
Grappa: A Latency-Tolerant Runtime
for Large-Scale Irregular Applications

Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon Kahan, Mark Oskin
University of Washington, Department of Computer Science and Engineering

{nelson, bholt, bdmyers, preston, luisceze, skahan, oskin}@cs.washington.edu

Abstract
Grappa is a runtime system for commodity clusters of multicore
computers that presents a massively parallel, single address space
abstraction to applications. Grappa’s purpose is to enable scalable
performance of irregular parallel applications, such as branch and
bound optimization, SPICE circuit simulation, and graph processing.
Poor data locality, imbalanced parallel work and complex communi-
cation patterns make scaling these applications difficult.

Grappa serves both as a C++ user library and as a foundation for
higher level languages. Grappa tolerates delays to remote memory by
multiplexing thousands of lightweight workers to each processor core,
balances load via fine-grained distributed work-stealing, increases
communication throughput by aggregating smaller data requests
into large ones, and provides efficient synchronization and remote
operations. We present a description of the Grappa system and an
evaluation of its performance on microbenchmarks.

1. Introduction
Irregular applications exhibit workloads, dependences, and memory
accesses that are highly sensitive to input. Classic examples of such
applications include branch and bound optimization, SPICE circuit
simulation, and car crash analysis. Important contemporary examples
include processing large graphs in the business, national security, and
social network computing domains. For these emerging applications,
reasonable response time – given the sheer amount of data – requires
large multinode systems. The most broadly available multinode
systems are those built from x86 compute nodes interconnected via
Ethernet or InfiniBand. However, scalable performance of irregular
applications on these systems is elusive for two reasons:
Poor data locality and frequent communication Data reference
patterns of irregular applications are unpredictable and tend to be
spread across the entire system. This results in frequent requests
for small pieces of remote data. Caches are of little assistance
because of low temporal and spatial locality. Prefetching is of limited
value because request locations are not known early enough. Data-
parallel frameworks such as MapReduce [18] are ineffective because
they rely on data partitioning and regular communication patterns.
Consequently, commodity networks, which are designed for large
packets, achieve just a fraction of their peak bandwidth on small
messages, starving application performance.
High network communication latency The performance chal-
lenges of frequent communication are exacerbated by high network
latency relative to processor performance. Latency of commodity net-
works runs anywhere from a few to hundreds of microseconds – tens
of thousands of processor clock cycles. Since irregular application
tasks encounter remote references dynamically during execution and
must resolve them before making further progress, stalls are frequent
and lead to severely underutilized compute resources.

While some irregular applications can be manually restructured
to better exploit locality, aggregate requests to increase network
message size, and manage the additional challenges of load balance

and synchronization, the effort required to do so is formidable and
involves knowledge and skills pertaining to distributed systems far
beyond those of most application programmers. Luckily, many of
the important irregular applications naturally offer large amounts
of concurrency. This immediately suggests taking advantage of
concurrency to tolerate the latency of data movement by overlapping
computation with communication.

The fully custom Tera MTA-2 [4, 5] system is a classic example
of supporting irregular applications by using concurrency to hide
latencies. It had a large distributed shared memory with no caches. On
every clock cycle, each processor would execute a ready instruction
chosen from one of its 128 hardware thread contexts, a sufficient
number to fully tolerate memory access latency. The network was
designed with a single-word injection rate that matched the processor
clock frequency and sufficient bandwidth to sustain a reference from
every processor on every clock cycle. Unfortunately, the MTA-2’s
relatively low single-threaded performance meant that it was not
general enough nor cost-effective. The Cray XMT approximates the
Tera MTA-2, reducing its cost but not overcoming its narrow range
of applicability.

We believe we can support irregular applications with good
performance and cost-effectiveness with commodity hardware for
two main reasons. First, commodity multicore processors have
become extremely fast with high clock rates, large caches and
robust DRAM bandwidth. Second, commodity networks offer high
bandwidth as long as messages are large enough. We build on these
two observations and develop Grappa, a software runtime system
that allows a commodity cluster of x86-based nodes connected via
an InfiniBand network to be programmed as if it were a single, large,
shared-memory NUMA (non-uniform memory access) machine with
scalable performance for irregular applications. Grappa exploits fast
processors and the memory hierarchy to provide a lightweight user-
level tasking layer that supports a context switch in as little as 38ns
and can sustain a large number of active workers. It bridges the
commodity network bandwidth gap with a communication layer that
combines short messages originating from many concurrent workers
into larger packets.

As a general design philosophy, Grappa trades latency for through-
put. By increasing latency in key components of the system we are
able to: increase effective random access memory bandwidth by
delaying and aggregating messages; increase synchronization rate
by delegating atomic operations to gatekeeper cores, even when
referencing node-local global data; and improve load balance via
work-stealing. Grappa then exploits parallelism to tolerate the in-
creased latency.

