
Modelling and Detecting Changes in User Satisfaction

Julia Kiseleva‡∗, Eric Crestan†, Riccardo Brigo†, Roland Dittel†
‡Computer Science Department, Eindhoven University of Technology, Eindhoven, The Netherlands

†Microsoft Bing, Munich, Germany
‡j.kiseleva@tue.nl †{ericres|rbrigo|Roland.Dittel}@microsoft.com

ABSTRACT
Informational needs behind queries, that people issue to
search engines, are inherently sensitive to external factors
such as breaking news, new models of devices, or seasonal
changes as ‘black Friday’. Mostly these changes happen sud-
denly and it is natural to suppose that they may cause a shift
in user satisfaction with presented old search results and
push users to reformulate their queries. For instance, if users
issued the query ‘CIKM conference’ in 2013 they were satis-
fied with results referring to the page cikm2013.org and this
page gets a majority of clicks. However, the confernce site
has been changed and the same query issued in 2014 should
be linked to the different page cikm2014.fudan.edu.cn. If
the link to the fresh page is not among the retrieved re-
sults then users will reformulate the query to find desired
information.

In this paper, we examine how to detect changes in user
satisfaction if some events affect user information goals but
search results remained the same. We formulate a prob-
lem using concept drift detection techniques. The proposed
method works in an unsupervised manner, we do not rely on
any labelling. We report results of a large scale evaluation
over real user interactions, that are collected by a commer-
cial search engine within six months. The final datasets
consist of more than sixty millions log entries. The results
of our experiments demonstrate that by using our method
we can accurately detect changes in user behavior. The de-
tected drifts can be used to enhance query auto-completion,
user satisfaction metrics, and recency ranking.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - Information Filtering

∗Research was performed while the author was at Microsoft
Bing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’14, November 3–7, 2014, Shanghai, China.
Copyright 2014 ACM 978-1-4503-2598-1/14/11 ...$15.00.
http://dx.doi.org/10.1145/2661829.2661960.

General Terms
Algorithms, Performance, Experimentation

Keywords
Query reformulation, concept drift, information retrieval

1. INTRODUCTION
Millions of users interact with search engines daily to ob-

tain fresh information quickly while minimazing their ef-
fort. Users issue a query Q and a search engine returns
search result page (SERP) that is a ranked list of URLs:
SERP= (url1, . . . , urli, . . . , urln). The order of URLs in
SERP is optimized to fit a history of user interactions with
a pair 〈Q,SERP 〉 [3]. However, events from the outside
world and time can affect user behavior on the Web [24], [25].
To illustrate this drift in the user information goals let us
consider the following examples:

• The last Olympics games occur in 2014, so users are
not interested in the previous 2012 Olympics anymore.
Therefore, if users issue the query ‘Olympics games’ in
2014 they need to find a page of the latest event. If
the desired link is not among the retrieved results then
user satisfaction with the served SERP decreases.

• After Microsoft releases a new ‘Windows phone 8’ users
are not satisfied if pages of previous models are in the
top of SERP .

• After a cartoon ‘Despicable Me 2’ is releazed the au-
dience pays less attention to its previous releaze.

User satisfaction with a pair 〈Q,SERP 〉 can decrease dra-
matically if user information needs change due to some event
or decay/change of interest over time. In this paper, we an-
swer the question ‘How can we detect a drift in user sat-
isfaction with the pair 〈Q,SERP 〉 using users’ interactions
on the SERP?’

When users struggle to find an answer for Q they run a
follow-up query Q′ that is an expansion of Q. Query refor-
mulation is the act of submitting a next query Q′ to modify
a previous SERP for a query Q in the hope of retrieving
better results [13]. Such a query reformulation is a strong
indication of user dissatisfaction [1]. We call this the re-
formulation signal. Our hypothesis is that a decrease in
user satisfaction with 〈Q,SERP 〉 correlates nicely with the
reformulation signal. In other words, the probability of re-
formulating Q will grow dramatically.

Mar May Jul Sep Nov Jan
0

0.2

0.4

0.6

0.8

1

2013

Probability to reformulate ‘flawless’

Figure 1: The histogram of the probability to re-
formulate query ‘flawless’ in 2013 with one month
granularity.

Let us consider the probability of reformulating a query
‘flawless’ during year 2013. A histogram of this probability
is shown in Figure 1. We can clearly see that a drift hap-
pened in December. When users ran this query before Octo-
ber 2013 they most probably were looking for a movie, called
‘flawless’. However, the singer Beyonce released her new
soundtrack also called ‘flawless’ in November 2013. Hence,
this event affected dramatically the meaning of this query.
As a result, if the desired song was missing in SERP a ma-
jority of users reformulated the query by expanding it with
the term ‘Beyonce’.

We propose an unsupervised approach for detecting drifts
in user satisfaction for pairs 〈Q,SERP 〉 by applying a con-
cept drift technique [33] leveraging reformulation signal. Con-
cept drift primarily refers to an online supervised learning
scenario when the relation between the input data and the
target variable changes over time [10]. Furthermore, the
reformulation signal is considered to be less noisy and if
reformulations are fresh and done only by users’ initiative
then we can say that a reformulation signal is not biased by
information coming from the search engine. Moreover, the
proposed method produces:

• A list of drift terms, that users apply to reformulate
queries when a drift happens. This list can be utilised
for time sensitive query auto-completion [29].

• A list of URLs, that users mostly click on after refor-
mulating initial queries. This list can be used for a
recency ranking [7], [18], [19].

