
 
 

As Computer Users Grow More Savvy: 
Experiences with a Multimedia Tool 

 

David Bargeron and Jonathan Grudin 
Microsoft Research 
One Microsoft Way 

Redmond, WA  98052-6399  USA 
+1 425 703 7526 

{davemb, jgrudin}@microsoft.com 
 

 
ABSTRACT 
Software that can be widely used with little or no 
modification has advantages for producers and consumers. 
But it is likely to require some adjustment by users. We 
describe more than three years of studies of a conceptually 
simple multimedia annotation tool, which we expected to 
be widely useful without modification. We encountered a 
surprising range of specific requirements, including 
context- and content-specific needs that forced us to shift 
from an application focus to a platform focus. Instead of  a 
single general-purpose tool, we ended up producing a 
toolkit to support asynchronous group interaction, with 
which many task-specific applications were built. This has 
far-reaching implications. For application designers, 
software developers, and researchers. As computer users 
become more aware of the versatility and flexibility of 
software, general purpose shrinkwrap software may fade 
away. 

Keywords 
Software platforms, requirements, multimedia, annotation 

INTRODUCTION 
A single, widely-used application and interface has obvious 
benefits to its developer, and consumers benefit as well. 
Amortized design and development costs lead to lower 
prices. A uniform interface can be more carefully designed,  
as can  training, maintenance, and upgrades. Help guides, 
books, and other support can more easily be provided in a 
scalable manner. 

But there are limits to how generic an interface can be 
before it fails to meet context-specific requirements, and 
the contexts of computer use are expanding. Pull-down 
menus that worked well for the original 8” Mac will be 
unacceptable for wall-sized displays. A simple search 
feature that is useful in a word processor is insufficient for 

a database application or the web. Generic spreadsheet 
functionality is insufficient for vertical markets such as 
insurance and accounting. At some point differences in 
context force differences in the underlying software despite 
the added expense of adaptation.  

Consider these trends: 

1. Software is undertaking to do more for people. The 
closer it engages with our activities, the more it 
encounters differences in how we prefer to work. 

2. Computer users know that software is malleable. As 
expectations rise, willingness to adapt behavior to the 
software may decrease. Usability has slowly emerged 
as an evaluation factor in the press. 

3. Features that support communication and collaboration 
are increasing. Supporting groups and organizations 
introduces additional requirements [7]. 

These trends tilt the balance away from “generic” interfaces 
toward task-specific support. They encourage platforms on 
which specialized user interfaces can easily be fashioned. 
The third trend has been discussed less than the others but 
provides useful insights. 

Groupware development was eagerly embraced in the 
1980s and 1990s, but apart from email, few products 
designed explicitly to support groups were commercial 
successes. Consider the example of electronic meeting 
rooms: After decades of research, several products 
appeared in the early 1990s (e.g., IBM TeamFocus and 
Ventana GroupSystems). None did well. Several years later 
Microsoft NetMeeting was released for distributed 
meetings. It fared somewhat better, as has GMD’s BSCW 
for asynchronous groups. Being free undoubtedly helped. 
But NetMeeting has been discontinued and BSCW remains 
in limited use after many years. 

Despite the poor record of the 1990’s, the flow of products 
in which software represents and supports groups continues 
unabated: Groove, eRooms, Sharepoint, scores of workflow 

 



management systems, and so on. But until we understand 
better why so few products survive, the prognosis for these 
remains uncertain at best. 

A notable exception to this bleak account is Lotus Notes, a 
commercial group support product that is widely used. A 
key characteristic distinguishing Notes is that it is an 
application development environment, not an application. 
Non-trivial development work is needed for each group 
using Notes, resulting in an application tailored to the 
group’s particular requirements. 

The case described in this paper suggests that in the decade 
since Notes appeared, the trends listed above have brought 
us to a point where the same platform-type approach may 
be needed even for a much more specialized product. We 
describe three years of experiences with a multimedia 
annotation tool that was designed to support collaboration 
around archived video, primarily in educational settings. 
The tool is easy to understand, and was intuitively 
appealing to many people, and we receive frequent requests 
for the software based on published accounts of specific 
studies. Yet our experience indicates that the software 
would not be adopted without major modifications before 
each deployment. 

