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Abstract

Machine Learning technologies are increasingly becoming an im-
portant tool in building autonomous systems. Learning-based tech-
niques have been useful but typically need a large amount of training
data, which is an expensive and time consuming process. Often col-
lecting such data is non-trivial and introduces safety concerns. Conse-
quently, it is becoming increasingly important to be able to accurately
simulate the physical environment that autonomous vehicles/robots
would operate in. We present a new, easy-to-use simulator that aims
to enable designers and developers of a robotic system to seamlessly
generate lots of training data. The biggest advantage of this simulator
is that it uses recent advances in computation and graphics to simu-
late the physics and perception such that the environment realistically
reflects the actual world. Such realism can enable efficient training
and testing of machine learned models by generating vast quantity of
ground truth data. One of the key aspects of the fast physics engine is
that it enables high frequency simulations with support for hardware-
in-the-loop (HIL) as well as software-in-the-loop (SIL) with widely
supported protocols (e.g. MavLink). Our cross-platform (Linux and
Windows), open-source architecture focuses on being easily extensible
to accommodate diverse new types of autonomous vehicles, hardware
platforms and software protocols. We use quadrotors as our first au-
tonomous vehicle showcase.
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Figure 1: A snapshot from Aerial Informatics and Robotics Platform shows
an urban environment in which a UAV is flying. The depth image stream,
the materials property view stream and the front camera image stream are
shown in real time in the inset.

1 Introduction

The field of robotics is going through a transformation and in recent times
methods based on machine learning (ML) and artificial intelligence (AI) have
been critical in making rapid progress. For instance, data-driven technologies
are some of the key components in autonomous vehicles [1, 2, 3, 4], sociable
robots [5, 6] etc. More recently, paradigms such as reinforcement learning
[7], learning-by-demonstration [8, 9] and transfer learning [10] are proving a
natural means to train various robotic systems. One of the key challenges
with these techniques is the high sample complexity - the amount of train-
ing data needed to learn useful behaviors is prohibitively high. Moreover,
this issue is further exacerbated in the context of recent revolution in deep
learning, which often require a very large amount of training data.

Such limitations have significant adverse consequences on robotic systems.
One direct consequence is the time a robot needs to learn useful and safe
behaviors. However, the bigger issue is that the robot is often non-operational
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during the training phase. For example, an autonomous car that is still
undergoing training for collision-avoidance, cannot be operated safely. While
paradigms such as reinforcement learning promise to alleviate some of these
problems by immersing the robot in perpetual learning, it is a challenge to
guarantee the safety of actions taken during the training phase.

Simulation remains an integral tool in robotics [11, 12, 13] and promises to
provide a valuable means for generating lots of data. One of the key benefits
of simulation is the cost and time savings - we can not only create various
scenarios, but enact actions at a rapid rate (for example, hundreds of seconds
of real-world can be simulated in one second). Secondly, it enables carrying
out and studying complex missions that might be time consuming and risky
in real-world. Finally, bugs and mistakes in simulation cost virtually nothing
- we can crash a vehicle multiple times and thereby get a better understanding
of implemented methods under various conditions.

However, simulating the real-world is a big challenge. In order to seam-
lessly operate in the real-world the robot needs to transfer the learning it
does in simulation. Currently, this is a non-trivial task as the difference
between simulation and real-world is significant. Simulating the physics of
the environment with enough detail is one of the most difficult components
[11]. Physics has a profound impact on a host of phenomena including per-
ception, sensing and the dynamics of the system, ground, atmosphere. For
example, for robots that aim to use computer vision, it is fairly critical to
model the effects of lighting and correctly render reflections, time-of-day and
weather-based effects [14]. Similarly, it is critical to develop accurate models
of the robotic system dynamics so that simulated behavior closely mimics
the real-world.

Aerial Informatics and Robotics Platform is an open-source platform
whose aim is to enable such simulation to real-world transfer via rich physics-
based models for creating realistic dynamic models as well as rendering the
scene. This project is motivated and inspired by several previous simulators
(see related work), and one of the key goals is to build a community to push
the state-of-the-art.