Our evaluation of Grappa shows that the core components,
scheduling and communication, achieve their design goals. Thou-
sands of workers can be efficiently context switched on a multicore
processor. Grappa supports high random-access bandwidth and is
able to exploit and load-balance irregular parallelism.

Grappa comprises three main components: a tasking layer, dis-
tributed shared memory, and a communication layer. We will explore
each of these in turn.

1

2. Tasking System
The basic unit of execution in Grappa is a task. When tasks are ready
to execute, they are mapped to a worker, which is akin to a user-level
thread. Each hardware core has a single operating system thread
pinned to it.

Tasks Tasks are specified by a closure (or “function object” in C++
parlance) that holds both code to execute and initial state. The functor
can be specified with a function pointer and explicit arguments, a C++
struct that overloads the parentheses operator, or a C++11 lambda
construct. These objects, typically very small (on the order of 64
bytes), hold read-only values such as an iteration index and pointers
to common data or synchronization objects. Task functors can be
serialized and transported around the system, and eventually executed
by a worker, as described next.

Workers Workers execute application and system (e.g., communi-
cation) tasks. A worker is simply a collection of status bits and a
stack, allocated at a particular core. When a task is ready to execute
it is assigned to a worker, which executes the task functor on its own
stack. Once a task is mapped to a worker it stays with that worker
until it finishes.

Scheduling During execution, a worker yields control of its core
whenever performing a long-latency operation, allowing the proces-
sor to remain busy while waiting for the operation to complete. In
addition, a programmer can direct scheduling explicitly. To minimize
context-switch overhead, the Grappa scheduler operates entirely in
user-space and does little more than store state of one worker and
load that of another. When a tasks encounters a long-latency oper-
ation, its worker is suspended and subsequently woken when the
operation completes.

Each core in a Grappa system has its own independent scheduler.
The scheduler has a collection of active workers ready to execute
called the ready worker queue. Each scheduler also has three queues
of tasks waiting to be assigned a worker:

deadline task queue a priority queue of tasks that are executed
according to task-specific deadline constraints;

private task queue a queue of tasks that must run on this core and
is therefore not subject to stealing;

public task queue a queue of tasks that are waiting to be matched
with workers. It is a local partition of a shared task pool.

Whenever a task yields, the scheduler makes a decision about what to
do next. First, any task in the deadline task queue whose deadline is
imminent is chosen for execution. This queue manages high priority
system tasks, such as periodically servicing communication requests.
Second, the scheduler determines if any workers with running tasks
are ready to execute; if so, one is scheduled. Finally, if no workers
are ready to run, but tasks are waiting to be matched with workers,
an idle worker is woken (or a new worker is spawned), matched with
a task, and scheduled.

Context switching Grappa context switches between workers non-
preemptively. As with other cooperative multithreading systems,
we treat context switches as function calls, saving and restoring
only the callee-saved state as specified in the x86-64 ABI [6]. This
involves saving six general-purpose 64-bit registers and the stack
pointer, as well as the 16-bit x87 floating point control word and the
SSE context/status register. Thus, the minimum amount of state a
cooperative context switch routine must save, according to the ABI,
is 62 bytes.

Since Grappa keeps a very large number of active workers, their
context data will not fit in cache. By oversubscribing on the number of
workers beyond what is required for local DRAM latency tolerance,
the scheduler can ensure there is always some number of context

pointers in the ready queue. This allows the scheduler to prefetch
contexts into cache using software prefetch instructions; the size of
the L1 cache is sufficient to hold enough contexts to tolerate the
latency to main memory. Empirically we find that prefetching the
fourth worker in the scheduling order is sufficient. This prefetching
constrains the types of task scheduling decisions that can be made
but makes context switching effectively free of cache misses, even
to hundreds of thousands of workers. We provide an analysis of our
context switch performance in Section 5.1.

Work stealing When the scheduler finds no work to assign to its
workers, it commences to steal tasks from other cores using an
asynchronous call on active message. It chooses a victim at random
until it finds one with a non-zero amount of work in its public task
queue. The scheduler steals half of the tasks it finds at the victim.
Work stealing is particularly interesting in Grappa since performance
depends on having many active worker threads on each core. Even
if there are many active threads, if they are all suspended on long-
latency operations, then the core is underutilized. The stealing policy
must predict whether local tasks will likely generate enough new
work soon; a similar problem is addressed in [41].

2.1 Expressing Parallelism
Grappa programmers focus on expressing as much parallelism as
possible without concern for where it will execute. Grappa then
chooses where and when to exploit this parallelism, scheduling as
much work as is necessary on each core to keep it busy in the presence
of system latencies and task dependences.