The key message is that very experienced researchers and 
developers do not realize how strong this effect is. Not only 
did we fail to see the reluctance of different groups to adopt 
our initial uniform application, but educational technology 
researchers at Illinois, Colorado, MIT, and elsewhere who 
requested the system underestimated these phenomena as 
well. It is important that they be better understood. 

Following a brief discussion of related work in the next 
section, we describe our initial multimedia system. We then 
review a series of lab studies and field deployments, 
focusing on different interfaces that resulted. Finally, we 
discuss the implications of these results for designers of 
platforms and applications. 

RELATED WORK 
This paper describes a series of interfaces to an 
asynchronous multimedia annotation system. The system 
shares features with other systems such as Classroom 2000 
[1]. Our focus here is only incidentally on system features. 
More detailed descriptions of issues guiding the 
functionality of multimedia annotation systems and reviews 
of related systems can be found in [2], [3], and [8]. 

This paper leads into a  discussion of application tailoring 
and customization. In the HCI literature, this discussion 
focuses on enabling “end-users” to tailor their 
environments [4] [5] [6] [10], although studies show they 
rarely bother [e.g., 9]. In contrast, we do not propose highly 
customizable interfaces aimed at end users. Rather, we 
propose that designers shift their thinking toward more 
generic platforms on which domain experts (not necessarily 
software developers) can fashion task-specific interfaces. 

Extensible and tailorable systems have constituted a major 
topic in the software engineering literature [11]. Although 

the goals of extensibility in software engineering differ 
from our goals in designing a multimedia annotation 
system, much can be learned from software engineering in 
the area of designing generally useful platforms. 

MULTIMEDIA ANNOTATION SYSTEM 
In this section we examine our initial system design goals, 
and we describe the architecture and original user interface 
features of the system. As preface, we present a scenario to 
illustrate the use of our multimedia annotation system as 
we originally envisaged it. 

Scenario 
A student logs in to watch a class lecture in the evening 
from her home computer. Through her web browser she 
receives the audio and video of the lecturer, the associated 
slides that flip in synchrony with the video, and notes 
associated with the slides. In addition to typical VCR-like 
navigation features for the lecture video, there is a table of 
contents of slide titles, and with a click she can “seek” or 
jump the presentation to the appropriate slide and audio-
video point. 

The student also sees questions and comments entered by 
classmates who watched the lecture before her, as well as 
responses from other students, teaching assistants, and the 
lecturer. These questions are linked to the lecture content. 
As she watches a lecture, questions asked during that 
portion of the lecture are automatically highlighted or 
“tracked.” The content of a question appears in a preview 
window; if one piques her interest she can jump the 
presentation to it. As she is watching, she sees a question 
that nobody has answered. She types a response, which is 
automatically registered with the system and displayed with 
the question. The person who posed the question is notified 
of the reply by email. 

Later, the student has a question. She selects the “ask 
question” button, then types a subject header and her 
question. Afraid that the question may sound uninformed, 
she makes it anonymous. In addition, she enters the email 
address of a friend, who may be able to answer it before the 
TA gets to it. When she saves the question, it is added to a 
pre-existing shared "discussion" collection, “tied” to the 
current point in the lecture, and automatically emailed to 
the TA alias and to her friend.  

A TA browsing through his email sees the question arrive 
and opens the message. The email includes the text of the 
question along with a URL pointer to the point in the 
lecture where the question was asked. It also contains 
enough meta information for a reply to be added to the 
annotation database, making it visible to students who later 
watch the lecture. 

The student can similarly record personal notes and 
participate in small-group discussions, also linked to the 
lecture. These are added into different collections, with 
permissions set appropriately. 



Initial System Design Goals 
This scenario helps illustrate some of our initial design 
goals. In particular, we wanted:  

•  A general-purpose user interface to support the kind of 
activity presented in the scenario above, across a wide 
variety of web pages containing embedded video 
(college course and corporate training web pages, news 
websites like CNN, and software usability study pages, 
to name a few). 