The specific contributions of this paper include:

1. A definition of query reformulation signal as an effec-
tive way to detect an alteration in user satisfaction.

2. An analysis and formulation of a drift detection in user
satisfaction.

3. An unsupervised method for detection changes in user
satisfaction.

4. A large scale evaluation over real user queries, showing
a high accuracy of proposed method.

The remainder of this paper is structured as follows. Sec-
tion 2 describes background and related work. A formal de-
scription of the proposed method to detect changes in user
satisfaction is presented in Section 3. Section 4 describes a
research methodology for a large scale exploratory analysis
of real user behavior logs from a commercial search engine.
In Section 5 we describe obtained results. In Section 6 we
discuss potential applications, that can benefit within pro-
posed method, are described. We summarize our findings,
discuss possible extensions of the current work and conclude
in Section 7.

2. BACKGROUND AND RELATED WORK
Our work examines how to model and detect changes in

user satisfaction that can be a useful feature for a dynamic
ranking. Huffman and Hochster [16] observed a strong corre-
lation between the relevance of results and user satisfaction
using navigational and non-navigational queries. Relevance
is a complex concept (for a detailed review see [26], [27]). In
a simplified view relevance Rel can be defined as a score for
a pair of query Q and document D, where D in this case is a
link URL to the web page: Rel=‖〈Q,SERP 〉‖. However, it
is logical to assume that Rel have an altering nature because
user preferences change due to external events and passage
of time. Dong et al. [7] proposed a classifier to detect re-
cency sensitive queries. This classifier gives a score, called
‘buzzines’, to a query Q and Q is considered as a breaking-
news one if its final buzzines score exceeds some threshold.
Moreover, recency ranking is proposed to overcome an issue
with ranking time-sensitive queries. It proposes Rel that
takes a freshness of a document into account. Dong et al. [7]
proposed to incorporate recency features in a ranking model.
The ranking function includes recency features: (timestamp,
linktime, WebBuzz, page topic) and it gives a gain for rank-
ing metrics. The paper [18] suggests a temporal click feature,
called ClickBuzz, that captures a spiking interest in the pair
〈Q,SERP 〉. This method helps to exploit user feedback for
time-sensitive queries. The use of ClickBuzz in the ranking
models leads to an improvement in NDCG5. Our method
can be considered as a supplement to recency ranking, it
detects moments when drifts happen and we need to adjust
our ranking function in order to produce up-to-date results.

User satisfaction has been researched extensively. User
clicks are reasonably accurate on average to evaluate user
satisfaction with pairs 〈Q,SERP 〉 [2], [22], using click-through
information. This user satisfaction scenario is successfully
applied to navigational queries. It is called query-level sat-
isfaction. However, we have to take into account the fact
that user clicks are biased:

1. to the page position in SERP [6],[21];

2. to the quality of the page’s snippet [32], and (3) to
the domain of the returned URL [17].

Authors of the paper [4] claim that a search scenario for
informational queries is different. Users can run follow-up
queries if they are unsatisfied with the derived results. Re-
formulations can lead users to an answer. This scenario is
called task-level satisfaction [7]. Past research proposed dif-
ferent methods for identifying successful sessions. Hassan

et al. [12] used a Markov model to predict success at the
end of the task. Ageev et al. [1] exploited an expertise-
dependent difference in search behavior by using a Condi-
tional Random Fields model to predict a search success. On
the other hand, separate researches are interested in situa-
tions when users are frustrated. Feild et. al [9] proposed
a method for understanding user frustration with the pair
〈Q,SERP 〉. Authors gave users difficult information seek-
ing assignments and evaluated their level of dissatisfaction
via query log features and physical sensors. The authors
demonstrated that the prediction model gets the highest
quality when it is built based on query log features, de-
scribed in the paper [30]. One type of user behavior that
can be clearly associated with frustration is search engine
switching. Authors of the paper [11] showed that one of the
primary reasons users switched their search engine was due
to dissatisfaction with the results on the SERP .

In our work, we consider a scenario when user satisfaction
at time ti with 〈Q,SERP 〉 turn into user frustration at ti+1

with the same 〈Q,SERP 〉. We associate user satisfaction
using the reformulation signal. If the probability of reformu-
lating query Q was close to zero at ti and grows dramatically
at ti+1, then a change happened in user satisfaction. Our
scenario corresponds perfectly to a definition of real concept
drift. In dynamically changing and non-stationary environ-
ments, the data distribution can change over time because
of the phenomenon of concept drift [28], [31]. The real con-
cept drift refers to changes in the conditional distribution
of the output (i.e., target variable) given the input (input
features), while the distribution of the input may stay un-
changed. Formally concept drift between time point ti and
time point ti+1 can be defined as:

∃X : pti(X, y) 6= pti+1(X, y), (1)

where pti denotes the joint distribution at time ti between
the set of input variables X and the target variable y. In this
work, we follow a lead of [5], [8], [14] and reuse methods from
supervised machine learning and statistical learning theory
to design and analyze suitable statistics for drift detection.

Time	

Da
ta
	 m

ea
n	

Sudden/
abrupt	

Incremental	 Gradual	 Reoccurring	
concepts	

Outlier	 	
(not	 concept	 dri;)	

Figure 2: Patterns of changes over time [10]

Changes in data distribution over time may manifest in
different forms, as illustrated in Figure 2. The presented
types of concept drift are perfectly align to the reformulation
signal:

• A drift may happen suddenly/abruptly by switching
from one concept to another, that may corresponds
to breaking-news queries such as ‘nelson mandela’ (is-
sued the day of his death).

• A drift can be incremental, e.g. a query ‘cikm con-
ference’ may drift each year, queries referring to a
new model of a device may cause an incremental drift:

users incrementally move their preferences from ‘win-
dows phone 7’ to ‘windows phone 8’.

• A drift can be gradual, e.g. relevant new topics change
from dwelling to holiday homes, while the user does
not switch abruptly, but rather keeps going back to
the previous interest for some time.

• A drift can be reoccurring, e.g. seasonal queries: ‘30
% cvs coupon’→‘30 % cvs coupon black friday’.