Grappa provides three methods for expressing parallelism. First,
a single task can be created to execute in parallel with the current task
by calling spawn with a functor. This adds it to the queue of tasks
which will be executed the next time a worker is available. Second,
the programmer can invoke a parallel for loop with parallel for,
provided that the trip count is known at loop entry. The programmer
specifies a functor which takes the loop index as a parameter, and an
optional threshold to control parallel overhead. Grappa does recursive
decomposition of iterations, similar to Cilk’s cilk for construct [9],
and TBB’s parallel for [36]. It generates a logarithmically-deep
tree of tasks, stopping to execute the loop body when the number of
iterations is below the required threshold. Third, parallelism can be
expressed via asynchronous delegate operations, which are explained
next, in Section 3.

Figure 1 shows sample code using Grappa for a parallel tree
search. Note how the code looks very similar to a recursive search
procedure for a shared-memory system, without regard for communi-
cation, and Grappa’s parallel loop construct allows easy paralleliza-
tion of the search.

3. Distributed Shared Memory
Applications written for Grappa utilize two forms of memory: local
and global. Local memory is local to a single core within a node in the
system. Accesses occur through conventional pointers. Applications
use local accesses for a number of things in Grappa: the stack
associated with a task, accesses to localized global memory in caches
(see below), and accesses to debugging infrastructure local to each
system node. Local pointers cannot access memory on other cores,
and are valid only on their home core.

Large data that is expected to be shared and accessed with low
locality is stored in Grappa’s global memory. All global data must be
accessed through calls into Grappa’s API.

Global memory addressing Grappa provides two methods for stor-
ing data in the global memory. The first is a distributed heap striped
across all the machines in the system in a block-cyclic fashion. Ad-
dresses to memory in the global heap use linear addresses. Choosing

2

class Vertex {
Key key
int64_t numChildren;
GlobalAddress <Vertex > children;

};

void search(GlobalAddress <Vertex > vtx_addr ,
Key key , GlobalAddress <Vertex > result) {

// blocking remote read to get vertex info
Vertex vtx = delegate_read(vtx_addr);
if (vtx.key == key) {

// key found
delegate_write(result , vtx);

} else {
// spawn stealable tasks for iterations
parallel_for (0,vtx.numChildren ,[=](int i) {

// recursive search
search(vtx.children+i, key , result);

});
}

}

Figure 1: Sample Grappa code illustrating a parallel tree search
similar to the unbalanced tree search benchmark we describe later.
Children are spread over the system, so each parallel recursive search
performs a delegate read to get vertex data.

the block size involves trading off sequential bandwidth against
aggregate random access bandwidth. The block size, which is config-
urable, is typically set to 64 bytes, or the size of a single hardware
cache line, in order to exploit spatial locality when available.

Grappa also allows any local data on a core’s stacks or heap to
be exported to the global address space to be made accessible to
other cores across the system. Addresses to global memory allocated
in this way use 2D global addresses. This uses a traditional PGAS
(partitioned global address space [19]) addressing model, where each
address is a tuple of a rank in the job (or global process ID) and an
address in that process. Any node-local data can be made accessible
to other cores in the system by wrapping the address and node ID
into a 2D global address. This address can then be accessed with a
delegate operation and even be buffered by other cores. 2D addresses
may refer to memory allocated from a single processes’ heap or from
a task’s stack.

Global memory access Access to Grappa’s distributed shared mem-
ory is provided through delegate operations, which are short memory
accesses performed at the memory location’s home node. When the
data access pattern has low-locality, it is more efficient to modify the
data on its home core rather than bringing a copy to the requesting
core and returning it after modification. Delegate operations [30, 33]
provide this capability. Applications can dispatch computation to
be performed on individual machine-word sized chunks of global
memory to the memory system itself. Delegates can execute arbitrary
code, provided they do not block, to ensure communicator workers
make progress. Provided they touch only memory owned by a single
core, we can use them to perform simple read/write operations to
global memory, as well as more complex read-modify-write oper-
ations (e.g., fetch-and-add). We use these primitive operations to
implement higher-level synchronization mechanisms such as mu-
texes, condition variables, and full-empty bits.

Delegate operations are always executed at the home core of
their address. The remote operation may not perform any operations
that could cause a context switch; this ensures any modifications are
atomic. We limit delegate operations to operate on objects in the 2D
address space or objects that fit in a single block of the linear address
space so they can be satisfied with a single network request. Given
these restrictions, we can ensure that delegate operations for the

same address from multiple requesters are always serialized through
a single core in the system, providing atomic semantics without using
actual atomic operations (and thus avoiding their typical high cost).