•  Fine-grained organization and access control structures 
to support structured sharing among groups of users. 
We wanted to be able to collect annotations into sets 
and control who could add annotations to the set and 
who could see annotations in the set. With this simple 
mechanism, we could create a shared discussion set for 
a college class, a personal notebook set for each user, a 
table of contents set for each video file, and so on. 

•  Close integration with email so that annotations could 
be sent out via email and replies could be cast as 
annotations by the annotation server. Email is widely 
used and well suited for asynchronous collaboration, 
and with close integration a single conversation can 
span both mediums. 

•  Anchoring and display of annotations “in-context” of 
multimedia content just like notes in the margin of a 
book, so that we could tie annotations to particular 
points or ranges along a media timeline.  

•  Annotations stored external to the annotated content 
(e.g., the audio-video file) in a separate store. This is 
critical as it allows third parties to add annotations 
without having write access to the content. For 
example, students should not be able to modify an 
original lecture.  

At the outset, we believed a single, well-designed user 
interface could meet these goals and support a wide variety 
of collaboration scenarios. Thus, we did not initially plan 
any interface specialization capability. We used lab studies 
to identify problems and possibilities and iterate on this 
design. But each field study described below identified new 
design requirements specific to the group using it, and 
without which the acceptability of the system was in doubt. 
This called into question how useful a single “generic” 
interface could be, and we ultimately moved to a platform 
approach similar to Lotus Notes. This has significant 
implications for its eventual deployment. 

Original System and User Interface 
We built the original system in 1998 to support annotation 
of multimedia content that appears anywhere on the web. 
When a user accesses a web page containing video, the 
browser contacts the web server to get the HTML page and 
the video server to get the video content. Annotations 
associated with the video on the web page can be retrieved 
by the client from the annotation server. 

Figure 1 shows the interaction of these networked 
components. The annotation server communicates with the 
annotation client via HTTP. Annotations are keyed on the 
URL of the media with which they are associated. The 
annotation server communicates with email servers via 
SMTP, and can send and receive annotations in email. 

Figure 2 shows the UI of our initial system. The user views 
a web page with embedded video in a standard web 
browser. There may be other synchronized content that 
accompanies the video, such as slides, but our initial 
system ignored all such content. Annotations made 
previously on the embedded video appear in a separate 
window (to the right of the video in Figure 2). Indented 
annotations are replies. An arrow indicates the annotation 
linked to the spot closest to the current position of the 
video, and the highlighted annotation has been selected by 
the user. The preview window shows the text of the 
selected annotation, and if none is selected it will show the 
text of the nearest annotation. Various controls appear at 
the bottom of the browser display and in a menu summoned 
with a mouse click. 

 
Figure 2. The first interface. An annotation window appears 
over a browser window in which a video plays. 

Annotation
Server

Web
Server

Video
Server

Email
Server

CLIENT

 
Figure 1. The Annotation Server fits into a standard 
multimedia network architecture. 



When replying to an annotation or adding a new one, a 
viewer has a choice of making a text or voice annotation. 
Figure 3 shows the respective dialogue boxes. 

LABORATORY STUDIES AND GENERAL INTERFACE 
IMPROVEMENTS 
We conducted laboratory studies of the use of the system, 
detailed in [2]. We examined the use of text and voice 
annotations, contrasted paper and pencil annotation-taking 
with the use of the system, analyzed the effects of reading 
others’ annotations on sustaining discussion among a group 
watching a lecture video asynchronously, and got feedback 
on many aspects of the interface. These studies  led to 
substantial interface changes as well as some evolution of 
the features. 

As shown in Figure 4, we modified the tool’s interface so 
that it could be embedded in a standard web page and 
easily configured to fit the “look and feel” of the rest of the 
page. In the web page displayed in Figure 4, tabs at the 
bottom of the annotation frame in the lower left allowed the 
user to select one of three annotation sets: Contents (a list 
of slide titles), Questions (for viewing prior public 
annotations), and Notes (for viewing personal notes one has 
taken). At the top of this frame were buttons for adding to 
the public discussion or personal notes.  

Regarding functions, the lab study revealed an 
unanticipated lack of interest in voice annotations. We 
therefore added the ability to configure which annotation 
media types (text, audio, or web urls) were available to 
users. Voice annotations were found to be less useful for 
subsequent viewers since they cannot be previewed as the 

video rolls. More significantly, though, they cannot be 
edited and polished the way text can.  

