of experts.
The constraints listed above lead us to the following
ordering method.

1. Prefer closer experts first to achieve availability.
This heuristic corresponds to using the levels of
the hierarchy, starting at the bottom and working
upwards. The remaining preferences (below) thus
correspond to rules employed by a level-i server to
construct a list of experts in response to a query

521

it receives.

2. Required attributes must match exactly between
the requested object and matched areas of exper-
tise, and any optional attributes must not be in
conflict. This means that the list constructed by a
level-i server must not contain any experts whose
areas of expertise are known not to include the
given object. Note that within the server, spatial
database techniques such as R-trees may be used
to implement this rule. The remaining preferences
(below) then describe how a single server should
order the regions it finds.

3. Experts with more advanced capability are pre-
ferred (e.g., ones that can repair, not just diag-
nose) over less advanced experts. Note that the
capability level is a required attribute in describ-
ing regions (but not objects) to enable this rule.

. Prefer experts which match more of the optional
attributes. If a region’s description does not
specify an optional attribute contained in the re-
quest, it is not considered to match when counting
matched attributes.

5. Finally, to break ties, we use the Highest Random
Weight (HRW) algorithm described in [18]. If two
requests for the same object retrieve the same set
S of servers, HRW generates the same ordering
of servers in S for both requests. However, re-
quests for different objects generate different or-
derings on S, so HRW both helps to balance the
load on equivalent experts, and reduces duplica-
tion of work in accordance with the Conservation
of Effort principle. For classes of objects which are
popular, but not confined to a small area, all ex-
perts found in step 2 will often be tied and hence
HRW will determine expert selection.

According to the algorithm described above, the list
of “experts” returned by a query may actually be lo-
cation servers. However, when a request is sent to an
“expert” which is actually a level-i server, the server re-
sponds by redirecting the request to a list of level-(i—1)
servers (or experts). This means that any non-expert
can be resolved to a list of actual experts.

Finally, we optimize the lookup procedure and en-
hance availability by caching the results of previous
lookups. That is, if an entity wants to locate an ex-
pert on a particular object, and any experts’ areas of
expertise in the cache include that object, then no net-
work messages are needed to resolve the list of experts.

4.2 Security Issues

It is important, though not required, that a reporter
be able to trust the feedback from an expert. If a
malicious expert rejects a true hypothesis (violating

the Freedom of Information principle), the reporter will
simply attempt to cope with the symptoms.

If a malicious expert confirms a false hypothesis,
the reporter may. choose either to wait for repairs to
complete if the expert’s expected time to repair 1s ac-
ceptable, or to simply cope with the symptoms. An
expert that frequently provides wrong feedback must
be isolated. We provide a mechanism for identifying
such experts by requiring that the originators of ca-
pability advertisements be authenticated. In.practice,
only short-term intruders are a concern, since experts
wishing to establish a long-term presence would have
no incentive to become known as unreliable.

To ensure integrity of capability advertisements
and authentication of their origin, we adopt the
current model recommended by the IETF for use
with nameservice-like applications, which is known as
DNSsec [19]. Briefly, a public/private key pair is asso-
ciated with each domain, and all capabilities are signed
with a domain key. To reliably learn the public key of a
domain, the key itself must be signed. A resolver must
therefore be configured with at least the public key of
one domain that it can use to authenticate signatures.
It can then securely read the public keys of other do-
mains if the intervening domains in the ELS tree are
secure and their signed keys accessible. See [19, 20] for
a more detailed discussion of the security model and
associated concerns.

A second security issue is denial-of-service attacks
by observers reporting non-existent problems. Such at-
tacks can be combatted in GDT by deferring tests and
repairs once such an attack is suspected. For example,
if a large number of reports arrive from the same origin,
and the first few are rejected, the rest may be deferred
(and a “GDT denial-of-service” problem report gener-
ated). If the client never refreshes the deferred state
(see Section 4.3), the tests need not be performed.
4.3 Protocol Overview

In this section we give a brief overview of the GDT
protocol. A detailed specification can be found else-
where [21].

