
Grappa:
A latency tolerant runtime
for large-scale irregular applications

Jacob Nelson, Brandon Holt, Brandon Myers,
Preston Briggs, Luis Ceze, Simon Kahan, Mark Oskin
Computer Science & Engineering, University of Washington
April 13, 2014

1

We want to solve big ugly problems easily and
efficiently on rack scale systems (and beyond)

• Abstract example:
• TB+ sized directed imbalanced tree
• all memory-resident
• traverse vertices reachable from a

given start vertex
• Other more useful examples:

• finding ephemeral patterns in
streaming graph data (fraud
detection)

• branch-and-bound for optimization
(routing delivery vehicles)

• direct sparse linear solvers (SPICE)

2

A single node, serial starting point

3

struct Vertex {
 index_t id;
 Vertex * children;
 size_t num_children;
};

A single node, serial starting point

4

struct Vertex {
 index_t id;
 Vertex * children;
 size_t num_children;
};

int main(int argc, char * argv[]) {
 Vertex * root = create_big_tree();
 search(root);
 return 0;
}

A single node, serial starting point

5

struct Vertex {
 index_t id;
 Vertex * children;
 size_t num_children;
};

void search(Vertex * vertex_addr) {
 Vertex v = *vertex_addr;

 Vertex * child0 = v.children;
 for(int i = 0; i < v.num_children; ++i) {
 search(child0+i);
 }
}

int main(int argc, char * argv[]) {
 Vertex * root = create_big_tree();
 search(root);
 return 0;
}

A single node, serial starting point

6

struct Vertex {
 index_t id;
 Vertex * children;
 size_t num_children;
};

void search(Vertex * vertex_addr) {
 Vertex v = *vertex_addr;

 Vertex * child0 = v.children;
 for(int i = 0; i < v.num_children; ++i) {
 search(child0+i);
 }
}

int main(int argc, char * argv[]) {
 Vertex * root = create_big_tree();
 search(root);
 return 0;
}

A single node, serial starting point

7

struct Vertex {
 index_t id;
 Vertex * children;
 size_t num_children;
};

void search(Vertex * vertex_addr) {
 Vertex v = *vertex_addr;

 Vertex * child0 = v.children;
 for(int i = 0; i < v.num_children; ++i) {
 search(child0+i);
 }
}

int main(int argc, char * argv[]) {
 Vertex * root = create_big_tree();
 search(root);
 return 0;
}

Add boiler-plate Grappa code

8

struct Vertex {
 index_t id;
 Vertex * children;
 size_t num_children;
};

void search(Vertex * vertex_addr) {
 Vertex v = *vertex_addr;

 Vertex * child0 = v.children;
 for(int i = 0; i < v.num_children; ++i) {
 search(child0+i);
 }
}

int main(int argc, char * argv[]) {
 init(&argc, &argv);
 run([]{
 Vertex * root = create_big_tree();
 search(root);
 });
 finalize();
 return 0;
}

Making graph & vertices into global structures

9

struct Vertex {
 index_t id;
 GlobalAddress<Vertex> children;
 size_t num_children;
};

void search(GlobalAddress<Vertex> vertex_addr) {
 Vertex v = *vertex_addr;

 GlobalAddress<Vertex> child0 = v.children;
 for(int i = 0; i < v.num_children; ++i) {
 search(child0+i);
 }
}

int main(int argc, char * argv[]) {
 init(&argc, &argv);
 run([]{
 GlobalAddress<Vertex> root = create_big_global_tree();
 search(root);
 });
 finalize();
 return 0;
}

Making graph & vertices into global structures

10

struct Vertex {
 index_t id;
 GlobalAddress<Vertex> children;
 size_t num_children;
};

void search(GlobalAddress<Vertex> vertex_addr) {
 Vertex v = delegate::read(vertex_addr);

 GlobalAddress<Vertex> child0 = v.children;
 for(int i = 0; i < v.num_children; ++i) {
 search(child0+i);
 }
}

int main(int argc, char * argv[]) {
 init(&argc, &argv);
 run([]{
 GlobalAddress<Vertex> root = create_big_global_tree();
 search(root);
 });
 finalize();
 return 0;
}

Make the loop over neighbors parallel

11

struct Vertex {
 index_t id;
 GlobalAddress<Vertex> children;
 size_t num_children;
};

void search(GlobalAddress<Vertex> vertex_addr) {
 Vertex v = delegate::read(vertex_addr);

 GlobalAddress<Vertex> child0 = v.children;
 parallel_for(0, v.num_children, [child0](int64_t i) {
 search(child0+i);
 }
}

int main(int argc, char * argv[]) {
 init(&argc, &argv);
 run([]{
 GlobalAddress<Vertex> root = create_big_global_tree();
 search(root);
 });
 finalize();
 return 0;
}

That’s it! Grappa code for a rack scale system!

