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Figure 1: Anisotropic meshes generated by our method. Left: 2D meshing. The anisotropic metric is defined as the Hessian of an analytic
function evincing a large range of anisotropy ratios (λ ∈ [1.9, 394.4]). Zoom in on the image to see meshing details. Middle: 3D surface
meshing of the Happy Buddha from curvature tensors estimated from a high-resolution reference mesh (115474 vertices). Our relaxation
produces a high quality result (63284 vertices) starting with an initial low-resolution mesh (5000 vertices). Right: volumetric meshing in a 3D
cube. Anisotropy changes substantially (λ ∈ [1, 40]) and rapidly over the domain. The lower image shows a cross-section.

Abstract

We present a novel method to generate high-quality simplicial
meshes with specified anisotropy. Given a surface or volumetric
domain equipped with a Riemannian metric that encodes the desired
anisotropy, we transform the problem to one of functional approx-
imation. We construct a convex function over each mesh simplex
whose Hessian locally matches the Riemannian metric, and itera-
tively adapt vertex positions and mesh connectivity to minimize the
difference between the target convex functions and their piecewise-
linear interpolation over the mesh. Our method generalizes optimal
Delaunay triangulation and leads to a simple and efficient algorithm.
We demonstrate its quality and speed compared to state-of-the-art
methods on a variety of domains and metrics.
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1 Introduction

The term “anisotropy” characterizes the spatially-varying sizes, ori-
entations and aspect ratios of mesh elements. Controlling anisotropy
when generating meshes is essential in a wide variety of applications
including geometric modeling, physical simulation, field visualiza-
tion, and mechanical engineering.

Many anisotropic meshing techniques have been proposed in the
last two decades. Extending the circumsphere property generalizes
Delaunay triangulation to handle anisotropic meshing [Thompson
et al. 1998; Frey and George 2008]. Particle-based approaches [Shi-
mada et al. 2000; Zhong et al. 2013] apply repulsive forces that
conform to the desired anisotropic distance between vertices. The
Voronoi diagram can also be generalized in terms of anisotropic
geodesic distance, yielding the anisotropic Voronoi diagram (AVD).
Refining [Labelle and Shewchuk 2003] or optimizing [Du and Wang
2005] the AVD and taking its dual yields yet another strategy.

These methods directly sample or adjust vertices so that, under
the inverse transformation induced by the Riemannian metric, the
mesh has nearly unit-length edges and equilateral simplices. They
have two main limitations. First, they are expensive. It is especially
costly to construct and refine the AVD, accumulate forces from many
neighboring particles, or evaluate Riemannian geodesic distance in
complex domains. Second, their output leaves room for improve-
ment in reproducing the targeted anisotropy. A few methods tackle
this problem by bounding specific quality metrics like a radius-edge
or sliver ratio [Labelle and Shewchuk 2003; Boissonnat et al. 2008b;
Boissonnat et al. 2014], but only work for smooth anisotropic fields
in domains without sharp boundary features. Despite these guar-
antees, overall mesh quality remains insufficient, both visually and
in terms of simple objective measures of its match to the specified
anisotropy (see comparisons in Section 4).

http://doi.acm.org/10.1145/2661229.2661235
http://portal.acm.org/ft_gateway.cfm?id=2661235&type=pdf


A different approach is to numerically solve a PDE so that the
solution’s Hessian matches the desired anisotropy. An optimal
anisotropic mesh can be obtained by minimizing the difference
between the exact solution and its discrete interpolation over the
mesh [Chen et al. 2007]. In fact, the optimal result specializes
to a regular triangulation when its anisotropy is specified as the
Hessian of a global convex function and Lp difference is mini-
mized [Chen and Xu 2004]. These ideas have been applied to 2D/3D
isotropic meshing in which the regular triangulation further degener-
ates to a Delaunay triangulation [Alliez et al. 2005; Chen and Holst
2011]. However, such a convex function does not in general exist
for anisotropic metrics [Boissonnat et al. 2008a].

We extend the PDE-based approach to introduce a new method for
anisotropic simplicial meshing of surfaces and volumes. The key
idea is to construct convex functions that locally match the specified
Riemannian metric, defined on each simplex. We then relax a mesh
to minimize the integrated difference between each function and its
linearly-interpolated discretization, summed over all simplices. Our
contributions are summarized as follows.

• We propose locally convex triangulation (LCT), a new general-
ization of optimal Delaunay triangulation to anisotropic metrics.

• We present a simple algorithm that iteratively optimizes and
refines the mesh to satisfy the anisotropy target and bound geo-
metric error. Our method works for highly-varying anisotropy
and sharp boundary features, improving both the output quality
and computational efficiency of anisotropic meshing.

2 Related Work

Anisotropic meshing defines a Riemannian tensor fieldM over a
given domain Ω ⊂ Rd. The anisotropy associated with a point p ∈
Ω is represented as a d×d positive-definite matrix M(p), called the
augmented metric. Its eigen-decomposition Q Λ QT characterizes
the desired stretch directions and magnitudes of mesh elements, in
terms of a rotation matrix Q and diagonal matrix Λ. The anisotropy
ratio is defined as λ ,

√
maxλi/minλi where λi are the eigen-

values of M (diagonal elements of Λ). The length of the segment
between two points p,q ∈ Ω with respect to the augmented met-
ric is defined as

∫ 1

0

√
(p− q)T M (tp + (1− t)q) (p− q) dt

and approximated by
√

(p− q)T (Mp + Mq)/2 (p− q). An
anisotropic simplex can be transformed to a regular simplex in
Euclidean space via Λ−1/2 QT , called the inverse transformation.

Delaunay-based methods Isotropic meshes can be generated by
repeatedly inserting Steiner points in poor-quality elements and re-
computing the Delaunay triangulation. This method can be extended
to anisotropic meshing by modifying the definition of Steiner points
according to the anisotropic Delaunay kernel [Frey and George 2008;
Dobrzynski and Frey 2008]. Other methods refine the triangulation
via local operations based on mesh quality [Hecht 1998; Jiao et al.
2010]. Boissonnat et al. propose a variant called the locally uniform
anisotropic mesh, developing a vertex insertion algorithm that guar-
antees certain measures of mesh quality [2008b; 2011; 2014] when
the tensor field and domain boundary are both smooth.