Any entity may report a problem, whether the entity
is a client perceiving a problem, or an expert hypothe-
sizing about potential causes of a known problem. To
report a problem, an ordered list of experts is first ob-
tained using the method outlined in Section 4.1. A
Hypothesis message describing the potential problem
is then sent to each of these experts in turn until one
responds (i.e., until one is found to be reachable).

GDT is designed to be a soft state protocol, meaning
that all state held in experts and servers will eventu-
ally expire and be deleted unless explicitly refreshed by
receiving relevant messages. Significant events cause

522

experts to return a status report to each entity which
sent it a Hypothesis message for that problem. These
status reports are not acknowledged, but are periodi-
cally resent-to allow for lost messages and to keep state
alive at the origin so it need not try another expert.
Hypotheses are periodically (at low frequency) resent
to experts to indicate that the sender is still interested
in recelving status reports for reported problems.

When an expert receives a Hypothesis about a new
problem, a domain-expertise module applies known
domain-specific tests to confirm or deny the existence
of the reported problem. The expert merely acts as a
supervisor for these tests, letting the domain expertise
module (or a human) conduct the actual test using its
own methods. This confirmation step may be skipped
if the Hypothesis is received from a trusted source and
indicates that the problem has already been confirmed.
When a test completes, all origins are informed that
the hypothesis was confirmed, rejected, or that it was
indeterminate. (Since a problem can have multiple ef-
fects, there can be multiple origins, one per reported
effect.) '

Once a problem is confirmed; the expert generates
hypotheses about potential causes according to the
procedure described in Section 3. This may entail em-
ploying a resolution procedure to determine the list of
objects above, below, upstream, or downstream from
the problematic .object. Each hypothesis is then sent
to an appropriate expert as described above.

If no potential causes were found for a confirmed
problem, or if all hypotheses have been rejected or are
indeterminate, then a root cause has been reached; and
repairs may begin whenever possible.

To conserve effort and ensure that repairs are con-
ducted as close to the root cause as possible, no actions
will be initially requested for problems with confirmed
When a root cause cannot ‘be repaired im-
mediately, its status is set to Repair-Deferred, and all
entities from which a hypothesis of the cause has been
received are informed. When all confirmed causes of
a problem have had repairs deferred, then repairs may
begin (or be deferred) for the effect where possible.
This process continues down the tree of effects until
repairs are begun immediately, or until the origins of
problem reports for leaf effects are reached.

causes.

We emphasize that the specific tests and repairs to
be done are domain-specific and hence are outside the
scope of the coordination protocol. This also allows
each administration or even each expert to have its own
troubleshooting procedures, while still allowing coordi-
nation between heterogeneous experts.

4.4 Breaking cycles in the graph

As discussed in Section 3.2, cycles in cause-effect
graphs are an important concern. To prevent dead-
lock, cycles are detected by propagating selected Sta-
tus Report messages down to leaf effects in the cause-
effect graph when potential for a cycle exists (namely,
when a Hypothesis message is received for a previously-
confirmed problem). If a Status Report about a specific
problem is relayed down to the same problem, then a
cycle must exist, and the cycle is broken by treating
its cause as indeterminate, forcing the problem to be
treated as a root cause.
4.5 Performance

We simulated the performance of GDT by imple-
menting clients and experts using “ns”, the LBNL Net-
work Simulator [22]. Because of space constraints, we
could not include these results here, but they are avail-
able in an extended version of this paper [23]. Briefly,
we simulated the performance of GDT in terms of trou-
bleshooting time, number of messages, and amount of
state required, while varying the number of clients, the
network size, and the degree of message loss. These
simulations showed that GDT performs well as the
number of clients and problems grows, and continues
to function amidst heavy packet loss.