12

struct Vertex {
 index_t id;
 GlobalAddress<Vertex> children;
 size_t num_children;
};

void search(GlobalAddress<Vertex> vertex_addr) {
 Vertex v = delegate::read(vertex_addr);

 GlobalAddress<Vertex> child0 = v.children;
 parallel_for(0, v.num_children, [child0](int64_t i) {
 search(child0+i);
 }
}

int main(int argc, char * argv[]) {
 init(&argc, &argv);
 run([]{
 GlobalAddress<Vertex> root = create_big_global_tree();
 search(root);
 });
 finalize();
 return 0;
}

13

Straightforward to write, but does it
work?

Comparison against special purpose hardware

14

0

50

100

150

8 16 32 48 64
Nodes

M
Ve

rts
/s

System:
Grappa
Cray XMT1

• 64-node AMD
Interlagos
cluster;
32 2.1GHz
cores & 64GB
RAM per node;
40Gb Infiniband

• 128-node Cray
XMT1; 1
500MHz core &
4GB per node;
CrayXT Seastar
interconnect

Traversing a 1.6B
vertex imbalanced

tree (UTS T1XL)

15

Grappa works: we can scale up a big
ugly problem easily and efficiently.

But what about Grappa is relevant to
rack scale computing when solving

big ugly problems?

At rack+ system scale, chaos is required

• Even easy problems that seem to divide up evenly,
become irregular at scale.
– processor interruptions
– system asymmetries

• Scaling our irregular problems
demand over-decomposition and
dynamic work redistribution => asynchrony

• Chaotic, asynchronous parallelism is required
to get efficient use from rack scale (or larger)
systems when applying many processors on a
single large problem.

16

Yet, at component scale, order is required

• Hardware components designed for order and structure:
• Caches

• efficient when references are grouped or repeated
• Prefetching

• efficient when access is predictable
• Pipelines

• efficient when there are few computational dependences
• Network interfaces

• efficient when messages are infrequent and large (>4KB)
• Atomics, fences

• efficient when not used (ie, when operations do not induce races)
• Ordered parallelism is required for efficiency from individual components

17

18

Grappa addresses this dilemma by
using parallel slack and latency

tolerance

of system design on data-intensive workloads, particularly
large-scale graph analysis problems, that are important among
cybersecurity, informatics, and network-understanding work-
loads. The BFS benchmark builds a search tree containing
parent nodes for each traversed vertex during the search. While
this is a relatively simple problem to solve, it exercises the
random-access and fine-grained synchronization capabilities
of a system as well as being a primitive in many other graph
algorithms. Performance is measured in traversed edges per
second (TEPS), where the number of edges is the edges mak-
ing up the generated BFS tree. With some modifications to the
XMT reference version of Graph500 BFS, the XMT compiler
can be made to recognize and apply a Manhattan loop collapse,
exposing enough parallelism to allow it to scale out to 64 nodes
for the problem scales we show. In order to make comparison
easier, we do not employ algorithmic improvements for any of
these versions, though there are many [11, 57]; this makes our
results difficult to compare with published Graph500 results.
Grappa can be expected to benefit the same as MPI due to
decreased communication.

IntSort This sorting benchmark is taken from the NAS Par-
allel Benchmark Suite [9, 44] and is one on which the Cray
XMT’s early predecessor once held the world speed record [2].
The largest problem size, class D, ranks two billion uniformly
distributed random integers using either a bucket or a count-
ing sort algorithm, depending on the strengths of the system.
Bucket sort executes a greater number of loops, but is able
to leverage locality and avoid communication completely in
the final phase, ranking within buckets. For these reasons, the
MPI reference version and our Grappa implementation use
bucket sort. On the other hand, the Cray XMT cannot take
advantage of locality, but has an efficient compiler-supported
parallel prefix sum, so it performs best using the counting
sort algorithm. The performance metrics for NAS Parallel
Benchmarks, including IntSort, are “millions of operations per
second” (MOPS). For IntSort, this “operation” is ranking a
single key, so it is roughly comparable to “GUPS” or “TEPS.”

PageRank This is a common centrality metric for graphs.
PageRank is an iterative algorithm with a common pattern
of gather, apply, and scatter on the rank of vertex. The algo-
rithm is often implemented by sparse linear algebra libraries,
with the main kernel being the sparse matrix dense vector
multiply. For the multiply step, Grappa parallelizes over the
rows and parallelizes each dot product. PageRank has the
fortunate property that the accumulation function over the
in-edges is associative and commutative, so they can be pro-
cessed in any order or in parallel. Rather than the programmer
writing the parallel dot product as local accumulations with
a final all-reduce step, we simply send streaming increments
to each element of the final vector. We compare PageRank
to published results for the Trilinos linear algebra library im-
plemented in MPI [48], and multithreaded PageRank for the
XMT [10]. For Grappa, we run on a scale 29 graph using the

Graph500 generator.
The metric we use is algorithmic time, which means startup

and loading of the data structure (from disk) is not included in
the measurement. Grappa collects statistics about application
behavior (packets sent, context switches, etc) and these are
discussed where appropriate.