People chose to pause the video when adding text 
annotations, so we made it possible to configure the 
annotation client to pause the video automatically when an 
annotation is being added. Curiously, pausing a video to 
make notes on it more than doubled study participants’ 
viewing time, however all participants reported preferring it 
to taking notes while the video was playing.  

In general, the design of the annotation software evolved to 
accommodate more flexible construction of task-specific 
interfaces. More details of the system, lab study, and the 
field study that follows, can be found in [3]. 

Following this iterative design process we had a robust 
prototype and considered deployment sites. We settled on 
two domains: The education context covered in the 
scenario we presented earlier; and support for analysis and 
dissemination of results from software usability studies, 
which are routinely videotaped. 

FIELD STUDY IN ‘C’ LANGUAGE COURSES 
To conduct this study, we observed and videotaped a C 
programming course taught by our internal education group 
and attended by employees. We then used the digitized 
video and slides to conduct two on-demand versions of the 
course. Students signed up for the courses in the usual way, 
aware that these offerings would involve an experimental 
system. They met face to face at the beginning and end of 
the course and used our multimedia annotation interface to 
view the lectures and interact in the interim. 

Early in our observations we realized that programming 
language classes make particularly heavy use of online 
demos that are not picked up adequately by a single video 
camera focused on the instructor. This motivated a system 
modification: demos were captured after lectures were 
taped, and links to the demos were added as annotations 
that would execute appropriately as the lecture video was 
viewed. This modification can be seen in Figure 5. 

Results 
Students in the two on-demand series of classes were 
generally very positive, citing the convenience of watching 
on-demand. Instructors had fewer time demands, however 
they missed direct contact with students. Class interaction 
was at a level close to that of the live class. 

Student and instructor comments pointed out some general 
and specific aspects of using the system for the C 
programming class. At the general level, the students 
benefited from clarification questions asked in the live 
class, which they saw online. A number noted that they 
asked fewer questions than they might have because their 
questions were already answered, either on the video or 
with the system. Good questions and the replies could of 
course be left in place for subsequent classes.  

One student complained about a detail in the interface, 
saying “I have questions about C, I don’t want to ‘Discuss’ 
C.” Our choice of the term “Discussion” for the public 

 
A: text annotation. 

 

 
B: voice annotation. 

 

Figure 3: Adding a new annotation. 



annotation set might be appropriate for seminar-style 
classes, but was apparently not for this one. We 
subsequently changed this (Figure 5). 

More seriously, the flexibility of asynchronous viewing led 
some students to procrastinate, to others’ detriment as well 
as their own, since last-minute viewing is not conducive to 
creating and sharing comments with the class (e.g. via 
annotations on the lecture videos). This led us to extend the 
system to include features that are modeled on approaches 
to discourage procrastination in some live classes: group 
exercises and quizzes. 

Follow-up laboratory studies 
We used our system’s built-in annotation set mechanism to 
create annotation sets for small-group projects. Annotations 
in a small-group set were shared by the few students 
assigned to work together if they could not meet face to 
face. The group’s product was reported using the class-
wide annotation set. In this case, ‘Questions’ was no longer 
an appropriate label for the shared class-wide annotation 
set, and ‘Discussion’ was restored.  

The system and interface was then used in a laboratory 
study to gauge the effectiveness of the group project 
approach [8]. It was found to be successful, and the study 
also generated a strong demand for a feature that was not 
included: The ability to easily copy or link an annotation 
from one set to another. 

We also extended the interface to include quizzes linked to 
the video via annotations. Questions appeared at designated 
points in the video and were potentially useful for self-
assessment, grading, or monitoring progress. After 
responding students could be given a link to the appropriate 
spot in the lecture to review the question topic. We 
conducted a laboratory study to explore student reactions 
and such issues as whether people prefer a question to stop 
the video or to scroll by in the preview window, and found 
that preferences vary. In conclusion, the field study led to 
the discovery of a range of interface issues and the 
identification of additional task-specific features: means for 
incorporating demos for certain kinds of classes, interface 

terminology dependencies for different classes, support for 
group projects and assessment tools of different kinds. 
Class content, instructor style, and student style created 
different user interface demands. 