• One of the challenges for concept drift handling algo-
rithms is not to mix the true drift with an outlier or
noise which refers to a once-off random deviation or
an anomaly. In our case, it may be spam queries. We
will show an example of an outlier in Section 5.4.

To summarize, the key distinctions of our work compared
to previous efforts are: a clear and well-defined approach
to detecting changes in user satisfaction using the reformu-
lation signal; an in-depth analysis of changes is searchers
behavior that results in accurate detection of drifts in user
satisfaction. Moreover, our framework works in an unsuper-
vised manner, it does not require any labelling.

3. DETECTING CHANGES IN USER SAT-
ISFACTION

In this Section we present an overview of a developed
framework for detecting changes in user satisfaction due
some external events and overtime decay. Our framework
uses the growth of the reformulation signal as an indication
of user dissatisfaction with the pair 〈Q,SERP 〉. In other
words, if the probability to reformulate a query Q to Q′

grows dramatically then users are no longer satisfied with
the pair 〈Q,SERP 〉. The desired results for the query Q
has been changed and now users expect to derive SERP ′ as
the answer for Q.

The proposed framework monitors user interactions and
it triggers an alarm to the system when changes happen.
Moreover, if indicted, our framework can produce the fol-
lowing additional output per a query:

• a list of drift terms, which users added to reformulate
the query Q;

• a list of drift URLs, which users clicked on after issuing
Q′.

A detailed diagram of our framework is presented in Fig-
ure 3. In following sections we will describe our framework
in details:

1. how do we construct user behavioral logs (Section 3.1);

2. how to model the reformulation signal (Section 3.2);

3. how to detect drifts in the reformulation signal in an
unsupervised manner (Section 3.3).

3.1 Creating User Behavioral Logs
In this Section, we describe how to derive user behavioral

logs (in Figure 3) from search interaction logs.
We consider the following scenario: we have a stream of

queries submitted to a search engine. In response to each
query, the engine returns SERP . Users may decide to click
on one or more URLs in SERP , reformulate their queries,

Learn	 Reformula-on	
Signal:	

	 RS[ti,	 ti+w1]	

User	 Behavioral	
Logs	

ti	

Incoming	 User	
Behavioral	 Logs	

Timeline	

	
Detect	 changes	 	

in	 RS[ti,	 ti+w1]	 for	 data	 from	 	
[ti+w1,ti+w1+w2]	 	

	
	
	
	

ti+w1	 ti+w1+w2	

If	 change	 detected;	

else	 Do	 Nothing;	

Learn	 new	 reformula-on	 model:	
RS[tk,	 ti+w1+w2]	

	

tk	

List	 of	 dri?	 terms	 per	 query	

List	 of	 URLs	 per	 reformula-on	

Alarm:	
Change	 of	 user	
sa-sfac-on	 for	

pairs	 :	
{<Qi,	 SERPi>}1<i<n	

Figure 3: Overview of a framework for detection changes in user satisfaction with search results.

or end their sessions. These types of user interactions are
stored in search interaction logs.

We convert standard search interaction logs to the user
behavioral logs where we store information only about re-
formulations of issued queries. We use a query expansion
definition from [20], [15] to detect terms which users used
for reformulations.

An example of user behavioral entries is presented in Fig-
ure 4. Each entry consists of four columns:

• Session ID is a session identification information;

• Timestamp is a time when an action is performed;

• Action is an action type, that a user performed: we
record the following action types: search, reformula-
tion, and click on a SERP page .

• Action details is details of a user’s action: for the
search action we record an issued query, for the click
action we record an identifier of clicked page, for the
reformulation action we record a reformulation term.

For example ‘2014’ is a reformation term for the initial
query ‘cikm conference’ if users are looking for up-to-date
information about the conference.

User behavioral logs are suitable to collect a dictionary of
the reformulation terms:

DQ = {Kj}nj=1 , (2)

where Kj is jth the reformulation term used to change the
query Q, n is the number of the reformulation terms used
for expanding the query Q.

In the next Section, the dictionary of the reformulation
terms will be utilized for modelling the reformulation signal.

Session	 Id	 Timestamp	 Ac1on	 Ac1on	 details	

123457	 1388494920	 search	 Query	 =‘flawless’	
123457	 1388494980	 click	 Page	 Id	 =	 ‘755’	
123457	 1388495060	 reformulaDon	 Query	 =‘flawless	 beyonce’	 =>	 ReformulaDon	

=	 ‘beyonce’	
123457	 1388495115	 click	 Page	 Id	 =	 ‘170’	
123458	 1388495415	 search	 Query	 =‘cikm	 conference’	
123456	 1388361661	 reformulaDon	 Query	 =‘cikm	 conference’	 =>	 ReformulaDon	

=	 ‘2014’	
123456	 1388361720	 click	 Page	 Id	 =	 “45”	

……………………………………………….	

……………………………………………….	

Figure 4: An example of user behavioral log.

3.2 Modelling The Reformulation Signal
In this Section, we describe how to build a reformulation

signal model, that is presented in our framework in Figure 3
as ‘Learn Reformulation Signal’.

We build the reformulation signal (RS) of queries for a
time period [ti, ti + w1], using the user behavioral logs. RS
of the query Q would be:

RS =
{
P[ti,ti+w1] (Kj , Q)

}n
j=1

, (3)

where w1 is the selected size of the inference window, P (Kj , Q)
is a joint distribution of the query Q and its reformulation
term Kj during the time period [ti, ti + w1].

When time (ti + w1 + w2) comes we rebuild the reforma-
tion signal of Q for the time period [ti + w1, ti + w1 + w2]
using Equation 3:

RS =
{
P[ti+w1,ti+w1+w2] (Kj , Q)

}m
j=1

, (4)

where w2 is the size of a test window.
The presented model for the reformulation signal will be

used to detect changes in user satisfaction in the next Sec-
tion.