The platform enables hi-fidelity simulation of a host of physical phenom-
ena such as gravity, magnetism, atmospheric conditions and provide sensor
models that attempt to mimic real-life. In addition, this platform exploits
recent advances in graphics to build photo-realistic environments, which in
turn show promise in training perception modules [15, 16]. One of the key
advantages of this framework is that it provides a unified way to do closed-
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loop control and planning across a variety of real-world robots. The modular
design of the architecture enables definition of a wide variety of vehicles. Cur-
rently, the platform contains implementation of aerial robots - more specifi-
cally the quadrotor platform.

2 Related Work

Simulators continue to play critical roles in advancing algorithms and ideas
in robotics. While a complete review of all the past attempts at simulation is
beyond the scope of this paper, we mention a few notable recent works that
are closest to our setting.

Gazebo [17] has been one the most popular simulation platforms. It has a
wide range of capabilities including a physics engine, a host of sensor models
and ability to create 3D virtual worlds. Gazebo goes beyond aerial robots and
can be used to build various robots that include manipulator arms, ground
vehicles etc. While Gazebo is fairly feature rich it has limitations in terms
of photorealism and a legacy physics engine.

Other notable effort includes Hector [18] that combines the dynamic sim-
ulation capability of Gazebo with Robotic Operating System [19]. The un-
derlying philosophy is similar to ours, where robotic primitives available via
ROS are enabled in the simulation environment provided by Gazebo. Hector
only focuses on quadrotor UAVs and has detailed dynamical models. It also
has the same limitations in achieving simulation reality as that of Gazebo.
Similarly, RotorS [20] provides a modular framework to design Micro Aerial
Vehicles, and build algorithms for control and state estimation that can be
deployed in the field. RotorS also uses Gazebo as a simulation platform, con-
sequently limiting its reach mostly to low level control loops. Finally, there
are many open-source efforts, such as jMavSim [21] that provide hardware-
in-the-loop simulation albeit with simple and lightweight multi-rotor models.

3 Architecture

Simulating the real-world is a non-trivial task. Not only are there multiple
phenomena that need to be modeled, their complex interactions also needs
to simulated realistically. Our design philosophy is depicted in figure 2,
where we show the different components and their interactions. In partic-
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Figure 2: The conceptual architecture of the system that depicts all the
components and their interactions. The Aerial Informatics and Robotics
Platform allows us to seamlessly transfer between a real quadrotor and the
simulated one via the modular design.

ular, the core of the architecture constitutes the simulation environment.
At the highest level the simulator contains model of the vehicle, the environ-
ment and a physics engine to compute the resulting motions. In addition, our
framework also allows support for recording sensor observations that mimic
real-world behaviors (such as sensor drift, position errors). Finally, one of
the big components is photo-realistic rendering via the Unreal engine [22]
that enables computer vision analysis that is transferable to the real-world.
The framework also enables hardware-in-the-loop (HIL) simulation, where a
flight controller such as Pixhawk [23], directly interacts with the simulation
environment. Moreover, this flight controller can be directly connected to an
RC controller, or communicate with a Decision Making Engine which con-
sists of mapping, localization and planning modules. At the time of writing
our current implementation contains both an asynchronous command-line
interface as well as easy-to-use APIs to popular autopilots like PixHawk [23]
and DJI A3 [24] as well as reactive obstacle avoidance modules. Finally, our
framework also enables seamless interface with a physical robot by simple
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switch of the communication channel. Below we provide more details on the
components of the simulator. Please see the technical documentation for
complete definitions.

3.1 Vehicle

The definition of a vehicle primarily entails the information about its total
mass, the shape and a set of points where a control input can be applied.
The vehicle definition also contains how each of the control inputs maps into
a resulting force and a torque at each of the vertices.

Formally, a vehicle of mass m is defined as a collection of K vertices
{x1, ..,xk}, each of which experience a control input {u1, .., u2}. Here xi
denotes the position of the vertex with respect to the center of mass, and
ui ∈ [0, 1] the corresponding control command. The shape information entails
the 3×3 moment of inertia matrix I and the 3-dimensional vector A describes
the cross-section area [Ax, Ay, Az]

T . The final ingredients are the equations
that map the control inputs ui to the force (Fi = f(ui)) and the torque
(τi = g(ui)) experienced at that vertex i.