Anisotropic Voronoi methods A set of points {pi ∈ Rd}ni=1

partitions Euclidean space Rd into a set of disjoint polyhedral cells
{Ωi}ni=1 where Ωi = {x ∈ Rd | D(x,pi) ≤ D(x,pj) ∀ j 6= i}
andD is the distance function. IfD(x,y) = ‖x−y‖2, the partition
reverts to an ordinary Voronoi diagram. When it instead measures
Riemannian distance on (Ω,M), denoted DM, the partition be-
comes an anisotropic Voronoi diagram (AVD) whose dual, called
the anisotropic Delaunay triangulation (ADT), is a simplicial mesh
under certain conditions. By refining an initial AVD through ver-
tex insertion [Labelle and Shewchuk 2003; Cheng et al. 2006], or

vertex optimization via an anisotropic centroidal Voronoi tessel-
lation (ACVT) energy function,

∑
i

∫
Ωi
‖DM(x,pi)‖2 dx or its

variants [Du and Wang 2005; Valette et al. 2008; Lévy and Liu 2010;
Lévy and Bonneel 2012], the ADT generated attempts to match the
desired anisotropy. However, refinement only works in 2D, while
ACVT methods are impractically expensive as they construct the
AVD many times. The ACVT dual is also not guaranteed to be
manifold [Canas and Gortler 2011].

Particle-based methods Repositioning points by repulsive or
spring forces [Shimada et al. 2000; Persson and Strang 2004] is
a popular technique in mesh generation. Force can be related to a
Riemannian metric by modeling energy between two edge points pi

and pj , via e.g. exp
(
−D

2
M(pi,pj)

4σ2

)
as in [Zhong et al. 2013]. Min-

imizing this energy sum over edges and projecting points back onto
the domain redistributes the points until forces reach equilibrium.
A simplicial mesh can then be generated by anisotropic Delaunay
triangulation [Frey and George 2008] or by extraction from the
AVD. The main advantage of particle-based methods is their simple,
meshless flexibility. However, the choice of kernel width σ and
other parameters greatly affects output quality especially when the
anisotropy varies widely. As with anisotropic Voronoi methods,
postprocessing is necessary to obtain a manifold ADT output.

Functional methods Anisotropic mesh quality can be measured
by the error between a PDE solution u and its piecewise linear
nodal interpolation on the mesh û [Zienkiewicz et al. 2005]. Chen
et al. propose optimal Delaunay triangulation (ODT) minimizing
the error function ‖u − û‖Lp(Ω) [2004; 2007]. ODT has been
successfully applied to isotropic simplicial meshing [Alliez et al.
2005; Tournois et al. 2009b; Chen and Holst 2011] where p = 1
and u(x) = x2. When the anisotropy is the Hessian of a convex
function u, ODT naturally extends to anisotropic meshing and the
triangulation becomes regular (also called the weighted-Delaunay
triangulation). This property has been exploited in other applications
including self-supporting surface design [Liu et al. 2013], electric
impedance tomography [Desbrun et al. 2013] and other geometric
processing applications [Mullen et al. 2011; Goes et al. 2014]. How-
ever, a Riemannian metric is not in general the Hessian of any global
function [Boissonnat et al. 2008a; Amari and Armstrong 2014].
Chen [2004] proposes a method to apply ODT locally on each one-
ring neighborhood of a vertex but his method fails as discussed in
Section 4.1. Our approach overcomes these problems.

3 Locally Convex Triangulation

We review optimal Delaunay triangulation in Section 3.1, then in-
troduce our locally convex triangulation (LCT) energy and study its
relationship with anisotropic mesh quality in 3.2. We develop an
efficient algorithm for minimizing LCT energy in 3.3, and combine
it with other criteria in 3.4.

3.1 Optimal Delaunay triangulation

Chen et al. proposed optimal Delaunay triangulation (ODT) which
considers anisotropic meshing as a functional approximation prob-
lem [2004; 2007]. Denote a simplicial triangulation as T =⋃N
k=1 τk where τk is the k-th simplex in T . Given a function

u : Rd → R defined over a domain Ω ∈ Rd, d ≥ 1, ODT finds
a triangulation T on Ω with a given number of vertices that mini-
mizes Lp error between u and its piecewise linear interpolation over
vertices of T , û. More precisely, ODT error is defined as

EODT,u,p , ‖û− u‖Lp =

(∑
τ∈T

∫
τ

|û(x)− u(x)|p dx

)1/p

.



When u is a convex function, EODT,u,1 measures the volume differ-
ence between u and û, and its minimizer û yields a tight and strictly
upper envelope.

Denote the Hessian of u as ∂2u, with eigen-decomposition ∂2u =
QΛQT . The function u induces the Riemannian metric M =

(detM)
− 1

2p+dM in Ω where, to ensure positive-definiteness, M is
computed as the majorant of ∂2u:

M , Q |Λ|QT + δI (1)

for a small value δ ≥ 0.

MinimizingEODT,‖x‖2,1 leads to an isotropic mesh T which is also
Delaunay. The minimization executes two steps iteratively [Alliez
et al. 2005]. First, it updates mesh vertices via

v?i :=
1

|Ωi|
∑
τ∈Ωi

|τ | cτ , (2)

where Ωi represents the set of simplices incident on vertex vi, | · |
is the area/volume of a simplex or set of simplices, and cτ is the
circumcenter of τ . Second, it rebuilds mesh connectivity via con-
strained Delaunay triangulation.

For a general convex function u, one can obtain the anisotropic
mesh by optimizing EODT,u,1 as shown in [Chen and Xu 2004;
Liu et al. 2013; Desbrun et al. 2013]. The optimal triangulation
leads to a constrained regular triangulation whose power weight
function is given by w(x) = x2 − 2u(x). The optimal position of
vertex vi satisfies vi − ∇w(vi)

2
= 1
|Ωi|

∑
τ∈Ωi

|τ | c?τ where c?τ is
the weighted circumcenter of simplex τ in the regular triangulation.
Eq. 2 represents the degenerate case in which w(x) is a constant.

3.2 LCT energy

ODT provides a simple solution for anisotropic meshing as long as
the metric is the Hessian of a convex function. This is not the case
for general Riemannian tensor fields. We observe that the anisotropy
inside a single simplex can be approximated locally by its own
convex function. An ODT-like energy can then be constructed to
measure the interpolation error locally. This simple idea lets us
generalize ODT to deal with general Riemannian metrics.