3.3 Detecting a Drift in Reformulation Signal
In this section we present an algorithm for detecting a

drift in user satisfaction using the reformulation signal. Our
goal is to detect statistically significant changes. This action
is depicted in Figure 3 as ‘Detect Changes’.

Let us introduce a definition of a drift in the reformu-
lation signal between two periods at time [ti, ti + w1] and
[ti + w1, ti + w1 + w2] using Equations 3 and 4:

∃Q′ : P[ti,ti+w1] (Kj , Q) 6= P[ti+w1,ti+w1+w2] (Kj , Q) , (5)

where P[ti,ti+w1] (Kj , Q) denotes the joint distribution of
query Q and its reformulation term Kj at the time period
[ti, ti + w1] .

It is important to determine what it means when the dis-
tribution has changed. If the drift in the reformulation signal
is statistical significant then we assume that user satisfaction
with the following pair has decreased dramatically :

〈Q[ti+w1,ti+w1+w2], SERP[ti,ti+w1]〉, (6)

where Q[ti+w1,ti+w1+w2] is the query issued at the time pe-
riod [ti + w1, ti + w1 + w2]; SERP[ti,ti+w1] is search results,
that were generated forQ at the time period [ti, ti + w1], and
it is still shown during the time period [ti + w1, ti + w1 + w2].

However, users are no longer satisfied and they reformu-
late Q using some drift term Kj . The fact that the drift
has happened at time (ti + w1 + w2) can be a signal that
we need to generate a new SERP[ti+w1,ti+w1+w2] for Q to
improve user satisfaction.

Let us consider an example of a drift in the reformulation
signal for the query ‘cikm conference’ in Figure 5. Users
were satisfied with SERP that was returned by the query
’cikm conference’ at time ti. However, at time ti + ∆t a
probability to reformulate the query has been changed dra-
matically and the term ‘2014’ is the most frequent reformu-
lation. Most likely users have changed their behavior due to
an upcoming conference event and they could not find the
right link in SERP that was optimized for clicks from the
last year.

0.3	 0.1	

Query:	 ‘CIKM	 conference’	

0.1	

Timeline	

0.7	

ti	 ti+	 	 	 	 	 t	
0.2	 0.2	 0.8	 0.8	

DRIFT:	
Upcoming	 new	 conference	
event:	 Dri7	 Term	 ‘2014’	

Figure 5: Example of concept drift in probability
to reformulate the query ‘CIKM conference’ using
drift term ‘2014’.

The proposed algorithm DDSAT for detecting changes
in the query reformulation signal to discover changes in user
satisfaction is presented in Algorithm 1. We will explain
how DDSAT works next.

Let us clarify which an input and an output DDSAT has:

• DDSAT Input. Our current implementation of the
algorithm is using a fixed size of the inference window
w1 that equals to one month. We also experiment with
two sizes of the test window w2: two weeks and one
week. We calculate an error threshold e, using the
following formula as described in [5]:

e =

√
1

2m
∗ σ2

W ∗ ln
4

δ′
+

2

3m
ln

2

δ′
, (7)

where m is a harmonic mean of ||w1|| and ||w2||, σ2
W is

the observed variance of the elements in window W =
w1 ∪ w2 and δ′ = δ

n
, δ is a confidence value and n is

a total size of two windows. For experimentation, we
run our algorithm with the three different confidence
values: δ = {0.05, 0.1, 0.3}.

• DDSAT Output. DDSAT returns an alarm as an
output if the drift happens.

Let us consider the method processDetecedConceptDrift()
in Algorithm 1 that deals with the detected drifts. More-
over, the function processDetecedConceptDrift() has two
additional input parameters which show how the observed
drifts influence the current system:

• Parameter ‘extra’ is a boolean variable, if it is ‘true’
DDSAT will produce two extra statistics:

1. a list of drift terms, which can be used for serving
a fresh query suggestion;

2. a list of drift URLs which can be used for rerank-
ing of SERP .

• Parameter ‘update’ is a boolean variable, if it is
‘true’ DDSAT will update the reformulation signal.

Algorithm 1 Algorithm for detection drift in user satisfac-
tion using reformulation signal (DDSAT).

Require: inference window w1;
test window w2;
error threshold e;
start time ti;
produce extra information extra← true, false;
learn new reformulation signal update← true, false;
U ser Behavioural Log (UBL);

Ensure: drift← true, false
1: {RSw1(Qk)}km=1 ←buildRefSignal(UBL[ti,ti+w1])

2: {RSw2(Qk)}km=1 ←buildSignal(UBL[ti+w1,ti+w1+w2])
3: for Qm,Kj ∈ ULB do
4: if |µ(Pw1(Kj , Qm))− µ(Pw2(Kj , Qm))| > e then
5: drift← true
6: processDetecedConceptDrift(extra, update)
7: else
8: drift← false
9: end if

10: end for
11: return drift

The presented algorithm DDSAT works in an unsuper-
vised way, it does not require any human labelling. It can
be shown that DDSAT has a linear complexity.

The proposed framework can be used as a monitoring tool,
which alarms when user satisfaction changes for a particular
pair: 〈Q,SERP 〉. Our framework also gives an explanation
for detected changes, it returns the list of drift terms. More-
over, it suggests a possible solution for serving up-to-date
SERP and returns the list of the most frequently clicked
URLs after reformulating Q using the drift terms.

4. EXPERIMENTAL SETUP
The ultimate goal of the presented framework is to detect

changes in user satisfaction. In order to make the evalua-
tion realistic we use search interaction logs of a commercial
search engine, that we describe in details next. We run our
framework over this dataset. In DDSAT algorithm we set
to ‘true’ the parameters: ‘extra’ and ‘update’ of the method
processDetectedConceptDrift(). The extra statistics are used
to setup a human assessment. Our evaluation scenario is
described in Section 4.2, The final results is presented in
Section 5.