Delegate operations can be either blocking or asynchronous. With
blocking operations, the task issuing the delegate call blocks until
the delegate operation completes, which is necessary, for example,
to ensure that synchronization has finished before continuing. On the
other hand, remote data accesses often can overlap, and delegates
with no return value may not need to block the caller. To avoid un-
necessary waiting, we support asynchronous delegate operations. For
reads, we support a “futures”-like mechanism which allows tasks to
issue reads in parallel and block on the “promises” returned. Del-
egate write operations may also be performed asynchronously, but
synchronization is still needed to ensure that asynchronous opera-
tions have completed. Grappa provides a GlobalCompletionEvent
synchronization object, which asyncronous operations (including
tasks) can be enrolled. Tasks can block on these objects to be woken
when all enrolled operations are complete.

When programmers want to operate on data structures spread
across multiple nodes, accesses must be expressed as multiple
delegate operations along with with appropriate synchronization
operations. Grappa’s API also includes calls for gathering and
scattering contiguous blocks in the global heap, but the user is
responsible for ensuring correct synchronization.

Memory consistency model discussion As mentioned earlier, all
synchronization operations are done via delegate operations. Since
they all execute on their home core in some serial order, they are
guaranteed to be globally linearizable [24], with their updates visible
to all cores across the system in the same order. In addition, only
one synchronous delegate will be in flight at a time from a particular
task. Therefore, synchronization operations from a particular task
are not subject to reordering. Consequently, all synchronization
operations execute in program order and are made visible in the
same order to all cores in the system. These properties are sufficient
to guarantee a memory model that offers sequential consistency for
data-race-free programs [1] (all accesses to shared data are separated
by synchronization). This is the memory model that underpins
C/C++ [10, 26].

Note, however, that if the application code uses explicit buffers
or asynchronous delegates to access shared data, all updates must be
published back to the home core before the synchronization operation
that protects the data is performed. This is done using release op-
erations on cached regions and using the GlobalCompletionEvent
object to determine that asynchronous delegates have completed.

4. Communication Support
Grappa’s communication support has two layers: user-level messag-
ing interface based on active messages; and network-level transport
that supports request aggregation for better communication band-
width.

Active message interface At the upper (user-level) layer, Grappa
implements asynchronous active messages [42]. Each message con-
sists of a function pointer, an optional argument payload, and an
optional data payload.

Message aggregation In our experiments the vast majority of
application-level messages are small, between 32 and 64 bytes. Our
measurements confirm manufacturers’ published data [15]; with
packets of this size, the available bisection bandwidth is only a
small fraction (3%) of the peak bisection bandwidth. As mentioned
earlier, commodity networks including InfiniBand achieves their peak
bisection bandwidth only when the packet sizes are relatively large –
on the order of multiple kilobytes. The reason for this discrepancy is
the combination of overheads associated with handling each packet

3

(in terms of bytes that form the actual packet, processing time at the
card, multiple round-trips on the PCI Express bus and processing on
the CPU within the driver stack). Consequently, to make the best use
of the network, we must convert small messages into large ones.

Message processing mechanics Since communication is very fre-
quent in Grappa, aggregating and sending messages efficiently is
very important. To achieve that, Grappa makes careful use of caches,
prefetching, and lock-free synchronization operations.

Each processing core of a system node maintains an array of
outgoing message lists. The array size is the number of system cores
in the Grappa system. The outgoing message lists and messages are
located in a region of memory shared across all cores in a Grappa
node (thus enabling cores to peek at each other’s message lists).
When a task sends a message, it allocates a buffer (typically on its
stack), determines the destination system node, and links the buffer
into the corresponding linked list.

Each processing core in a given system node is responsible for
aggregating and sending the resulting messages from all cores on that
node to a set of destination nodes. Each core periodically executes
a task responsible for sending messages. This task examines the
private (to each core) message lists for each destination node it is
responsible for managing and, if the list is long enough or a message
has waited past a time-out period, all messages to a given destination
system node from that source system node are sent. Aggregating
and sending a message involves manipulating a set of shared data-
structures (the message lists). This is done using CAS (compare-
and-swap) operations to avoid high synchronization costs. Note that
we use a per-core array of message lists that is only periodically
modified across processor cores after experimentally determining
that this approach was faster (sometimes significantly) than a global
per-system node array of message lists.

Each node has a region of memory with send buffers where the
final aggregated messages are built. These buffers are visible to the
network card, and messages are sent with user-mode operations
only. When the worker responsible for outbound messages to a
given system node has received a sufficient number of message
send requests or a timeout is reached, the linked list of messages
is walked and messages are copied to a send buffer. This process
requires careful prefetching because most of the outbound messages
are not in the processor cache at this time (recall that a core can be
aggregating messages originating from other cores in the same node).
Once the send buffer has been formed, it is handed off to GASNet for
transfer to the remote system node. RDMA is used if the underlying
network supports it.