Given a domain Ω equipped with a Riemannian tensor fieldM and a
simplicial mesh T discretizing Ω, we define a convex quadratic func-
tion uτ on each simplex τ ∈ T . Its Hessian matches the average Hes-
sian ofM over the simplex; i.e., ∂2uτ = Hτ ,

∫
τ M(x) dx

|τ | . The
simplex metric tensor, Hτ , is computed using Gaussian quadrature.
We use the d-point quadrature rule (simple average over simplex
vertices) in our implementation. For extreme anisotropy, adaptive
numerical integration [Genz and Cools 2003] would likely reduce
potential undersampling. The local convex function is given by

uτ (x) =
1

2
xT Hτ x. (3)

As with ODT, we then measure the error between uτ and its piece-
wise linear interpolation over vertices of the simplex τ , denoted ûτ ,
yielding the error function

Eτ,p ,
∫
τ

|ûτ − uτ |p dx. (4)

SummingEτ,p over all T , we obtain the locally convex triangulation
(LCT) energy function: ELCT,p(T ) ,

(∑
τ∈T Eτ,p

)1/p. We call
T an LCT mesh ifELCT,p(T ) reaches a local minimum. We restrict
p = 1, hereafter dropping the p subscript from the energy.

Assuming uτ and ûτ are convex (i.e., Hτ is positive-definite), ûτ
is a strictly upper envelope for uτ and the absolute values vanish in
Eq. 4. We can substitute uτ from Eq. 3 into Eq. 4 to obtain

Eτ =
|τ |
∑
j<k(pj − pk)T Hτ (pj − pk)

2(d+ 1)(d+ 2)
, (5)

for a simplex τ with vertices p0, . . . ,pd.

Remark: Chen [2004] defined a mesh quality metricQ(T , G, 1) =
1
d+1

∑N
i=1

∫
Ωi

(p − pi)
T G ( p − pi) dp for a simplicial mesh

T with Riemannian metric G, where N is the number of mesh
vertices. Our ELCT is consistent with their definition when
G|τ = Hτ , as can be seen by verifying that 2(d+ 3)ELCT (T ) =
(d+ 1)Q(T , G, 1).

3.3 LCT optimization

Optimizing LCT energy is analogous to ODT. Given an initial mesh,
it takes three steps: (1) compute Hτ on each simplex; (2) update ver-
tices by their locally optimal locations; (3) update mesh connectivity.
These three steps execute iteratively until the change in energy gets
small enough or the maximal iteration number is reached.

Vertex update We use Newton’s method and assume the metric
tensor M changes slowly over the neighborhood of a mesh vertex so
that its spatial derivative can be ignored. Given the (fixed) simplex
metric tensor Hτ , energy and its first and second derivatives with
respect to a vertex pk ∈ τ can be calculated via:

Eτ =
|τ |F (τ)

(d+ 1)(d+ 2)
,

∂pkEτ =
1

(d+ 1)(d+ 2)
(|τ | sk + F (τ) nk) ,

hτ,pk , ∂2
pk Eτ =

1

(d+ 1)(d+ 2)
(|τ |Hτ + sk nTk + nk sTk ),

where F (τ) = 1/2
∑
j<k(pk − pj)

T Hτ (pk − pj), sk =

Hτ
∑
j 6=k(pk − pj), and nk = ∂pk |τ |. Note that hτ,pk is not

always positive-definite. When applying Newton’s method, we drop
the last two terms to obtain hτ,pk ≈ |τ |Hτ/((d+2)(d+1)), ensur-
ing a positive-definite result. This strategy works well in practice. In
particular, if the simplex metric tensors of all its one-ring simplices
Ωp are identical at an interior vertex p, then the last two terms above
vanish in the sum of second derivatives over Ωp.

Our update rule replaces each mesh vertex p with a new location p?

p? := p− αh−1
p gp, (6)

where gp =
∑
τ∈Ωp

∂pEτ and hp =
∑
τ∈Ωp

hτ,p, a d-
dimensional vector and d × d matrix respectively. We update the
mesh one vertex at a time. The order is prioritized by the magnitude
of the position change in the previous update.

The parameter α is the Newton step size. Independently at each
vertex p, we use a backtracking line search strategy to update it. We
initialize α = 1 and iteratively reduce it by 80% if the energy sum
Ep =

∑
τ∈Ωp

Eτ increases or the volume of any simplex τ ∈ Ωp

becomes negative.

Boundary handling Vertices on a boundary surface should be
restricted to remain on it. We therefore constrain the movement
of a surface vertex p to its tangent plane on the reference surface.
Let the basis vectors for an orthonormal system at p be denoted
Up,Vp,Np where Np is the unit surface normal. Inserting the
proper constraints into Eq. 6, we obtain

p? := p− α (Up Vp) (hSp)−1 gSp ,



Figure 2: Anisotropic meshing of a rounded cube. Hτ for each
triangle is rendered as an ellipse.

where gSp = (Up Vp)T gp and hSp = (Up Vp)T hp

(Up Vp) are the surface tangent constrained versions of gp and
hp, a 2D vector and 2×2 matrix respectively. After moving p to
p?, we project p to its nearest point on the surface.

Vertices on boundary or sharp feature curves must be similarly
restricted. If Up is the tangent direction along the curve at p, the
update formula becomes

p? := p− αUp (UT
p hp Up)−1 (UT

p gp)

We assume that feature and boundary curves are identified in the ref-
erence mesh. The end points of these lines are fixed during optimiza-
tion; boundary vertices are only allowed to move along these curves.

Connectivity update In adjacent triangles 4p0p1p2 and
4p0p1p3 , we flip the edge p0p1 if E4p0p1p2

+ E4p0p1p3
>

E4p0p2p3
+ E4p1p2p3

. For tetrahedral meshes, many topological
operators can be chosen to adapt mesh connectivity. We employ
standard 2-3, 3-2, 4-4, and 2-2 flip operations [Klingner and
Shewchuk 2007] to reduce energy. Edge flipping continues until
no more edges can be flipped. The process must terminate because
a positive energy is reduced each time and there are finitely many
triangulations. To prevent degenerate simplices, we reject an edge
flip if the volume of an adjacent simplex becomes smaller than 10−8

of the shape’s bounding box volume or the edge is on a boundary
or sharp feature curve.

Figure 2 shows an anisotropic meshing result of our LCT method.
Triangle sizes and orientations follow the anisotropy, in this case
derived from estimated curvature.

3.4 Alternating adjustment of other criteria

The previous section relaxes the mesh to match a specified anisotropy
but ignores other criteria such as shape approximation error. We
therefore add the following criteria and alternate in each iteration a
pass to enforce them before a pass to reduce LCT energy. Our strat-
egy is similar to [Tournois et al. 2009b], which alternates Delaunay
refinement and ODT optimization. The algorithm terminates when
all criteria are satisfied and LCT energy stops changing. Figure 3
shows an example.