4.1 Data
Our experimental data comprises of search interaction logs

of a commercial search engine that were collected during
six months: September 2013, October 2013, November 2013,
December 2013, January 2014, February 2014. We only in-
clude log entries for US-based traffic. We derive user behav-
ioral logs from the selected search interaction logs as pre-
sented in Section 3.1. Each month of data consists of over
10 million records.

4.2 Evaluation Methodology
In this Section we describe how we organize evaluation of

our framework results:

1. the derived list of detected changes with drift terms;

2. the derived list of the most clicked URLs per drift.

First, let us present a format of the presented system out-
put that needs to be evaluated. Our framework returns re-
sults in the form presented in Figure 6. It contains:

• Date - is a time period when drift happened;

• Initial Query - is a query that users issued;

• Drift term - is a term that cause the drift because
users added it to expand the initial query at time pe-
riod depicted as Date.

• URL - is a link that users clicked the most after
issuing the reformulation.

4.2.1 Human Drift Judgments
For the evaluation, a group of annotators were instructed

to exhaustively examine the detected drift terms. The judges
were well trained to understand time-related and event-related
drifts in user behavioral data. They were given relevant ex-
amples of drift, e.g:

1. The latest Olympic games were held in February 2014
and users run related queries such as ‘medals olympics’
(users were looking for information about medals among
USA 2014 Olympic team). However, if users were
served with results from Olympics 2012 then they had

Date	 Ini)al	 query	 Dri/	 Term	 URL	

Oct.	 2013	 novak	 djokovic	 fiancee	 URL48	
Oct.	 2013	 CIKM	 conference	 2014	 URL44	
Jan.	 2014	 flawless	 beyonce	 URL578	
Jan.	 2014	 feliz	 ano	 nuevo	 2014	 URL48	

Jan.	 2014	 ct	 40ez	 2013	 URL109	
Feb.	 2014	 when	 is	 fastnacht	 day	 	 	 2014	 URL48	
Feb.	 2014	 mormons	 olympics	 2014	 URL409	

……………………………………………….	

……………………………………………….	

Figure 6: Example of an output of the framework.
Column URL is anonymized.

to reformulate the query using the reformulation term
‘2014’ in order to find desired results. That is an ex-
ample of a gradual drift, because users got interested
in 2014 Olympics gradually over two years.

2. Another example would be a breaking news query such
as ‘novak djokovic’ (a Serbian professional tennis player)
who got engaged at the end of September 2013. Users
were interested in this news and tended to reformulate
the query by adding the reformulation term ‘fiancee’.
That is an example of a sudden drift. This kind of
drifts have quite a short lifetime because users remain
interested during a limited period of time. However, it
is important to serve it right in time.

An example of an evaluation task for the annotators is
presented in Figure 7 (A). The judges were asked to decide:
Can the term T be a drift term for the query Q? The judges
were allowed to use external information sources to find an-
swers.

Every discovered drift, characterised by a drift term, is
judged by three different annotators using binary classes:
‘0’ = wrong and ‘1’= right. The final score is calculated
based on three judgements.

We use accuracy as a final evaluation metric that we refer
as Drift Accuracy.

4.2.2 Human Judgments for drift URLs
We calculate a statistic for URLs which users clicked in

SERP ′ that is derived after reformulation Q to Q′. If the
probability of clicking on URL is greater than 0.5, then it
is drift URL. If clicks are diverse we cannot produce any
URL.

Judges, whom we asked to evaluate drift URL, answered
the following question: ‘Is URL relevant for the initial query
Q at the time period T?’ In other words, we asked human
annotators to evaluate a tuple 〈Q,URL, T 〉 as proposed in
the paper [7]

Every discovered drift URL is also judged by three dif-
ferent persons using binary classes. The final score is cal-
culated based on three judgements. We use accuracy as a
final evaluation metric for drift URL, that we refer as URL
Accuracy.

We described the large-scale evaluation of our method
based on real dataset from a commercial search engine that
was collected during six months. As we will show next we

Figure 7: Two of fragments of an evaluation task for the annotators: (A) is the task when we do not have
most clicked URL because click are diverse and (B) is the task when we can suggest URL and (B).

can precisely identify drift in user satisfaction using the re-
formulation signal.

5. EXPERIMENTAL RESULTS
We now summarize the results for detection changes in

user satisfaction using the reformulation signal. The pro-
posed solution is working in an unsupervised way and can
be applied to large search interaction logs. As a ground
truth, we use the human judgements that are described in
Section 4.2.

5.1 Defining Sizes of Inference and Test Win-
dows

It is important to note that we fix a size of the inference
window w1 to one month of data. For the test window w2, we
experiment with three different sizes: one week, two weeks,
one month. As a final result, we will report for w2 equals
two weeks.

For our experimentation we use data described in Sec-
tion 4.1, that can be easily transformed to user behavioral
logs. The algorithm DDSAT, proposed in Algorithm 1, is
running on derived data in the following way:

1. DDSAT starts at time ti (for our datasets: ti equals
to 1st of September);

2. DDSAT builds the reformulation signal (RS) based
the time period [ti, ti + w1] (for our datasets: the re-
formulation signal is built on September 2013);

3. DDSAT detects drifts in RS based on the time period
[ti + w1, ti + w1 + w2] and produces a list of detected
drifts (for our datasets: first two weeks of October
2013);

4. DDSAT reassigns ti to (ti + w1) and goes to 1.

We combine all detected drifts and drift URLs and evaluate
them using methodology described in Section 4.2.

However, for other domain the size of w1 and w2 are de-
pendent on many aspects such as a volume of a traffic, type
of a served content and so on. Implementers with a do-
main’s knowledge should decide how often run our frame-
work. However, we plan to extend the algorithm DDSAT so
that it can determine when there was a drift on the fly.