Figure 3 shows how a quadrotor can be depicted as a collection of four
vertices. The control input ui is a mapping to the angular speed of each of
the propellers located at the four vertices. We can use standard methods
to compute moment of inertia and the cross-section areas. Furthermore, the
local forces and the torque on the four vertices can be depicted using the
following equations:

Fi = CTσω
2
maxD

4ui and τi =
1

2π
Cpowσω

2
maxD

5ui.

Here CT and Cpow are the thrust and the power coefficients respectively and
are based on the physical characteristics of the propeller, σ is the air den-
sity, D is the propeller’s diameter and ωmax is the max angular velocity in
revolutions per minute. Also note that the platform also allows for move-
ments of these vertices. Such a capability to move the points allows us to
model changes in thrust direction, such as in a Vertical Take-Off and Land-
ing (VTOL) vehicle and recent quadrotors that change their configuration in
flight.
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Figure 3: A quadrotor as a vehicle in the framework. The four blue vertices
experience the controls u1, ..u4, which in trun results in the forces F1, .., F4

and the torques τ1, .., τ4.

3.2 Environment

A vehicle resides and interacts with its environment. There are various phys-
ical phenomena such as gravity, air-density, Earth’s magnetic field and effects
of the air mass and surfaces modeled in the system. The goal here is to pro-
vide simulation of these natural phenomena as accurately as possible without
using a lot of computation resources. We describe these individual compo-
nents below.

3.2.1 Gravity

In order to model the effects of gravity accurately, we model the variation of
the gravitational acceleration g with altitude. While the variation due to the
altitude might be considered negligible in comparison to the radius of the
earth, it is important to consider its effect when considering flights when the
ground plain itself is at an elevation (e.g. in mountains) or for high altitude
flights.

Formally, it is easy to show that the resulting gravitational acceleration
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g at height h is related to gconst the constant gravitational acceleration on
surface of the earth according to:

g = gconst ·
R2
e

(Re + h)2
≈ gconst · (1− 2

h

Re

).

Here, Re is the radius of the earth and the first equality arises by simple
algebraic manipulation of the Newton’s law of gravity. The approximation
allows us to circumvent the expensive square operation and is a consequence
of applying binomial theorem and neglecting the higher powers.

3.2.2 Magnetic Field

Modeling Earth’s magnetic field is a very important but complex task. Mag-
netometer is one of the key sensors in most of the autonomous vehicles but
given the complexities involved it is not surprising that none of the main-
stream simulators attempt to accurately model this effect. One of the best
publicly available magnetic field computation code is the World Magnetic
Model (WMM) model [25] produced by National Oceanic and Atmospheric
Administration (NOAA). Unfortunately, this model requires expensive com-
putational resources as well as large memory to load big lookup tables. Con-
sequently, it is non-trivial to use the WMM model in high frequency sim-
ulation (as well as lightweight autonomous vehicles). One of the core con-
tributions of this simulator is an efficient component that models Earth’s
magnetic field accurately.

We start with a tilted dipole model of Earth where we assume Earth as
perfect dipole sphere and ignore all but the first order terms of the magnetic
field. We can get by with such an approximation because instead of an
absolute value, we are interested only in the variation of the magnetic field
as we move in space.

Given a geographic latitude θ, longitude φ and altitude h (from surface
of the earth), we first compute the magnetic co-latitude θm using:

cos θm = cos θ cos θ0 + sin θ sin θ0 cos(φ− φ0).

Where θ0 and φ0 denote the latitude and longitude of the true magnetic
north pole. Then, the total magnetic intensity |B| is computed as:

|B| = B0(
Re

Re + h
)3
√

1 + 3 cos2 θm
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Here B0 is the mean value of the magnetic field at the magnetic equator on
the Earth’s surface, θm is the magnetic co-latitude and Re is the mean radius
of the Earth. Next, we determine the inclination α and declination β angles
via the following relationship:

tanα = 2 cot θm and sin β =

{
sin(φ− φ0) cos θ0

cos θm
, if cos θm > sin θ0 sin θ

cos(φ− φ0) cos θ0

cos θm
, otherwise.