Once the remote system node has received the message buffer,
a management task is spawned to manage the unpacking process.
The management task spawns a task on each core at the receiving
system to simultaneously unpack messages destined for that core.
Upon completion, these unpacking tasks synchronize with the man-
agement task. Once all cores have processed the message buffer, the
management task sends a reply to the sending system node indicating
the successful delivery of the messages.

5. Evaluation
We implemented the Grappa in C++ for the Linux operating system.
The core runtime system system is about 15K lines of code. We
ran these experiments on a cluster of AMD Interlagos processors.
Nodes have 32 2.1-GHz cores in two sockets, 64GB of memory, and
40Gb Mellanox ConnectX-2 InfiniBand network cards. Nodes are
connected via a QLogic InfiniBand switch.

5.1 Basic Grappa Performance
User-level context switching Fast context switching is at the heart
of Grappa’s latency tolerance abilities. We assess context switch

overheads using a simple microbenchmark that runs a configurable
number of workers on a single core, where each worker increments
values in a large array.

Figure 2a shows the average context switch time as the number
of workers grow. At our standard operating point (≈1K workers),
context switch time is on the order of 50ns. As we add workers,
the time increases slowly, but levels off: we also ran with 500,000
workers (10 times what is shown in the figure) and found that context
switch time was around 75ns. In comparison, for the same yield test
using kernel-level Pthreads on a single core, the switch time is 450ns
for a few threads and 800ns for 1000–32000 threads.

If we calculate aggregate context switch rate of all cores in a
node, we find that with prefetching, Grappa context switching is
limited not by memory latency, as normally assumed, but rather
memory bandwidth. Specifically, we empirically found that 4 cache
lines (1 for worker struct and 3 for stack data) was sufficient to
avoid cache misses in the microbenchmark. Every context switch
then requires 8 cache-line transfers. The off-chip bandwidth of a
single socket in our system is 270M cache lines per second [32, 33].
This implies that, in the limit, we can sustain at most 34M context
switches per second per socket (a context-switch time of 29ns).

In summary, our tasking layer is able to efficiently sustain
very high concurrency and, as we will show later, the amount of
concurrency sustained is sufficient for the latencies Grappa needs to
hide.

Global memory and communication We measure the performance
of Grappa’s global memory and communication layers using a
faithful implementation of the giga updates per second (GUPs)
benchmark, which measures cluster-wide random access bandwidth.
Read-modify-write updates are dispatched at random to a global
large array. This benchmark stresses the communication layer of
Grappa separately from the scheduler, because only a single worker
is used per system node. Figure 2b shows that Grappa is able to
sustain well over a billion updates per second with 64 nodes. Note
also that when aggregation is turned off, the update rate is nearly
flat. Clearly aggregation is instrumental for good communication
performance.

This compares very favorably to published results [25] for other
high-end HPC systems. Though the actual computation done by
GUPS is not useful, irregular, data-intensive applications typically
must be able to sustain a high rate of random accesses in order to,
for example, visit and mark vertices during a graph traversal. High
random access rate in a distributed setting has been a long-standing
challenge in HPC.

Putting it all together with Unbalanced Tree Search (UTS) Un-
balanced Tree Search (UTS) is a benchmark for evaluating the pro-
grammability and performance of systems for parallel applications
that require dynamic load balancing [35]. It involves traversing an
unbalanced implicit tree: at each vertex, its number of children is
sampled from some probability distribution, and this number of new
nodes are added to a work queue to be visited. While this bench-
mark captures irregular, dynamic computation, we actually want to
evaluate performance of algorithms with irregular memory access
patterns. Thus we augment UTS by using the existing traversal code
to create a large tree in memory, and then we traverse the in-memory
tree. In our modified UTS, the timed portion is this traversal of the
in-memory tree. This in-memory traversal has no knowledge of the
tree structure beforehand.

Figure 2c shows the overall performance of Grappa running
UTS. This experiment demonstrates that Grappa’s context switching
and communication layers can be used together, while balancing
workload, to run an irregular application efficiently.

Visiting vertices in the distributed tree requires mostly remote
accesses, and because each vertex in the tree must be visited before

4

40

80

120

160

0e+00 1e+05 2e+05 3e+05 4e+05
Number of workers

A
vg

 c
on

te
xt

 s
w

itc
h

la
te

nc
y

(n
s)

No prefetching
Prefetching

(a) Average context switch time with and without prefetch-
ing.

0.00

0.25

0.50

0.75

1.00

8 16 32 48 64
Nodes

G
U

P
S

Aggregation:
Enabled
Disabled

(b) GUPS (giga updates per second) with
and without message aggregation.