5.2 Defining confidence value
We evaluate the discovered list of the drifts in user satis-

faction to check which confidence level suits best our needs.
The randomly selected part (30%) of human judgements for
detected drifts (Section 4.2.1) are used to calculate the ac-
curacy below. Our findings are the following:

• for the confidence value δ = 0.05 accuracy is 65%;

• for the confidence value δ = 0.1 accuracy is 68%;

• for the confidence value δ = 0.3 accuracy is 66%;

The rest of judgements (70%) are used to calculate a final
accuracy for our drift detection method in Section 5.3.1.

Hence, we use the confidence value δ = 0.1 for the future
evaluation because it gives us the highest accuracy.

5.3 Evaluating DDSAT
In this section we describe the experiments we conducted

to evaluate the accuracy of our method DDSAT. We evaluate
two types of the accuracy:

1. in Section 5.3.1, we present the accuracy of overall drift
detection that is calculated based on 70% of human
judgements collected in Section 4.2.1;

2. in Section 5.3.2 we demonstrate the accuracy of de-
tected drift URLs that is calculated based on annota-
tor’s judgements collected in Section 4.2.2.

5.3.1 Drift Accuracy
Drift accuracy is a percentage of times when the drift in

user satisfaction is correctly detected using the reformula-
tion signal. We calculate drift accuracy with respect to the
number of users who issue the reformulation. The obtained
accuracy is presented in Table 1.

Of course, the best result is characterized by the greatest
amount of users. Rows in Table 1 for the number of users in
a range [800, 1000) and [500, 800) have the lower accuracy
than the accuracy rate for the number of users in the range
[250, 500) because they include smaller number of detected
drifts in user satisfaction.

Table 1: The accuracy of the drift detection depends
on the number of users who issued reformulations.
The metrics are calculated based on the results ob-
tained with the confidence value δ = 0.1.

Number of Users Drift Accuracy
[1000, 1300) 98%
[800, 1000) 67%
[500, 800) 80%
[250, 500) 82%
[1, 100) 66%

Table 2: The accuracy of drift URL depending on
the number of users who issued reformulations. The
metrics are calculated based on results obtained
with confidence value δ = 0.1

Number of Users Drift URL Accuracy
[1000, 1300) 100%
[800, 1000 81%
[500, 800) 85%
[250, 500) 91%
[1, 100) 87%

5.3.2 Drift URL Accuracy
Drift URL accuracy is a percentage of relevant URLs

among the list of proposed drift URLs. The obtained ac-
curacy is presented in Table 2. The quality of derived drift
URLs is very high especially for the number of users greater
than 250. We see in Table 2 the same situation as in Table 1
for the number of users in a range [800, 1000) and [500, 800).
They have lower accuracy than the number of users in the
range [250, 500) because they include a smaller number of
detected drift URLs.

Our framework includes URL into the list of drift URLs,
if the probability of clicking on them after reformulating is
higher than 0.5. Potentially, detected drift URLs can be ap-
plied directly into a learned ranking function as a ‘freshness
feature’ or used for a re-ranking of current results.

To summarize our evaluation of DDSAT, we recommended
to determine a confidence value for the drift detection that
gives highest accuracy of the detected drift. In our case,
we obtained the confidence value δ = 0.1. The propose
algorithm was evaluated from two points of view:

1. the accuracy of the detected drift in user satisfaction
is high and it gets especially precise if the number of
users who issued reformulation is greater that 250 (Ta-
ble 1). We do not report the row ‘> 1000’ because it
not always realistic for smaller search engines;

2. the accuracy of how relevant are detected drift URLs.
It is especially accurate if the number of users who
issued reformulation is greater that 250 (Table 2).

5.4 Detecting Anomalies in Results
In this Section we show an example of outliers in a concept

drift and how to deal with this kind of anomalies.
User behavior the Web is not always reliable, it can be

sometimes spurious. It is important for the algorithm DDSAT
to know how to remove this anomalies from user behavioral
logs data in order to return more accurate results of drift
detection.

For instance, ‘spurious behavior’ can be caused by Search
Engine Optimization (SEO) that is a process of affecting
the visibility of websites or web pages in search results of
search engines. In general, SEO aims to push a site to a
higher rank on the search results page, and more frequently
a site appears in the search results list, the more visitors
it will receive from the search engine’s users. In order to
achieve the goal, SEO considers how search engines work,
what people search for, the actual search terms or keywords
typed into search engines and which search engines are pre-
ferred by their targeted audience. Optimizing of a website
may involve editing its content, HTML and associated cod-
ing to both increase its relevance to specific keywords and
to remove barriers for indexing activities of search engines.

While we were analysing the list of derived drifts we no-
ticed abnormal drifts, e.g. the query ‘aol mailbox sign in’
was reformulated using the drift term ‘agnes corky’. The
reformulation was issued by more than 200 users. However,
this drift did not make any sense. This behavior most prob-
ably was simulated. However, we noticed that only one click
happened and that clicked page referred to the website with
the domain named ‘seotest’. Hence, we concluded that it is
the anomaly.

For the final results, this kind of anomalies need to be fil-
tered out. They are removed by using the following heuristic
rule: ‘If the number of users who issued reformulation: (U)
is much greater than the number of user clicks on SERP ′

(search results after reformulating an initial query): (ClickU)
then the detected change is the Anomaly’:

if U � ClickU then Anomaly. (8)

To summarise our experimental results, the proposed tech-
nique for detecting changes in user satisfaction using the
reformation signal works well on real datasets. The ob-
served results over large datasets (all traffic from a com-
mercial search engine during 6 months) are both substantial
and statistically significant. Furthermore, we have shown
that results of our framework, such as lists of URLs, can be
potentially useful for ranking.