Finally, we can compute the horizontal (H), the vertical (Z), the latitudnal
(X) and the longitudnal (Y ) components of the magnetic field vector as
follows:

H = |B| cosα Z = |B| sinα
X = H cos β Y = H sin β.

3.2.3 Air Pressure and Density

Both air pressure and density have a profound effect on the behavior of the
vehicle both due to their effect on the amount of thrust, lift and drag, a
moving surface experiences. Especially, it important to model the changes
in the air pressure and density as the altitude changes.

In our implementation we use the 1976 U.S. Standard Atmosphere model
[26] for altitude below 51 kilometers, which switches to the model proposed
in [27] beyond that. Air density at pressure P and temperature T is then
calculated as σ = P

R·T , where R is the specific gas constant.

3.3 Physics Engine

The goal of the physics engine is to consider the vehicle and the environment
it operates in and determine the resulting motion due to the forces and
torques that come into play as control is applied. While there are many off-
the-shelf physics engines that could have been used, the platform implements
its own module to simulate physics. This was done primarily to address
computational efficiency.

For real-time robotics applications it is important that the physics engine
operates at a very high frequency - our empirical assessment showed that
we needed to run such an engine at approximately 1000 Hz. Most of the
existing engines do not operate at such high frequency. One of the primary
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reasons is that in these engines collision checking procedure ends up taking a
lot of compute. We alleviate this problem by delegating the task of collision
checking to the visual rendering engine (see section 3.5), thereby focusing
just on the core aspects of the physics computation.

3.3.1 Linear and Angular Drag

Besides considering the forces Fi and torques τi as described earlier in section
3.1, the physics engine also computes the parasitic drag and torque resulting
due to the movement of the vehicle in the air. Given, the vehicle cross-section
areas (in vehicle description). The linear parasitic drag can be computed as:

Fd =
1

2
σv2ClinA.

Here Clin is the linear air drag coefficient. Similarly, we compute torque τd
due to this drag. While computing drag requires detailed description of the
vehicle body, in the current implementation we perform torque computations
for box-sized objects.

The physics engine, thus, considers all the forces Fi, Fd and all the torques
τi and τd in order to determine the resulting motion for the next time tick.
This high-frequency computation allows us to compute realistic dynamic tra-
jectories even for a highly non-linear system.

3.4 Sensors

One of the main goals of this work is to enable machine learning for real-world
systems by collecting training data. Thus, it is imperative to also model the
sensors collecting the data as realistically as possible. Because the simulator
is aware of the ground truths by definition, the sensors can mimic how the
robot perceives the environment. Below we describe how the sensors were
implemented in order to realistically reflect their individual idiosyncrasies.

3.4.1 Barometer

Most of the current simulators have very simple models for the barometer.
Specifically, a majority of the models simply just report Gaussian noise added
to the ground truth. There are at least two aspects of the real barometers
that need to be modeled. First, in nature the air pressure varies with time,
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which introduces a bias in the barometric reading. Secondly, this bias also
drifts, consequently the barometer output slowly changes with time.

We model this drifting bias via a Gaussian Markov process [28]. Formally,
if we denote the current bias factor as bk then the drift is modeled as:

bk+1 = w · bk + (1− w) · η,where: w = e
−dt
t and η ∼ N(0, s2).

Here t, is the time constant for the process and set to 1 hour in our model.
η is a zero mean Gaussian noise with standard deviation s = 1.8. This
choice is reasonable as at the sea level the mean standard deviation is widely
accepted to be 1.8% [29].This drifting bias is incorporated in the barometer
by first converting the true altitude h to the corresponding pressure reading
p. The biased incorporated pressure reading is computed as pout = p(1+bk),

which in turn is transformed back to the altitude hout and reported as the
barometer’s reading.

3.4.2 Gyroscope and Accelerometer

Gyroscope and accelerometers constitute the core of the inertial measurement
unit (IMU). Given the central role of IMU in design of autonomous system,
we payed a lot of attention to simulate this aspect realistically [30]. Allan
Variance (or Deviation) Plots are a common way to describe the IMU noise
and we use such plots to model the sensor behavior.