0

50

100

150

0 8 16 32 48 64
Nodes

M
V

er
ts

/s

Tree:
T1XL
T3L

(c) UTS performance on trees with and
without parallel slack.

Figure 2: Grappa performance.

it can be expanded, blocking remote reads are required. In this case,
we are forced to context switch to tolerate the remote access and
continue aggregating. Figure 1 shows a closely analogous tree search
in Grappa.

We look at two classes of trees, T1 and T3, from the original
benchmark. T1 trees are very shallow and wide (i.e., significant
parallel slack [40]), while T3 trees are very deep (i.e., little parallel
slack). Given that access to each vertex is a random access, the critical
path to search T3 trees is very long, hence the low performance and
scalability. On such trees, we do not expect there to be sufficient
concurrency for any system, including Grappa, to achieve high
throughput – at the 16-node data point, the average active tasks
per core over the search is an order of magnitude larger for T1 than
for T3. Given the lack of parallelism, scaling up only serves to reduce
throughput by distributing the tree to more machines. On the other
hand, Grappa performs and scales very well for T1 trees.

6. Related Work
Multithreading Grappa uses multithreading to tolerate memory
latency. This is a well known technique. Hardware implementations
include the Denelcor HEP [38], Tera MTA [5], Cray XMT [21],
Simultaneous multithreading [39], MIT Alewife [2], Cyclops [3],
and even GPUs [20].

Grappa’s closest ancestor is the Threaded Abstract Machine [16],
a runtime system for prototyping dataflow execution models on
distributed memory supercomputers. The Active Messages [42] work
that grew out of this project inspired our communication layer. One of
the conclusions of this work [17] was that context switch costs can be
low only when contexts are in cache, and that latency tolerance was
not sufficient to guarantee performance on commodity processors.
Grappa demonstrates that times have changed: modern commodity
processors have sufficient bandwidth and prefetch capacity to stream
contexts from DRAM and sustain a very large number of active
contexts.

Grappa implements its own software-based multithreading with a
lightweight user-mode task scheduler to multiplex thousands of tasks
on a single processing core. The main difference between Grappa’s
support for lightweight threads and prior work such as QThreads [43]
and Capriccio [7] is context prefetching, which is needed for good
performance when multiplexing such a large number of tasks.
Software distributed shared memory. Many approaches to SDSM
have been explored, including IVY [28], Munin [8, 12], Tread-
Marks [27], and Blizzard [37]. Much of the innovation has been
focused around reducing the synchronization cost of doing updates.
Grappa’s delegate-based approach to updates avoids synchronization
overhead entirely, providing sequential consistency for data-race-

free programs without the cost of a full coherence protocol. Grappa
accepts the random access nature of irregular applications and opti-
mizes for throughput rather than low latency.
Partitioned Global Address Space languages. The high-performance
computing community has largely discarded the coherent distributed
shared memory approach in favor of the Partitioned Global Address
Space (PGAS) model. Example include Split-C [15], Chapel [13],
X10 [14], Co-array Fortran [34] and UPC [19]. Grappa shares many
parts of its design philosophy with these languages, but differs in that
most PGAS languages expect programmers to modify algorithms to
take advantage of locality by processing node-local data as much as
possible; access to data stored on other nodes is possible but is seen
as something best avoided. Grappa optimizes for random access to
data anywhere in the cluster, while still allowing the explotitation of
available locality.
Distributed graph processing systems. While Grappa is a general
runtime system for any large-scale concurrent application, its features
are well-suited for graph analysis. Other distributed graph processing
frameworks include Pregel [31] and GraphLab/PowerGraph [22, 29].
Both adopt vertex-oriented programming models that work well
for some application domains like machine learning but are too
restrictive for general computation.

While the bulk-synchronous MapReduce [18] model and related
systems such as Hadoop [23] are not a good fit for irregular or
graph problems, the ideas have been extended by systems such
as HaLoop [11] and Spark [44] to better fit iterative graph-based
machine learning problems. Again, the programming model is
restricted compared to Grappa, in exchange for good streaming IO
support and the ability to tolerate node failures.

7. Conclusion
Irregular computations are both important and challenging to execute
quickly. Scaling these applications easily on commodity hardware
has been a historical challenge. Grappa simplifies this task for
software developers and compiler writers. Grappa’s key aspect is
extreme latency tolerance, which not only hides network latency but
also enables the system to spend time on sophisticated work stealing
and network optimizations, trading latency for even more throughput.

Our evaluation of Grappa shows that the core components,
scheduling and communication, achieve their design goals. Thou-
sands of workers can be efficiently context switched on a multicore
processor, limited by DRAM bandwidth. Aggregating messages
enables Grappa to achieve over 1.0 GUPS on 64 nodes. Grappa is
able to exploit and load-balance irregular parallelism in UTS. Work
is ongoing to compare Grappa’s performance with that of other
systems.

