

Towards Rack-scale Computing Challenges and Opportunities

Paolo Costa paolo.costa@microsoft.com

joint work with

Raja Appuswamy, Hitesh Ballani, Sergey Legtchenko, Dushyanth Narayanan, Ant Rowstron

Many commodity servers rather than few expensive servers

Integrated fabrics Higher density and lower power consumption

Towards Rack-scale Computing: Challenges and Opportunities

System-on-Chip (SoC) CPU, IO controllers, NIC/fabric switch on the same die

Towards Rack-scale Computing: Challenges and Opportunities

Silicon Photonics

High-bandwidth / low-latency interconnect (resource disaggregation)

Rack-scale Computer in 2020?

	Today's traditional rack	2020 Rack-scale Computer
#Cores (#servers)	~100s (20-40)	~100,000s (1,000s)
Memory	~1 TB	~100s TB
Storage	~100 TB (flash + spinning disk)	~100s PB (NVM)
Bandwidth / server	10 Gbps	1 Tbps

	Today's rack	2020 Rack-scale Computer	2014 Rack-scale Computer
#Cores (#servers)	~100s (20-40)	~100,000s (1,000s)	
Memory	~1 TB	~100s TB	
Storage	~100 TB (SSD/HDD)	~100s PB (NVM)	
Network	10 Gbps / server	1 Tbps / server	

	Today's rack	2020 Rack-scale Computer	2014 Rack-scale Computer
#Cores (#servers)	~100s (20-40)	~100,000s (1,000s)	~1,000s (100s-1000s)
Memory	~1 TB	~100s TB	
Storage	~100 TB (SSD/HDD)	~100s PB (NVM)	
Network	10 Gbps / server	1 Tbps / server	

rack scale

	Today's rack	2020 Rack-scale Computer	2014 Rack-scale Computer	Memory – AMD SeaMicro SM15000-XE
#Cores (#servers)	~100s (20-40)	~100,000s (1,000s)	~1,000s (100s-1000s)	 2 TB RAM (32 GB/server) in 10 8TB RAM at rack scale HP Moonshot Redstone
Memory	~1 TB	~100s TB	~10 TBs	• 1.12 TB (4 GB/server) in 4U
Storage	~100 TB (SSD/HDD)	~100s PB (NVM)	~1 PB (SSD/HDD)	 11.25 TB at rack scale Storage AMD SeaMicro FS-5084-L
Network	10 Gbps / server	1 Tbps / server		 336 TB storage in 5 RU 2.5 PB at rack scale

	Today's rack	2020 Rack-scale Computer	2014 Rack-scale Computer
#Cores	~100s	~100,000s	~1,000s
(#servers)	(20-40)	(1,000s)	(100s-1000s)
Memory	~1 TB	~100s TB	~10 TBs
Storage	~100 TB	~100s PB	~1 PB
	(SSD/HDD)	(NVM)	(SSD/HDD)
Network	10 Gbps /	1 Tbps /	~10s -100s
	server	server	Gbps / server

Network

- AMD SeaMicro SM15000-XE
 - 1.28 Tbps fabric (20 Gbps / server)
- Mellanox ConnectX-3 Pro
 - 2x 40-Gbps NICs
- Intel MXC Connector (expected Q3'14)
 - Up to 32 fibers (25 Gbps / fiber)
 - Up to 800 Gbps / server

	Today's rack	2020 Rack-scale Computer	2014 Rack-scale Computer
#Cores	~100s	~100,000s	~1,000s
(#servers)	(20-40)	(1,000s)	(100s-1000s)
Memory	~1 TB	~100s TB	~10 TBs
Storage	~100 TB	~100s PB	~1 PB
	(SSD/HDD)	(NVM)	(SSD/HDD)
Network	10 Gbps /	1 Tbps /	~10s -100s
	server	server	Gbps / server

Not just quantity...

- 3D stacking
 - Cache-like performance for RAM?
- NVRAM
 - Fast byte-addressable storage
- Silicon photonics
 - Low latency (10s-100s ns at rack-scale)

Towards Rack-scale Computing: Challenges and Opportunities

Research Questions: Architecture

What's the best usage of the silicon area?