Edge length regularization Under the inverse transformation in-
duced by the augmented metric, we bound the target edge length L
within [L/β, βL]. We split an edge if |eM−1 | > βL, and collapse
it if |eM−1 | < L/β and the collapse preserves mesh topology. We
also reject the collapse if it brings the local geometric error above ε
(see definition in the next paragraph). Enforcing β = 1 is too inflex-
ible [Dobrzynski and Frey 2008]; we set β = 1.5. The order of edge
split or collapse operations is governed by a priority queue of edges
sorted by |eM−1 |. Riemannian edge length |eM−1 | is computed

(a) (b) (c) (d)

Figure 3: Progressive relaxation results combining steps of LCT en-
ergy minimization and refinement based on other geometric criteria
in each iteration, on the Botijo model. (a) initial mesh (700 vertices,
1416 faces); (b) after first iteration (2730 vertices, 5476 faces); (c)
after second iteration (10887 vertices, 21790 faces); (d) final result
(11118 vertices, 22252 faces) after ten iterations.

using the approximate formula given in Section 2, in terms of the
inverse metric tensors at the edge’s two endpoints.

Each regularization pass splits or collapses an edge only once. Sub-
sequent LCT minimization further regularizes their lengths, so that
later passes must handle progressively fewer irregular edges. This
strategy saves computation especially in the common case where
edge lengths are initially larger than targeted.

Geometric error control To control approximation error, we
query the distance from the midpoint of every edge and the cen-
ter of every face to the reference surface. If it exceeds ε, we split
that edge or face by inserting its center point and projecting it back
onto the reference. ε is set to 0.0001 l where l is the diagonal of the
domain’s bounding box.

Sliver elimination Sliver tetrahedrons, which contain small di-
hedral angles after applying the inverse transformation (≤ 15◦ in
our implementation), impair mesh quality. For example, they slow
convergence of numerical PDE solvers computed over the mesh.
Eliminating all slivers is hard both in theory and practice; various
heuristics have been employed in literature. We combine the follow-
ing operations to remove as many slivers as possible.

• Perform 5-4 flips, where the region formed by a sliver and its
four neighboring tetrahedra contains at most 7 vertices; i.e, at
least one neighboring vertex opposite to a sliver face is shared
by multiple neighboring tetrahedra. In this case, we remove the
sliver and re-tetrahedralize its neighborhood into 4 tetrahedra
with a larger minimum dihedral angle.

• Perturb sliver vertices and perform flips to eliminate small dihe-
dral angles. This is a straightforward application of [Tournois
et al. 2009a] to anisotropic meshes.

• Remove boundary slivers (all of whose four vertices lie on the
domain boundary) with nearly zero volume.

• Collapse one edge of a sliver if it increases the minimum dihedral
angle across all neighbors.

Unlike the previous two mesh adjustments, this strategy is performed
once as a post-process and successfully eliminates most slivers in
our experiments.

4 Experiments and Comparisons

We compare our method with state-of-the-art algorithms, includ-
ing a particle-based method (particle) [Zhong et al. 2013], discrete
anisotropic centroidal Voronoi tessellation (ACVT) [Valette et al.
2008], anisotropic Delaunay refinement (ADR) [Boissonnat et al.



2014], bi-dimensional anisotropic mesh generation (BAMG) [Hecht
1998], and anisotropic tetrahedral remeshing/moving mesh genera-
tion (MMG3D) [Dobrzynski and Frey 2008]. The last two methods
match anisotropy by edge split/collapse operations and Laplacian-
like smoothing. We report timings and mesh quality statistics, de-
fined below. Our method typically performs 10 or fewer passes
alternating LCT optimization (Section 3.3) and mesh adjustment for
other criteria (Section 3.4); LCT energy optimization in one pass
typically converges in fewer than 100 iterations. The experiments
were performed on a desktop PC with a 2.83GHz Intel Core Quad
and 8GB of RAM.

Initial mesh For 2D meshing, the initial mesh is obtained via con-
strained triangulation of vertices on the specified polygonal domain
boundary. For 3D surface meshing, a dense mesh is provided for
estimating curvature, called the reference mesh. This reference is
simplified to yield the initial mesh. The simplification level can
be estimated by average anisotropic edge length. (The user can
also directly specify the initial mesh, which should be a reasonable
approximation to the reference to obtain good results.) All meth-
ods including ours utilize queries on the reference mesh, including
evaluating interpolated metric tensors at arbitrary surface points and
projecting arbitrary points onto the reference surface.

For 3D volumetric meshing, an input polyhedron specifies the do-
main boundary. We apply constrained Delaunay triangulation on
it to obtain the initial mesh using TetGen software. The initial
mesh includes only the boundary vertices and is later refined by our
alternating algorithm.

In 2D and 3D surface comparisons, we invoke only LCT optimiza-
tion without the other geometric criteria from Section 3.4. The
desired number of vertices is determined by the available output of
other methods, so the experimental task is remeshing requiring no
refinement. We apply our method to the same initial mesh used by
competing methods if this data is available to us. Otherwise, we
randomly sample the desired number of points over the surface and
generate a restricted Delaunay triangulation [Yan et al. 2009] on
them as our initial mesh. In 3D volumetric meshing, we perform
alternating refinement (as do other methods), since the initial mesh
is very coarse and without interior vertices.

An input mesh much coarser or denser than the target requires
many splits or collapses in edge regularization, leading to many
relaxation iterations. A very coarse initial mesh also risks alias-
ing/undersampling of the desired anisotropy variation.

Riemannian metric The Riemannian metric is either specified
as an analytic function or linearly interpolated from a reference
mesh equipped with a tensor metric per vertex. We use δ = 10−8

in Eq. 1 to ensure M is positive-definite. For 3D surface mesh-
ing, we use the curvature tensor M = Q diag (κ̂1, κ̂2, 0) QT ,
where κ̂i = max(|κi|, 10−4) and κi are the principal curvatures.
Q = [U1,U2,N] where Ui are the principal curvature directions
and N is the surface normal. The threshold 10−4 prevents the
anisotropy from reaching 0 and generating zero-length edges. The
curvature tensor is estimated from the vertices of the reference mesh
using Rusinkiewicz’s method [2004], and smoothed as suggested in
[Boissonnat et al. 2014] to remove noise arising from the discrete
estimation. Our implementation computes and smooths the curva-
ture tensor in the same way regardless of whether the vertex is on a
feature curve. (Note that our approach integrates curvature over each
simplex anyway.) We obtain significantly increased vertex density
around sharp features due to their large anisotropy (Figure 10). The
target anisotropic edge length L is set to 1. Meshes at different
levels of detail can be obtained simply by scaling L and adjusting
the geometric error criterion ε.