5

References
[1] Sarita V. Adve and Mark D. Hill. Weak ordering – A new definition. In

ISCA-17, 1990.

[2] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson,
David Kranz, John Kubiatowicz, Beng-Hong Lim, Ken Mackenzie,
and Donald Yeung. The MIT Alewife machine: Architecture and
performance. In 22nd Annual International Symposium on Computer
Architecture, June 1995.

[3] George Almási, Cǎlin Caşcaval, José G. Castaños, Monty Denneau,
Derek Lieber, José E. Moreira, and Henry S. Warren, Jr. Dissecting
Cyclops: A detailed analysis of a multithreaded architecture. SIGARCH
Computer Architecture News, 31:26–38, March 2003.

[4] Gail Alverson, Robert Alverson, David Callahan, Brian Koblenz, Allan
Porterfield, and Burton Smith. Exploiting heterogeneous parallelism on
a multithreaded multiprocessor. In Proceedings of the 6th international
conference on Supercomputing, ICS ’92, pages 188–197, New York, NY,
USA, 1992. ACM.

[5] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz,
Allan Porterfield, and Burton Smith. The Tera computer system. In
Proceedings of the 4th International Conference on Supercomputing,
ICS ’90, pages 1–6, New York, NY, USA, 1990. ACM.

[6] AMD64 ABI. http://www.x86-64.org/documentation/abi-0.99.
pdf, July 2012.

[7] Rob Von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and
Eric Brewer. Capriccio: Scalable threads for internet services. In
In Proceedings of the 19th ACM Symposium on Operating Systems
Principles, pages 268–281. ACM Press, 2003.

[8] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Munin:
Distributed shared memory based on type-specific memory coherence.
In Proceedings of the Second ACM SIGPLAN symposium on Principles
and Practice of Parallel Programming, PPOPP ’90, pages 168–176,
New York, NY, USA, 1990. ACM.

[9] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient
multithreaded runtime system. In Proceedings of the Fifth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP ’95, pages 207–216, New York, NY, USA, 1995. ACM.

[10] Hans-J. Boehm. A Less Formal Explanation of the Proposed C++
Concurrency Memory Model. C++ standards committee paper
WG21/N2480 = J16/07-350, http://www.open-std.org/JTC1/SC22/
WG21/docs/papers/2007/n2480.html, December 2007.

[11] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst.
Haloop: Efficient iterative data processing on large clusters. Proc. VLDB
Endow., 3(1-2):285–296, September 2010.

[12] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation
and performance of Munin. In Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles, SOSP ’91, pages 152–164,
New York, NY, USA, 1991. ACM.

[13] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel
programmability and the Chapel Language. International Journal
of High Performance Computing Application, 21(3):291–312, August
2007.

[14] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-
awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek
Sarkar. X10: An object-oriented approach to non-uniform cluster com-
puting. In Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA ’05, pages 519–538, New York, NY, USA, 2005. ACM.

[15] David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind
Krishnamurthy, Steven Lumetta, Thorsten von Eicken, and Katherine
Yelick. Parallel programming in Split-C. In Proceedings of the 1993
ACM/IEEE conference on Supercomputing, Supercomputing ’93, pages
262–273, New York, NY, USA, 1993. ACM.

[16] David E. Culler, Seth Copen Goldstein, Klaus Erik Schauser, and
Thorsten von Eicken. TAM – A compiler controlled threaded abstract
machine. Journal of Parallel and Distributed Computing, 18:347–370,
July 1993.

[17] David E. Culler, Klaus E. Schauser, and Thorsten von Eicken. Two
fundamental limits on dataflow multiprocessing. In Proceedings of the
IFIP WG10.3. Working Conference on Architectures and Compilation
Techniques for Fine and Medium Grain Parallelism, PACT ’93, pages
153–164, Amsterdam, The Netherlands, The Netherlands, 1993. North-
Holland Publishing Co.

[18] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data
processing on large clusters. Communications of the ACM, 51(1):107–
113, January 2008.

[19] Tarek El-Ghazawi, William Carlson, Thomas Sterling, and Katherine
Yelick. UPC: Distributed Shared Memory Programming. John Wiley
and Sons, Inc., Hoboken, NJ, USA, 2005.

[20] Kayvon Fatahalian and Mike Houston. A closer look at GPUs. Commu-
nications of the ACM, 51:50–57, October 2008.

[21] John Feo, David Harper, Simon Kahan, and Petr Konecny. Eldorado.
In Proceedings of the 2nd Conference on Computing Frontiers, CF ’05,
pages 28–34, New York, NY, USA, 2005. ACM.