From the Allan Variance plots we get information about the angular ran-
dom walk (ARW) denoted as ra, the stability bias b0 and the time constant ta.
Given the true angular velocity ω, we compute the output angular velocity
ωout recorded by the sensor as:

ωout = ω + ηa + bt, where ηa ∼ N(0, ra) and

bt = bt−1 + ηb, where ηb ∼ N(0, b0

√
dt

ta
).

Similarly, from the plots we also get information about the velocity random
walk (VRW) and the associated stability bias and the time constant. A
transformation analogous to the one mentioned above is used to compute
the output velocity vout from the ground truth. The current implementation
uses the data-sheet from InvenSense MPU-3300 unit. Alternative IMU’s can
be supported by replacing the relevant constants in the implementation.

11



3.4.3 Magnetometer

Given the detailed simulation of magnetic field as described in section 3.2.2,
it is straightforward to simulate the magnetometer. Given the geographic
coordinates we use the above mentioned dipole model to get the components
of the magnetic field. Sensor dependent Gaussian noise and a fixed bias
are added to these readings and the output is produced in relation to the
body frame of the vehicle. In our implementation we use the data sheet for
STM Microelectronics LSM303D magnetometer. The simulation framework
enables definition of alternate or newer devices as well.

3.4.4 Global Positioning System (GPS)

The GPS model in the simulator is a straightforward implementation with
essential noise components and other sources of errors. One of the key prob-
lems with GPS sensors is latency. We implement the typical latency of 200
ms (i.e. position currently indicated by GPS was only true 200 ms ago). Ad-
ditionally, the GPS sensor has much slower update rate at typically 20-50 ms,
when compared to the other sensors. We implement these critical aspects
in simulation as often GPS is used to correct drifts in IMU, consequently
inaccuracies in GPS model can cascade down to other aspects.

We also simulate position error estimates as computed by the GPS sensor
itself. Specifically, our simulation of the GPS module outputs the standard
deviation of horizontal and vertical position error estimated by the sensor
itself. The main characteristic of these two outputs is that they should decay
with time as the GPS fix gets better. We simulate this delay using a simple
first order low pass filter. Finally, most GPS sensors cannot reliably measure
vertical velocities, consequently we limit the simulation to the velocities in
the horizontal plane.

3.5 Visual Rendering

Since photo-realistic rendering was a key requirement for Aerial Informatics
and Robotics Platform we chose the popular, recently open-sourced Unreal
Engine 4 (UE4) [22] as the rendering pipeline. UE4 brings several key features
which made it an attractive choice:

• Photo-realistic rendering: UE4 brings some of the most cutting-
edge graphics advances to the table including real-time global illumi-
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Figure 4: The figure above shows various images from the simulator including
the UAV model, urban and forest scenes as imaged by the front-facing camera
of the UAV.

nation. Figure 4 shows a few screen-shots from Aerial Informatics and
Robotics Platform which highlight the near to real-world quality of the
rendering.

• Open-source and cross-platform: UE4 is completely open-source,
free to use for simulation, and works seamlessly on Linux, Windows,
iOS, Android and OS X. It is also very well-documented and comes
with a rich set of developer tools thus making the development of Aerial
Informatics and Robotics Platform on top much easier.

• Large environment marketplace: The large marketplace [31] where
one can buy pre-made elaborate environments, make it easy to collect
data from a variety of environments.

3.5.1 Monocular and Stereo Camera Simulation

In Aerial Informatics and Robotics Platform we have added functionality
to add virtual monocular and stereo cameras to any vehicle and receive the
RGB and depth image streams in the framework of choice (e.g. ROS). See
Figure 1 for an example stereo image pair and corresponding depth image.
This functionality is crucial for collecting large amounts of perception data
in realistic environments.

13



4 Conclusion

The goal of the Aerial Informatics and Robotics Platform is to enable rapid
training and development of data-driven robotic systems. In particular, the
platform enables hi-fidelity simulation which in turn can be used to collect
training data for building machine learning models. The core components
include a fast physics engine with detailed models of physical phenomenon,
and a photo-realistic perception engine that enables training and testing of
computer vision modules. By leveraging such a simulator, we hope to effec-
tively utilize methods such as reinforcement learning and imitation learning
and enable simulator to real-world transfer of machine learned technologies.
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