Quality metrics Many anisotropic mesh quality metrics can be
devised [Shewchuk 2002]; we use the ones from [Zhong et al.
2013]. For each triangle τ , we transform it back to the isotropic
space, denoted τ−1. We then measure: (1) its angular qual-
ity as the smallest angle of τ−1, denoted θ(τ); (2) its triangle
quality ξ(τ) , 4

√
3 a p/h where a is the area of τ−1, p is its

perimeter, and h its longest edge length; and (3) its area quality
χ(τ) , |τ−1|∑

τk∈T
|τ−1
k
|/N

. ξ(τ) = 1 if τ−1 is a regular triangle.

χ(τ) evaluates the triangle’s area uniformity in the mesh, with an
optimum value of 1. We visualize area quality χ over the mesh, and
report histograms and minimum (worst-case), average, and standard
deviation over all mesh triangles for angular and triangle quality,
denoted θmin, θavg, θdev , and ξmin, ξavg, ξdev . We also report his-
tograms over all simplex angles (not just the minimum), using the
label θ∗. Finally, we report the ratio of valence-6 vertices, r6, to
measure mesh regularity, with an optimum value of 1.

For tetrahedral meshes, we similarly transform each tetrahedron
to the isotropic space and measure its smallest dihedral angle θ(τ),
reporting its minimum and average values over the mesh. We also
measure the radius-edge ratio ρ(τ) , rτ−1/|eτ−1 | where rτ−1 is
the circumradius and |eτ−1 | the shortest edge length of τ−1. Their
optimal values occur when τ−1 is a regular tetrahedron, yielding
ρopt =

√
6

4
≈ 0.61 and θopt = cos−1( 1

3
) ≈ 70.53◦. Higher

ρ(τ) > ρopt and lower θ(τ) < θopt values mean a worse (less
regular) tetrahedron.

4.1 2D meshing

Example I Figure 4 shows an example whose Riemannian metric
is induced by the function u(x, y) = exp((x2 + y2)/10). Since
u(x, y) is convex, we can apply both ODT and LCT minimization.
Figure 4ac and Table 1 shows that their results are comparable, in
terms of both ODT energy and our mesh quality measures.

We also compare Zhong et al. ’s particle-based method [2013]. We
use Zhong’s recommended kernel width σ and choose two particle
search sizes 5σ and 20σ for testing. The particle method’s average
triangle quality is worse than ODT or LCT, with particularly poor
worst-case triangle quality (ξmin). The false-color visualization in
Figure 4de shows its poorer area quality. Note that particle energy
penalizes non-uniformity in Riemannian distance along edges but
ignores behavior within triangles.

Finally, we compare Chen’s local patch method based on ODT mini-
mization [2004]. It first constructs a convex quadratic function at a
vertex p using the average metric Mp in its one-ring neighborhood
Ωp, via u(x) = xT Mp x. It then sequentially updates each vertex
p by optimizing the local ODT energy

∫
Ωp
|u(x)− û(x)| dx. This

method may appear similar to ours in its use of a local quadratic
function. However, it does not consider the vertex update’s effect
on energy at other vertices. The algorithm may not converge or

Method EODT,u,1 Emax ξmin/ξavg/ξdev θmin/θavg/θdev

ODT 13.16 0.02 0.57/0.87/0.07 30.1◦/49.3◦/5.4◦

LCT 13.07 0.01 0.65/0.89/0.06 31.1◦/50.7◦/5.3◦
particle (5σ) 14.35 0.11 0.07/0.86/0.12 4.0◦/49.7◦/7.9◦

particle (20σ) 14.79 0.20 0.04/0.85/0.12 2.1◦/49.6◦/7.8◦

local patch 49.70 1.92 0.47/0.85/0.08 21.1◦/47.4◦/6.5◦

Table 1: Example I – mesh quality comparisons with ODT, Zhong et
al. ’s particle method, and Chen’s local patch method. Emax denotes
the max ODT error over all triangles: maxτ∈T

∫
τ
|û(x)−u(x)| dx;

lower energy is better. A number in boldface emphasizes the best
result observed in the experiment.
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(a) initial mesh (b) ODT (c) LCT

(d) particle (5σ) (e) particle (20σ) (f) local patch

Figure 4: Example I – meshing a 2D domain. We compare different
methods on the convex function u(x, y) = e(x2+y2)/10 over the
domain [−5.5, 5.5]2. Area quality χ is color-coded based on the
color map shown at top. Dark blue is optimal.

(a) target (b) initial (c) final

Figure 5: Anisotropy visualization in example I. (a) Targeted
anisotropy on the square domain, rendered as ellipses. (b) Hτ
on the initial mesh. (c) Hτ after convergence. The resulting mesh
yields anisotropy close to the target.

it converges to a non-optimal anisotropic match. Figure 4f shows
that Chen’s method does not fit the anisotropy well in terms of area
quality, and yields much higher ODT energy than other methods. We
note that Chens method can be improved by optimizing the sum over
all local ODT energies affected by a vertex perturbation; i.e. energies
defined over its entire one-ring neighborhood. This essentially yields
a variant of our LCT method in which the quadratic functions are
determined per-vertex rather than per-simplex. Figure 5 visualizes
the anisotropy of this example on the initial mesh and our final result.

Example II Figure 6 compares our method with BAMG, a pop-
ular program for 2D anisotropic meshing. We choose a square as
the domain and test two different Riemannian metrics from non-
convex functions. BAMG produces low-quality triangles especially
in regions where the anisotropy changes rapidly. We take BAMG’s
output as our initial mesh and apply LCT optimization to obtain
clear improvement in mesh quality (see also Table 2).

Example III Figure 7 shows another comparison with Zhong’s
particle method. On a square domain [−100, 100]2, we specify a
Riemannian metric via the circular anisotropic tensor field: M(x) =
Q(x) diag(λ2(‖x‖), 1)QT (x) where λ ∈ [1, 10]. 20000 points
are sampled within the domain. Our method takes 31 seconds to
converge while Zhong’s takes about 20 minutes as reported in [2013].

(a) BAMG (b) LCT

(c) BAMG (d) LCT

Figure 6: Example II – comparison with BAMG. The Rieman-
nian metric is determined from the non-convex analytic functions
u(x, y) = tanh(10(sin(5y) − 2x)) + x2y + y3 (upper row) and

u(x, y) = e3 cos x
2+y2

5 (lower row) over the domain [−5.5, 5.5]2,
with anisotropy ratios in [1.9, 394.4] and [5.4, 597.8], respectively.
Mesh triangles are colored by area quality, χ.