[22] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. PowerGraph: Distributed graph-parallel computation
on natural graphs. In Proceedings of the 10th USENIX conference on
Operating Systems Design and Implementation, OSDI’12, pages 17–30,
Berkeley, CA, USA, 2012. USENIX Association.

[23] Hadoop. Hadoop website http://hadoop.apache.org.

[24] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Transactions on Program-
ming Languages and Systems, 12(3):463–492, 1990.

[25] HPCC. HPCC random-access benchmark http://icl.cs.utk.edu/
hpcc/hpcc_results.cgi.

[26] ISO/IEC JTC1/SC22/WG21. ISO/IEC 14882, Programming Language,
C++ (Committee Draft). http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2008/n2800.pdf, 2008.

[27] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel.
TreadMarks: Distributed shared memory on standard workstations and
operating systems. In Proceedings of the USENIX Winter 1994 Technical
Conference, WTEC’94, pages 115–131, Berkeley, CA, USA, 1994.
USENIX Association.

[28] Kai Li and Paul Hudak. Memory coherence in shared virtual memory
systems. ACM Trans. Comput. Syst., 7(4):321–359, November 1989.

[29] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. Distributed GraphLab: A frame-
work for machine learning and data mining in the cloud. PVLDB, 2012.

[30] Roberto Lublinerman, Jisheng Zhao, Zoran Budimlic, Swarat Chaudhuri,
and Vivek Sarkar. Delegated isolation. In OOPSLA’11, pages 885–902,
2011.

[31] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel:
A system for large-scale graph processing. In Proceedings of the
2010 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’10, pages 135–146, New York, NY, USA, 2010. ACM.

[32] Anirban Mandal, Rob Fowler, and Allan Porterfield. Modeling memory
concurrency for multi-socket multi-core systems. In Proceedings of
the 2010 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS2010), pages 66–75, White Plains, NY,
March 2010. IEEE.

[33] Jacob Nelson, Brandon Myers, A. H. Hunter, Preston Briggs, Luis Ceze,
Carl Ebeling, Dan Grossman, Simon Kahan, and Mark Oskin. Crunching
large graphs with commodity processors. In Proceedings of the 3rd
USENIX Conference on Hot Topics in Parallelism, HotPar’11, pages
10–10, Berkeley, CA, USA, 2011. USENIX Association.

[34] Robert W. Numrich and John Reid. Co-array Fortran for parallel
programming. SIGPLAN Fortran Forum, 17(2):1–31, August 1998.

[35] Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P. Sa-
dayappan, and Chau-Wen Tseng. UTS: An unbalanced tree search
benchmark. In Proceedings of the 19th International Conference on
Languages and Compilers for Parallel Computing, LCPC’06, pages
235–250, Berlin, Heidelberg, 2007. Springer-Verlag.

6

[36] James Reinders. Intel Threading Building Blocks: Outfitting C++ for
Multi-Core Processor Parallelism. O’Reilly Media, 2007.

[37] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt,
James R. Larus, and David A. Wood. Fine-grain access control for
distributed shared memory. In Proceedings of the sixth international
conference on Architectural support for programming languages and
operating systems, ASPLOS VI, pages 297–306, New York, NY, USA,
1994. ACM.

[38] Burton J. Smith. Architecture and applications of the HEP multiproces-
sor computer system. In Proceedings of SPIE 0298, Real-Time Signal
Processing IV, 241, volume 298, pages 241–248, July 1982.

[39] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In Proceedings of the
22nd Annual International Symposium on Computer Architecture, ISCA
’95, pages 392–403, New York, NY, USA, 1995. ACM.

[40] Leslie G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103–111, August 1990.

[41] Rob V. van Nieuwpoort, Thilo Kielmann, and Henri E. Bal. Efficient
load balancing for wide-area divide-and-conquer applications. In
Proceedings of the eighth ACM SIGPLAN symposium on Principles
and practices of parallel programming, PPoPP ’01, pages 34–43, New
York, NY, USA, 2001. ACM.

[42] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and
Klaus Erik Schauser. Active messages: A mechanism for integrated
communication and computation. In Proceedings of the 19th Annual
International Symposium on Computer Architecture, ISCA ’92, pages
256–266, New York, NY, USA, 1992. ACM.

[43] Kyle B. Wheeler, Richard C. Murphy, and Douglas Thain. Qthreads: An
API for programming with millions of lightweight threads. In IPDPS,
pages 1–8. IEEE, 2008.

[44] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster computing with working
sets. In Proceedings of the 2nd USENIX Conference on Hot Topics
in Cloud Computing, HotCloud’10, pages 10–10, Berkeley, CA, USA,
2010. USENIX Association.

7