- Homogenous vs. heterogeneous cores
- General-purpose cores vs. accelerators
 e.g., FPGAs, neural accelerators (NPUs)
- On-chip vs. off-chip functionality

Calver		
Calxeda En	ergyCore™ SoC	
EnergyCore Management Engine	Processor Complex ARM ARM ARM ARM ARM ARM	
I/O Controllers SATA, PCIe, Ethernet, SD/eMMC	EnergyCore Fabric Switch	

What is the correct topology?
 – Centralized vs. distributed switch

What is the correct topology?
– Centralized vs. distributed switch

🕗 seamicro

- What is the correct topology?
 - Centralized vs. distributed switch
 - Application-agnostic vs. application specific

- What is the correct topology?
 - Centralized vs. distributed switch
 - Application-agnostic vs. application specific
- Where to put memory/storage servers?

- What is the correct topology?
 - Centralized vs. distributed switch
 - Application-agnostic vs. application specific
- Where to put memory/storage servers?
- Converged fabric
 - How to handle memory, storage, IP traffic?

- What is the correct topology?
 - Centralized vs. distributed switch
 - Application-agnostic vs. application specific
- Where to put memory/storage servers?
- Converged fabric
 - How to handle memory, storage, IP traffic?
- Inter-rack connectivity
 - How to extend beyond rack-scale? o over-subscription and protocol bridging

Research Questions: OS / Storage

- Rethink the cache-hierarchy
 - High-performance (3D stacking) vs. high-capacity tier (NVRAM)
 - What's the correct ratio?
 - Are SSDs / HDDs to be used only for cold data?
- Impact on existing (and new!) applications?
 - Cache-like RAM and byte-addressable fast storage
- How to schedule application tasks?
 Joint scheduling (CPU, memory, network, storage)

Research Questions: Distributed Systems

- RaSCs are different from many-core setups
 - Separate failure domains, no cache coherency
 - Rack-scale computers are distributed systems (albeit not traditional)
- How to handle remote resources?
 - Consistency and fault-tolerance
- What are the right programming abstractions?
 - Shared memory, message passing, MapReduce, ...

Towards Rack-scale Computing: Challenges and Opportunities

Programming abstractions

Storage

Rack-scale design

Network

http://research.microsoft.com/rackscale/

Programming abstractions

Storage

Rack-scale design

Network

http://research.microsoft.com/rackscale/

FaRM [NSDI'14]

- RDMA-based distributed platform
 - Transaction support
 - Lock-free reads
 - Support for object colocation
- Hardware alone is not enough
 - Software stack customization is needed
- High performance
 - 167 M key lookups (31 us latency) on a 20-server testbed

Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, Miguel Castro

Programming abstractions

Storage

Rack-scale design

Network

http://research.microsoft.com/rackscale/

Pelican

- Rack-scale storage appliance for "cold" data
- Hardware and software co-design
 - High storage density
 - Low cost
 - Low power consumption
 - Fault tolerant

Austin Donnelly, Richard Black, Sergey Legtchenko, Ant Rowstron, Dave Harper, Shobana Balakrishnan, Eric Peterson, Adam Glass

Programming abstractions

Storage

Network

Rack-scale design

RaSC-Net [HotCloud'14]

- How to design a network stack for Rack-scale computers?
 - Routing and congestion control
- Support for:
 - Multiple paths
 - Low latency
 - Consolidated workloads

http://research.microsoft.com/rackscale/

Paolo Costa, Hitesh Ballani, Dushyanth Narayan

Programming abstractions

Storage

Network

Rack-scale design

DRackAr

- How to master the design space?
 - Topology, resources provisioning, ...
- Input:
 - Hardware components
 - Constraints (e.g., max power budget)
 - Target workload
 - Utility function
- Output: Rack configuration

http://research.microsoft.com/rackscale/

Sergey Legtchenko, Ant Rowstron

Summary

- Rack-scale computing:
 - 1,000s of cores
 - TBs of RAM and PBs of storage
 - Intra-rack high bandwidth / low latency connectivity
- This can improve the performance of existing apps...
 - graph processing, machine learning jobs, in-memory DBs, ...
 - ...but also enable new ones!
- Call to action
 - Hardware has been changing a lot...
 - ... now it's up to us to change the software too!