It is visually clear that our result achieves a better point distribution
and better mesh quality (see also Table 2).

Example IV LCT energy minimization is a kind of mesh smooth-
ing, so it is natural to compare it with other smoothing functions.
We chose three popular ones. The first sums the squared anisotropic
length over all edges: E1 ,

∑
|eM |2. The second sums squared

anisotropic lengths of all simplex edges normalized by the simplex’s

anisotropic area: E2 ,
∑
τ

∑
e∈τ |eM |

2

|τM |
, yielding a measure of the

anisotropic transformation’s distortion that relates to the maximum
eigenvalue of the element stiffness matrix of τM [Shewchuk 2002;
Clark et al. 2012]. The third sums the product of anisotropic lengths
of all simplex edges normalized by the simplex’s anisotropic area:
E3 ,

∑
τ

∏
e∈τ |eM |
|τM |

[Shewchuk 2002]. We substitute E1, E2 or
E3 for LCT energy in the vertex update and selection of edge flips
from Section 3.3, starting from the same initial mesh generated by
our edge length regularization strategy. Figure 8 and Table 2 show
that optimizing E1 or E2 improves mesh quality much less than op-
timizing LCT energy, while optimizing E3 actually degrades quality
of the initial mesh.

#vert λ ξmin/ξavg/ξdev θmin/θavg/θdev r6

Fig. 6a (BAMG) 1289 [1.9,394.4] 0.22/0.83/0.13 10.3◦/46.4◦/8.9◦ 0.60
Fig. 6b (LCT) 1289 [1.9,394.4] 0.42/0.89/0.08 22.8◦/50.4◦/5.8◦ 0.69

Fig. 6c (BAMG) 6251 [5.4,597.8] 0.07/0.87/0.08 3.9◦/49.6◦/6.0◦ 0.60
Fig. 6d (LCT) 6251 [5.4,597.8] 0.45/0.90/0.07 21.1◦/51.3◦/5.2◦ 0.70

Fig. 7 (particle) 20000 [1,10] 0.09/0.90/0.08 6.1◦/52.5◦/5.0◦ 0.78
Fig. 7 (LCT) 20000 [1,10] 0.57/0.94/0.04 31.0◦/54.5◦/3.3◦ 0.90

Fig. 8a (init) 2316 [1,429] 0.32/0.80/0.11 14.5◦/44.4◦/7.3◦ 0.67
Fig. 8b (E1) 2316 [1,429] 0.38/0.86/0.09 23.4◦/48.5◦/6.3◦ 0.40
Fig. 8c (E2) 2316 [1,429] 0.42/0.87/0.08 25.4◦/49.4◦/5.6◦ 0.41
Fig. 8d (E3) 2316 [1,429] 0.15/0.80/0.13 6.4◦/44.4◦/8.7◦ 0.38
Fig. 8e (LCT) 2316 [1,429] 0.60/0.91/0.06 32.5◦/52.6◦/4.6◦ 0.64

Table 2: Quality metrics for examples II, III and IV.
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Figure 7: Example III – comparison between Zhong et al. ’s particle method (b) and our method (c) using a metric with circularly symmetric
anisotropy λ(x) shown in (a). From left to right, we compare point distributions, color-coded area quality χ, and histograms of angle and
triangle quality. Zoomed-in insets of the point distribution and mesh show that our result transitions more smoothly than the particle-based
method to adapt to changes in anisotropy, and generates a more regular mesh. It also yields better distributions of angle θ∗ (clustered more
tightly around 60◦), and triangle quality ξ (clustered more tightly around 1).

(a) initial mesh (b) optimizing E1 (c) optimizing E2

(d) optimizing E3 (e) optimizing LCT

Figure 8: Example IV – comparison to other smoothing functions.
The Riemannian metric is derived from u(x, y) = esin x+cos y with
anisotropy ratio in [1, 429]. Meshes are colored by area quality, χ.

4.2 3D surface meshing

Figure 9 shows some results (Beetle, Rockarm, Hand models) with
anisotropy specified by the surface’s curvature tensor. Our method
takes 64, 17 and 77 seconds respectively for these models and
achieves high quality as shown in Table 3. We also apply our method
to surfaces with sharp features in Figure 10.

Figure 11 compares anisotropic centroidal Voronoi tessellation
(ACVT) [Valette et al. 2008], a particle-based method [Zhong et al.
2013], and our method, on the Cyclide model. ACVT produces
a poor result: 16.8% of triangles have angles less than 30◦. The
particle result is better, but still falls short. For instance, our ratio
of valence-6 vertices represents a significant improvement over the
particle method and ACVT: 0.87 versus 0.78 and 0.51. We obtain
better triangle and angular quality too; see Table 3 for further data.

Figure 12 compares our method with ACVT, the particle-based
method, and anisotropic Delaunay refinement (ADR) [Boissonnat
et al. 2014] on the Fertility model. All methods target anisotropy
from surface curvature. The particle-based method applies a 6D
metric in terms of vertex normals and positions as recommended for
it in [Zhong et al. 2013] while the other methods use standard 3×3
curvature tensors. The particle-based method runs 100 iterations
and is accelerated by parallel computation. The targeted number of

Figure 9: Anisotropic 3D surface meshes (Beetle, Rockarm and
Hand) generated by our method.

Figure 10: Anisotropic 3D surface meshes with sharp features
(Block, Impeller and Fandisk) generated by our method.

output mesh vertices is set to ADR’s output. Our mesh yields better
mesh regularity, and improved faithfulness to the original shape (see
also Hausdorff errors in Table 3). It also better matches the curvature-
based anisotropy, yielding improved angular and triangle quality.

Figures 1-middle and 13 show two results for more complex meshes.

4.3 Tetrahedral meshing

Figures 14 and 15 compare our method with MMG3D. The domain
is the cube [0.1, 1.1]3 (Figure 14) or [1, 11]3 (Figure 15). Mesh
quality of the two results is comparable; see Table 4. We achieve
more optimal angular and radius-edge quality (ρ) than MMG3D, as
can be seen in the histogram and table statistics. Our result’s standard
deviations of quality metrics are also smaller than MMG3D’s. Note
that our tetrahedral meshes are significantly sparser than MMG3D’s
(1870 vertices versus 2365 vertices in Figure 14, 6338 vertices versus
8217 vertices in Figure 15). Figure 16 shows another meshing
comparison with MMG3D on a unit-sphere domain. The same
surface mesh was used as input to both methods. Our result has
fewer silvers and better angular and radius-edge quality.