7. Evaluation
The goal of our evaluation is to understand whether the core
pieces of the Grappa runtime system, namely our tasking
system and the global memory/communication layer, work
as expected and whether together they are able to efficiently
run irregular applications. We evaluate Grappa in three basic
steps:
• We present results that show that Grappa can support large

amounts of concurrency, sufficient for remote memory ac-
cess and aggregation. The communication layer is able to
sustain a very high rate of global memory operations. We
also show the performance of a graph kernel that stresses
communication and concurrency together.

• We characterize system behavior, including profiling where
execution time goes, and how aggregation affects message
size and rates.

• Finally, we show how some more realistic irregular work-
loads on Grappa compare to the Cray XMT and hand-tuned
MPI code.

7.1. Basic Grappa Performance

User-level context switching Fast context switching is at
the heart of Grappa’s latency tolerance abilities. We assess
context switch overheads using a simple microbenchmark that
runs a configurable number of workers on a single core, where
each worker increments values in a large array.

40

80

120

160

0e+00 1e+05 2e+05 3e+05 4e+05
Number of workers

Av
g

co
nt

ex
t s

w
itc

h
la

te
nc

y
(n

s)

No prefetching
Prefetching

Figure 5: Average context switch time with and without

prefetching.

Figure 5 shows the average context switch time as the num-
ber of workers grow. At our standard operating point (⇡1K

7

Software prefetching of contexts

19

At 1K thread
operating point,

~50 ns

500K threads: 75 ns

This is switching at
the bandwidth limit

to DRAM!

Pthreads:
450-800 ns

Mitigating low injection rate with aggregation

20

Wire
Msg

Stack

Worker 3

Msg 3

Stack

Worker 2

Msg 2

Stack

Worker 1

Msg 1

Node 0 Node n

2. Serialize
Messages using

Prefetching.

Msg 3

Msg 2

Msg 1

Wire
Msg

Msg 3

Msg 2

Msg 1 4. Deserialize
and Execute
Messages.3. Send over

network.

1. Queue
Messages in
Linked List.

1 16 256 4096 65536 1048576
Message size (bytes)

0B

1B

2B

3B

M
ax
im
um

 b
an

dw
id
th
 (
by
te
s/
se
co
nd

) Raw MPI

Grappa, raw GASNet

Grappa, aggregated

Sheet 3

21

var

DRAM DRAM DRAM DRAM

var+1var+1var+1

Accessing memory through delegates

Each word of memory has a designated home core
 All accesses to that word run on that core

 Requestor blocks until complete

22

var

DRAM DRAM DRAM DRAM

var+1

var+1

var+1

Accessing memory through delegates

Since var is private to home core,
updates can be applied

var+1var+1var+1

0.00

0.25

0.50

0.75

1.00

8 16 32 48 64
Nodes

G
U
PS

Update type:
Blocking
Delegated

Random update BW is good

23

Theoretical peak at 64
nodes is 6.4 GUPs, so

this is work in
progress.

Minimal context
switching

GUPS
pseudocode:

global int a[BIG];
int b[n];
for (i=0;i<n;i++)
 a[b[i]]++;

©2013 Simon Kahan

annihilate (or void fn).

General Combining Scheme
Asynchronous (Competitive)
•Arbitrary # computations
•Any number of threads
•Timing of interaction arbitrary
•Chaos!

Synchronous (Collaborative)
•Single computation
•Number of threads is explicit
•Synchronized, exclusive access to data
•Order!

Data
Structure

make requests …
Asynchronous threads…

combine in funnel…
aggregate tries lock…

if fail, circulate...

got lock!

re-enter funnel and try
again…

Satisfy aggregate in
parallel
synchronously…

release lock…de-aggregate, returning results in parallel
to requesting threads.

Similar to “Combining Funnels: a Dynamic Approach to Software Combining”, Nir Shavit, Asaph Zemach, 1999

Conclusion

• Grappa allows easy expression of asynchronous parallelism
• providing the concurrency needed to get high system utilization on big

ugly problems on rack scale computers
• and efficient transformation into ordered parallelism

• by transforming the chaos to the order for which individual components
are designed.

• through use of parallel slack to tolerate latency.

• What this means is that we can more easily write programs to attack
large ugly problems at scale.

• Try it!

25

http://grappa.io/

26

Questions?

1