6. APPLICATIONS
In this Section we discuss potential applications where the

results of the developed framework can be used.

6.1 Learning to Rank
A key component of our system is the algorithm DDSAT

that is monitoring user engagement. It alarms when changes
in user satisfaction happen with the pair 〈Q,SERP 〉. DDSAT
alarm is a signal that user intent for Q drifted and we need to
change SERP to satisfy changes in user needs. Potentially,
the detected drift can be applied directly into a learned rank-
ing function as a ‘freshness feature’ or used for re-ranking.
Moreover, our framework produces the list of URLs, which
users prefer after reformulating the initial query. This list
also can be incorporated into a ranking model.

6.2 Query Auto-Completion
Query auto-completion is an important feature of online

search engines that enhances search experience by saving
users time which otherwise would be spent on typing. A
time-sensitive approach has been proposed in [29] for query
auto-completion. Our framework also returns drift terms,

which are reformulation terms that cause a drift in the re-
formulation signal. Hence, this list can be used for time-
sensitive query auto-completion.

6.3 Automatically Detecting Underperforming
Queries

Automatic detection of problematic queries, where search
engines do not return a required result and users are dissat-
isfied with their search results, has been extensively stud-
ied [1], [9], [12], [23]. However, previous work largely utilise
user interaction features, topical and lexical attributes to
detect such underperforming queries. Time-sensitive nature
of user satisfaction has not been considered.

In this paper, we propose the method to identify drifts in
user satisfaction over time. The proposed framework moni-
tors a system and it signals an alarm when drift in user sat-
isfaction with the pair 〈Q,SERP 〉 happens. Hence, when
we know a problematic query we can retrain our ranker in
order to improve quality of retrieved SERP . We can use
the engagement on the reformulated query in order to de-
rive training pairs.

7. CONCLUSION AND FUTURE WORK
In this Section we conclude and present our view of future

work.

7.1 Conclusion
In this paper we explored the utility of incorporating the

query reformulation signal in detecting changes in user sat-
isfaction. We leverage concept drift techniques to detect
changes in user satisfaction with the pair 〈Q,SERP 〉 over
time due to some events. The appearance of a drift requires
a modification of the SERP to satisfy shifted user needs.
We introduced a novel Drift Detection in user SATisfac-
tion (DDSAT) algorithm, that accurately detects changes.
The proposed algorithm works in an unsupervised manner,
it does not need any labelled data. DDSAT is a part of the
developed framework for detecting changes in user satisfac-
tion.

We conducted a large-scale evaluation using data from a
commercial search engine. The dataset was collected dur-
ing six months. Our experiments show that the algorithm
DDSAT works with a high accuracy. Moreover, our frame-
work outputs the list of drift terms and the list of URLs,
which can be used for the future re-ranking of SERP .

The algorithm of the drift detection in user satisfaction
which we presented in this paper can be incorporated in
many search-related applications where freshness is required,
e.g. in recency ranking, query auto-completion.

7.2 Future Work
We believe that the current implementation of the algo-

rithm DDSAT can be improved. The algorithm uses the
fixed sizes of the inference and test windows. However, it is
not always suitable. For instance, the size of the test window
for the sudden drift can be way shorted compared to incre-
mental drifts. We anticipate that the size of the test window
should be proportional to the reformulation frequency. We
would like to develop a method to identify dynamically the
size of the inference and test windows.

We also would like to identify the type of the detected
drift in Figure 2. It is important to know in order to de-
fine the lifetime. If our algorithm detects the sudden drift

(e.g. breaking news queries) then its lifetime is much shorter
compared to incremental or sudden drifts. We would like to
develop a method to identify automatically the type of the
drift.

ACKNOWLEDGMENTS
We thank Nick Craswell, Andreas Bode, Jonas Barklund,
Paul De Bra and Mykola Pechenizkiy for fruitful discussions
and their valuable suggestions, and Willi Richert for provid-
ing help with infrastructure for experimentation. We also
thank Ahmed Hassan for providing the code for reformula-
tion detection.

This research has been partly supported by STW and it
is the part of the CAPA1 project.

References
[1] M. Ageev, Q. Guo, D. Lagun, and E. Agichtein. Find it

if you can: a game for modeling different types of web
search success using interaction data. In Proceedings of
the ACM Conference on Research and Development on
Information Retrieval (SIGIR), 2011.

[2] E. Agichtein, E. Brill, and S. T. Dumais. Improving web
search ranking by incorporating user behavior informa-
tion. In Proceedings of the ACM Conference on Re-
search and Development on Information Retrieval (SI-
GIR), pages 19–26, 2006.

[3] E. Agichtein, E. Brill, S. T. Dumais, and R. Ragno.
Learning user interaction models for predicting web
search result preferences. In Proceedings of the ACM
Conference on Research and Development on Informa-
tion Retrieval (SIGIR), pages 3–10, 2006.

[4] A. Al-Maskari, M. Sanderson, and P. Clough. The re-
lationship between ir effectiveness measures and user
satisfaction. In Proceedings of the ACM Conference
on Research and Development on Information Retrieval
(SIGIR), pages 773–774, 2007.

[5] A. Bifet and R. Gavaldá. Learning from time-changing
data with adaptive windowing. In Proceedings of SIAM
International Conference on Data Mining (SDM), 2007.

[6] N. Craswell, O. Zoeter, M. J. Taylor, and B. Ramsey.
An experimental comparison of click position-bias mod-
els. In Proceedings of ACM International Conference on
Web Search and Data Mining (WSDM), pages 87–94,
2008.

[7] A. Dong, Y. Chang, Z. Zheng, G. Mishne, J. Bai,
R. Zhang, K. Buchner, and C. L. F. Diaz. Towards re-
cency ranking in web search. In Proceedings of ACM In-
ternational Conference on Web Search and Data Min-
ing (WSDM), pages 11–20, 2010.