Our algorithm is slower than MMG3D because of our inefficient



Model ref #vert init #vert #vert λ ξmin/ξavg/ξdev θmin/θavg/θdev %<30◦ DH r6 time (s)

Cyclide (particle) - 8000 8000 [2, 29] 0.09/0.87/- 5.03◦/49.7◦/−◦ 0.04% 4.4e-4 0.78 155.8
Cyclide (ACVT) 414720 8000 8009 [2, 29] 0.002/0.75/0.17 0.07◦/40.8◦/10.8◦ 16.8% 3.6e-3 0.51 177.0
Cyclide (LCT) 25920 8000 8000 [2, 29] 0.60/0.92/0.05 26.9◦/53.1◦/4.2◦ 0.03% 3.4e-4 0.87 17.5

Fertility (ACVT) 223626 12480 12480 [1, 14] 0.00/0.67/0.19 0.12◦/35.6◦/11.7◦ 32.67% 1.1e-3 0.39 37.5
Fertility (ADR) - 12480 12480 [1, 14] 0.002/0.56/- 0.06◦/29.9◦/−◦ 41.79% 5.8e-3 0.46 -
Fertility (particle) - 12480 12301 [1, 14] 0.02/0.70/- 0.86◦/37.6◦/−◦ 26.99% 2.3e-3 0.49 10.0
Fertility (LCT) 13971 12480 12480 [1, 14] 0.54/0.89/0.07 24.9◦/50.8◦/5.1◦ 0.04% 1.1e-3 0.68 66.8

Rockarm 9413 1272 5550 [1, 18] 0.34/0.86/0.08 20.4◦/48.9◦/6.1◦ 0.46% 1.8e-3 0.60 17.6
Fandisk 6475 1927 7950 [1, 15] 0.14/0.87/0.08 8.4◦/48.9◦/5.8◦ 0.18% 9.5e-4 0.60 19.6
Beetle 17908 17908 9817 [1, 15] 0.27/0.87/0.08 13.2◦/48.9◦/6.0◦ 0.66% 9.2e-4 0.52 64.3
Block 8052 3307 11667 [1, 15] 0.51/0.88/0.07 27.2◦/50.1◦/5.4◦ 0.03% 1.1e-3 0.63 38.7
Impeller 10000 10000 11737 [1, 16] 0.39/0.87/0.08 22.1◦/49.6◦/5.8◦ 0.17% 6.5e-4 0.60 110.5
Botijo 14989 700 13890 [1, 16] 0.52/0.89/0.07 23.1◦/50.9◦/5.0◦ 0.04% 1.6e-3 0.66 39.1
Hand 30000 2576 21226 [1, 14] 0.46/0.90/0.06 20.6◦/51.4◦/4.8◦ 0.04% 1.1e-3 0.67 77.1
Buddha 115474 5000 63284 [1, 34] 0.41/0.88/0.07 17.4◦/49.9◦/5.4◦ 0.03% 6.7e-4 0.64 178.5
Lucy 262787 74119 255097 [1, 19] 0.26/0.90/0.06 15.4◦/51.4◦/5.0◦ 0.04% 3.9e-4 0.70 2766.0

Table 3: Statistics and timings for surface meshing. We report the number of vertices in the reference mesh (“ref #vert”), initial mesh (“init
#vert”), and output mesh (“#vert”). λ reports the range of anisotropy ratios. %<30◦ is the fraction of triangles whose minimal angle is smaller
than 30◦. DH reports the maximum Hausdorff distance between the reference and output meshes with respect to the diagonal of the reference’s
bounding box. Reference meshes for the ACVT method were subdivided to provide better approximation accuracy. Data for the particle and
ADR methods is copied from [Zhong et al. 2013].

0 20 40 60 80 100 120 140 160 1800 20 40 60 80 100 120 140 160 1800 20 40 60 80 100 120 140 160 180

θ∗ θ∗ θ∗

(a) ACVT (b) particle (c) LCT

Figure 11: Comparison with ACVT and particle methods on the
Cyclide model.

ACVT ADR

particle LCT

Figure 12: Comparison with ACVT [Valette et al. 2008], particle-
based method [Zhong et al. 2013], and ADR [Boissonnat et al. 2014]
on the Fertility model.

edge flip implementation and sequential vertex update.

We also applied 100 iterations of LCT optimization and a final sliver
elimination pass to MMG3D’s result. Quality metrics for this result
are listed in Table 4 in rows labeled “MMG3D-LCT”. Further LCT
iterations improve both angular and radius-edge quality.

Figure 1-right and 17 show two more volumetric meshing re-
sults. The 3D domains are a cube and a bumpy shape respec-
tively, with anisotropy specified via analytic functions. The targeted
anisotropy in Figure 1-right is M(x) = QT (x) Λ2(x) Q(x), where

Λ(x) = diag
(

(0.025 + (1− e−0.01|‖x‖2−49|))−1, 1, 1
)

and Q’s

three columns are x/‖x‖ and two orthogonal vectors. The domain
is the cube [1, 11]3.

In communication with the authors, we also attempted to compare
anisotropic Delaunay refinement [Boissonnat et al. 2011] on the
example in Figure 1-right. ADR provides a theoretical guarantee
on certain mesh qualities. However, their implementation is still
under development and was unable to generate a result.

5 Conclusion

Locally convex optimal triangulation provides a novel and simple
way to generate high-quality anisotropic simplicial meshes in 2D/3D
surface or 3D volumetric domains. Our method inherits the advan-
tages of optimal Delaunay triangulation but extends that technique
to general Riemannian metrics. It provides good performance and
excellent overall mesh quality superior to previous methods. We
also note a few limitations to address in future work.

Quality bound Compared to [Labelle and Shewchuk 2003; Bois-
sonnat et al. 2008a], we do not provide a theoretical guarantee on
mesh quality. It would be interesting to try alternate steps of [Bois-
sonnat et al. 2008a]’s anisotropic Delaunay refinement and our LCT
optimization to bound worst-case mesh quality while preserving
our method’s average-case quality. Minimizing the maximum error
over all simplices, ELCT,∞, is another potential way to control
worst-case quality.