5 Conclusions

In this paper, we have explored the constraints of
a new problem: that of coordinating troubleshooting
information among peers and untrusted observers. Al-
lowing untrusted observers removes any restrictions on
who may be an observer, and may include NOCs, end-
users, and even applications.

As part of our architectural framework, we have pre-
sented a methodology for coordinating problem diag-
nosis under these contraints. We then described a pro-
tocol, GDT, which realizes our methodology.

We believe that our architecture scales well, and is
potentially suitable for the global Internet. Our vision
is to allow troubleshooting to proceed automatically so
that end users and applications can get accurate and
timely feedback ‘on problems, such as obtaining the
expected time until repair. We believe this is especially
important (and potentially difficult) when the cause of
observed problems is very distant.

References

[1] Shri Goyal and Ralph Worrest. Expert systems in net-
work maintenance and management. In IEEE Inter-
national Conference on Communications, June 1986.
Makoto Yoshida, Makoto Kobayashi, and Haruo Ya-
maguchi. Customer control of network management
from the service provider’s perspective. IEEE Com-
munications Magazine, pages 35-40, March 1990.

(2]

523

[3] Kraig R. Meyer and Dale S. Johnson. Experience in
network management: The Merit network operations
center. In Integrated Network Management, II. IFIP
TC6/WG6.6, April 1991.

Alan Hannan. Inter-provider outage notification.
NANOG, May 1996.

Craig Labovitz. Routing stability analysis. North
American Network Operator’s Group, October 1996.
Merit/ISI. Inter-provider notification.
http://compute.merit.edu/ipn.html.

David D. Clark. The design philosophy of the DARPA
Internet protocols. Proc. of ACM SIGCOMM ’88,
pages 106-114, 1988.

Marshall T. Rose. The Simple Book. Prentice Hall,
2nd edition, 1994.

Zheng Wang. Model of network faults. In Inte-
grated Network Management, I. IFIP TC6/WG6.6,
April 1989.

ISO. Information processing systems - open systems
interconnection - basic reference model - part 4: Man-
agement framework, 1989. ISO 7498-4.

Germén Goldszmidt and Yechiam Yemini. Evaluating
management decisions via delegation. In Integrated
Network Management, III. IFIP TC6/WG6.6, April
1993.

Willis Stinson and Shaygan Kheradpir. A state-
based approach to real-time telecommunications net-
work management. In NOMS, 1992.

A. Guttman. R-trees: A dynamic index structure for
spatial searching. In Proceedings of the 1984 ACM
SIGMOD International Conference on Management of
Data, pages 47-57, June 1984.

Paul Mockapetris. Domain names - concepts and fa-
cilities, November 1987. RFC-1034.

Gerald Neufeld. Descriptive names in X.500. In Pro-
ceedings of the ACM SIGCOMM, pages 64-70, 1989.
Larry L. Peterson. The profile naming service. ACM
Transactions on Computer Systems, 6(4):341-364,
November 1988.

D. Thaler and C.V. Ravishankar. Distributed top-
down hierarchy construction. Submitted to IEEE IN-
FocoM’9s.

D. Thaler and C.V. Ravishankar. Using name-based
mappings to increase hit rates. ACM/IEEE Transac-
tions on Networking, to appear.

D. Eastlake and C. Kaufman. Domain name system
security extensions, January 1997. RFC-2065.

D. Eastlake. Secure domain name system dynamic
update, April 1997. RFC-2137.

D. Thaler. Globally-distributed troubleshooting
(GDT): Protocol specification. Work in progress,
November 1996.

Lawrence Berkeley National Labs.
http://www-nrg.ee.lbl.gov/ns/.
David Thaler and Chinya V. Ravishankar. An ar-
chitecture for inter-domain troubleshooting (extended
version). Technical Report CSE-TR-344-97, Univer-
sity of Michigan, July 1997.

[4]
(5}
(6]
[7]

9]

(10]

[11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

19]
(20]

[21]

[22] ns software.

(23]