[8] A. Dries and U. Ruckert. Adaptive concept drift detec-
tion. In Proceedings of SIAM International Conference
on Data Mining (SDM), pages 233–244, 2009.

[9] H. A. Feild, J. Allan, and R. Jones. Predicting searcher
frustration. In Proceedings of the ACM Conference
on Research and Development on Information Retrieval
(SIGIR), pages 34–41, 2010.

1www.win.tue.nl/∼mpechen/projects/capa/

[10] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and
A. Bouchachia. A survey on concept drift adaptation.
ACM Computing Surveys, 2013.

[11] Q. Guo, R. W. White, Y. Zhang, B. Anderson, and S. T.
Dumais. Why searchers switch: understanding and pre-
dicting engine switching rationales. In Proceedings of
the ACM Conference on Research and Development on
Information Retrieval (SIGIR), pages 335–344, 2011.

[12] A. Hassan, R. Jones, and K. L. Klinkner. Beyond
dcg: user behavior as a predictor of a successful search.
In Proceedings of ACM International Conference on
Web Search and Data Mining (WSDM), pages 221–230,
2010.

[13] A. Hassan, X. Shi, N. Craswell, and B. Ramsey. Beyond
clicks: query reformulation as a predictor of search sat-
isfaction. In Proceedings of ACM International Con-
ference on Information and Knowledge Management
(CIKM), pages 2019–2028, 2013.

[14] S. Hido, T. Idé, H. Kashima, H. Kubo, and H. Mat-
suzawa. Unsupervised change analysis using supervised
learning. In Proceedings of Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD),
pages 148–159, 2008.

[15] J. Huang and E. N. Efthimiadis. Analyzing and evalu-
ating query reformulation strategies in web search logs.
In Proceedings of ACM International Conference on In-
formation and Knowledge Management (CIKM), pages
77–86, 2009.

[16] S. B. Huffman and M. Hochster. How well does result
relevance predict session satisfaction? In Proceedings of
the ACM Conference on Research and Development on
Information Retrieval (SIGIR), pages 567–574, 2007.

[17] D. B. in Web Search Samuel Ieong, D. B. in Web Search
Samuel Ieong, N. Mishra, E. Sadikov, and L. Zhang.
Domain bias in web search. In Proceedings of ACM In-
ternational Conference on Web Search and Data Min-
ing (WSDM), pages 55–64, 2012.

[18] Y. Inagaki, N. Sadagopan, G. Dupret, A. Dong, C. Liao,
Y. Chang, and Z. Zheng. Session based click features
for recency ranking. In Proceedings of AAAI Conference
on Artificial Intelligence, 2010.

[19] Y. Inagaki, N. Sadagopan, G. Dupret, C. L. A. Dong,
Y. Chang, and Z. Zheng. Session based click features for
recency ranking. In Association for the Advancement of
Artificial Intelligence, 2010.

[20] B. J. Jansen, D. L. Booth, and A. Spink. Patterns
of query reformulation during web searching. JASIST,
60(7):1358–1371, 2009.

[21] T. Joachims. Optimizing search engines using click-
through data. In Proceedings of ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining (KDD), pages 133–142, 2002.

[22] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and
G. Gay. Accurately interpreting clickthrough data as
implicit feedback. In Proceedings of the ACM Confer-
ence on Research and Development on Information Re-
trieval (SIGIR), pages 154–161, 2005.

[23] Y. Kim, A. Hassan, R. W. White, and Y.-M. Wang.
Playing by the rules: mining query associations to pre-
dict search performance. In Proceedings of ACM Inter-
national Conference on Web Search and Data Mining
(WSDM), pages 133–142, 2013.

[24] A. Kulkarni, J. Teevan, K. M. Svore, and S. T. Dumais.
Understanding temporal query dynamics. In Proceed-
ings of ACM International Conference on Web Search
and Data Mining (WSDM), pages 167–176, 2011.

[25] K. Radinsky, K. Svore, S. T. Dumais, J. Teevan,
A. Bocharov, and E. Horvitz. Modeling and predict-
ing behavioral dynamics on the web. In Proceedings of
International World Wide Web Conferences (WWW),
pages 599–608, 2012.

[26] T. Saracevic. Relevance: A review a the literature and
a framework for thinking on the notion in information
science. part iii: Behavior and effects of relevance. JA-
SIST (JASIS), 58(13):2126–2144, 2007.

[27] T. Saracevic. Relevance: A review of the literature and
a framework for thinking on the notion in information
science. part ii: nature and manifestations of relevance.
JASIST (JASIS), 58(13):1915–1933, 2007.

[28] J. C. Schlimmer and R. H. Granger. Beyond incremen-
tal processing: Tracking concept drift. In Proceedings
of AAAI Conference on Artificial Intelligence, 1986.

[29] M. Shokouhi and K. Radinsky. Time-sensitive query
auto-completion. In Proceedings of the ACM Confer-
ence on Research and Development on Information Re-
trieval (SIGIR), pages 601–610, 2012.

[30] R. W. White and S. T. Dumais. Characterizing and pre-
dicting search engine switching behavior. In Proceedings
of ACM International Conference on Information and
Knowledge Management (CIKM), pages 87–96, 2009.

[31] G. Widmer and M. Kubat. Learning in the presence of
concept drift and hidden contexts. Machine Learning
(ML), 23(1):69–101, 1996.

[32] Y. Yue, R. Patel, and H. Roehrig. Beyond position bias:
Examining result attractiveness as a source of presenta-
tion bias in clickthrough data. In Proceedings of Inter-
national World Wide Web Conferences (WWW), pages
1011–1018 1011–1018, 2010.

[33] I. Zliobaite. Learning under concept drift: an overview.
CoRR abs/1010.4784, 2010.