Geometric and anisotropic incompatibility When the specified
anisotropy is derived from curvature tensors on the underlying 3D
surface domain, geometric error control and LCT energy minimiza-
tion are compatible. In other words, meshing guided by curvature
yields a good geometric approximation. But one can also specify an
anisotropy not related to the domain’s curvature. In this case, regions



Figure 13: Anisotropic meshing of the Lucy model.
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Figure 14: Simple volumetric example with anisotropy variation in a
single direction. The Riemannian metric is M(x) = Λ2(x), where

Λ(x) = diag
(

(0.0025 + 0.2(1− e−|x−0.6|))−1, 5, 5
)

. Middle
images are sections through the tetrahedral meshes. Right images
show histograms of all dihedral angles θ∗ and radius-edge quality ρ.
Our method produces tighter distributions of angles and radius-edge
ratios around their optimal values (70.5◦ for θ∗, 0.61 for ρ).
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Figure 15: Another simple volumetric example with
cylindrical variation of anisotropy. The Rieman-
nian metric is M(x) = QT (x) Λ2(x) Q(x), where

Λ(x) = diag
(

2(0.1 + 2(1− e−0.01|x2+y2−49|))−1, 1, 1
)

and Q’s three columns are (x/
√
x2 + y2, y/

√
x2 + y2, 0)T ,

(−y/
√
x2 + y2, x/

√
x2 + y2, 0)T and (0, 0, 1)T .



Model init #vert #vert #tet λ θmin/θavg/θdev ρmax/ρavg/ρdev #sliverb #slivera time (s)

Fig. 14 (LCT) 948 1870 8144 [1, 80] 24.7◦/51.7◦/7.5◦ 1.46/0.76/0.07 71 0 8.3
Fig. 14 (MMG3D) - 2365 10860 [1, 80] 22.0◦/48.1◦/7.7◦ 1.37/0.83/0.09 - 0 4.9
MMG3D-LCT - 2365 10913 [1, 80] 22.6◦/51.5◦/7.8◦ 1.36/0.77/0.07 23 0 5.1

Fig. 15 (LCT) 2226 6338 31840 [1, 20] 17.7◦/50.6◦/8.5◦ 1.54/0.78/0.08 517 0 72.6
Fig. 15 (MMG3D) - 8217 42067 [1, 20] 16.2◦/46.8◦/8.2◦ 2.59/0.86/0.13 - 0 15.4
MMG3D-LCT - 8217 42435 [1, 20] 18.1◦/50.9◦/8.6◦ 1.71/0.77/0.09 530 0 31.2

Fig. 16 (LCT) 1966 4739 22427 [1, 10] 9.1◦/44.7◦/10.7◦ 5.56/0.89/0.18 1715 72 103.8
Fig. 16 (MMG3D) - 5187 25311 [1, 10] 6.2◦/37.1◦/10.9◦ 6.27/1.21/0.41 - 264 6.5
MMG3D-LCT - 5187 25767 [1, 10] 9.4◦/44.8◦/10.8◦ 3.50/0.88/0.17 1932 65 33.1

Fig. 1-right 2158 6554 32668 [1, 40] 15.3◦/48.9◦/9.2◦ 2.80/0.83/0.13 844 0 104.6
Fig. 17 18183 35096 153959 [1, 13] 15.3◦/51.1◦/8.3◦ 1.41/0.77/0.07 534 0 339.4

Table 4: Statistics and timings for tetrahedral meshing. #sliverb and #slivera report the number of slivers before and after applying our sliver
elimination strategy.
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Figure 16: Sinusoidal anisotropy variation in a ball. The
Riemannian metric is M(x) = QT (x) Λ Q(x), where Λ =
diag(1000, 10, 10) and Q’s three columns are (2 cos(6x), 1, 0)T

and two orthogonal vectors.
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Figure 17: Cylindrical anisotropy variation in a complex bumpy do-
main. The targeted anisotropy uses basis vectors Q as in Figure 15,
but with Λ1(x) = 1.2/(0.5 + 1− e−0.05(x2+y2−2.56)), Λ2(x) =

Λ3(x) = Λ1(x) (1 + 5
√
x2 + y2).

of high geometric error keep getting refined while LCT minimiza-
tion encourages the newly-created vertices to flow toward (different)
regions of high anisotropy. Vertex density can grow unnecessarily
over the whole mesh. Fortunately, this oversampling is prevented by
our loose edge regularization which avoids splitting an edge unless
its inversely transformed length gets bigger than βL. It may also be
helpful to apply Tournois et al.’s locking strategy which deactivates
vertices whose neighborhood has already attained sufficient mesh
quality and geometric fidelity, updating only the remainder [2009b].
A more consistent solution would be to balance both metrics in
the objective by adding LCT energy for the anisotropy match to an
energy accounting for geometric error.

Convex local functions As with Chen et al. ’s approach [Chen
et al. 2007], our method converts a negative-definite Hessian to

a positive-definite one via Eq. 1 (note the absolute value on Λ).
This decreases fidelity when the u function locally determined by
the specified metric is nonconvex. It is possible to use a general
rather than positive-definite H in Eq. 3. Such a generalized LCT
formulation might provide increased fidelity but also complicates
optimization, since the absolute value operator in Eq. 4 no longer
vanishes and Eq. 5 is no longer valid. Another future direction is to
replace quadratic with more general convex functions that better fit
the local tensor field, e.g. a simplicial Bernstein-Bézier spline.

Semi-regular meshes Panozzo et al. [2014] recently proposed
an anisotropic quadrilateral meshing method that warps a frame
field to a cross field (having orthogonal tangent vectors), computes
an isotropic quadrilateral mesh on this deformed mesh, and trans-
forms the result back to the original space. This approach could
potentially be extended to generate anisotropic, semi-regular trian-
gle meshes using a 6-Rosy frame field. Li et al. [2014] propose
another anisotropic meshing method that computes a tensor-guided
quadrilateral mesh and splits quads to triangles. Both methods input
a smooth frame field containing only a few singular points. They
are unable to handle large anisotropy variation, can produce some
poor-quality mesh elements, and can fail in the parametrization step
due to “flipovers”. Our method does not explicitly limit the number
of irregular vertices but still produces fewer than other methods not
based on semi-regular meshing (see higher r6 in Table 3). An inter-
esting extension would be to detect and eliminate irregular vertices
during its edge flipping, splitting and merging steps.
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LÉVY, B., AND BONNEEL, N. 2012. Variational anisotropic surface
meshing with Voronoi parallel linear enumeration. In Int. Meshing
Roundtable, 349–366.
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YAN, D.-M., LÉVY, B., LIU, Y., SUN, F., AND WANG, W. 2009.
Isotropic remeshing with fast and exact computation of restricted
Voronoi diagram. Comput. Graph. FORUM 28, 5, 1445–1454.

ZHONG, Z., GUO, X., WANG, W., LÉVY, B., SUN, F., LIU, Y.,
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