MULTIMEDIA ANNOTATION USE BY USABILITY 
ENGINEERS 
We explored the use of the system with usability engineers 
(UEs) who supported several product groups. After taping 
participants in studies, UEs typically review and take notes 
on the videos, laboriously identify and excerpt segments 
illustrating key points, and disseminate observations in 
meetings (where they show the video highlights) and 
documents (where they do not). We expected that the 
annotation system would allow them to annotate digitized 
videos as they review them, providing others with links to 
relevant portions. Viewers could choose to view material 
before or after a chosen highlight if need be (which they 
could not do when the highlights were excerpted). 

We quickly discovered that this activity represents a 
conceptual shift from lecture viewing. The shift could be 
described as going from a timeline-centric point of view to 
an annotation-centric perspective. The assumption with a 
lecture is that viewers generally watch from beginning to 
end, though they can use annotations to jump from point to 
point. Everything is organized around the video timeline.  

Usability engineers, once they have reviewed the tapes and 
annotated segments of interest, need to collect the segments 
for presentation together. For example, a usability engineer 
may annotate three different regions (in different video 
files) showing examples of users misunderstanding the 
same menu label. They then need to play the video 
segments to which their annotations correspond one after 
another. Thus, rather than watching a single video and its 
associated annotations, they need to watch a set of 
annotations and the video segments they annotate. 

This led to the development of the “playlist” feature. A 
playlist is a sequence of video annotations, possibly from 
different target videos, which can be played sequentially: 
when one segment ends, the next will be played. 

 

 
Figure 4. Browser-based interface following lab studies. 

 

Figure 5: C class interface: “Questions” replace 
“Discussion,” among other changes. 



Our first interface handled playlists in a straightforward 
manner: right-clicking brings up a menu item that provides 
access to playlists (Figure 6). 

This interface quickly proved mismatched to the UE’s task, 
however. Results are communicated in face-to-face review 
meetings, where this playlist feature would be a fine 
supplement to a slide presentation. However, comments 
from team members are collected verbally in such 
meetings, and the key feature of supporting asynchronous 
discussion is not useful. UEs circulate their findings via 
email also, and we thought that this is where our annotation 
system could be of use. 

We found, however, that UEs were not willing to adapt to 
use the annotation system -- or felt their teams were not 
willing -- even when we managed the process of digitizing 
the videos. They wanted to have the multimedia annotation 
functionality embedded in the documents or slide 
presentations that they sent around in email. 

This led to the development of a prototype interface that 
did just that. Figure 7 is an example of a video annotation 
interface embedded directly in a Word document. The 
example shown is not from a usability report, but it shows a 
new arrangement of features including no slide window and 
a larger preview window. 

SHAKESPEARE COURSE USE AND INTERFACE 
It was clear to us at this point in our research that, contrary 
to our initial conception, the classroom and usability 
requirements for multimedia annotation differ quite 
substantially. We focused on the classroom environment 
for the next experiment. Peter Donaldson, an MIT professor 
of Drama, was interested in using our annotation system for 
a class in which students compare filmed performances of 
Shakespeare’s plays. 

It became clear that to be acceptable in this class, the 
interface required additional modification. Figure 8 on the 
next page shows several major feature changes. To 
compare performances or aspects of performances, a 
second video window is added. Buttons beneath the video 
windows provide much finer-grained control of playback 
than previous interfaces, such as single-stepping forward or 
backward by frame.  

One might consider this to be “gold-plating’ the interface, 
but without these and other features, the system would not 
have been accepted. It might have been accepted ten years 
ago, but due to the software’s flexibility and users’ savvy in 
this case, there was significant demand to create a 
specialized interface. 

The system was used in class projects during the fall 
semester, 2000. “In a couple of cases [the annotation 
system] got students in touch with the films in ways that 
don't happen with conventional essays,” Donaldson 
reported [personal communication, Winter 2001]. 

Although this outcome is exciting, the experience has also 
proved to be a source of concern. It required considerable 
effort to develop the interface for the film class, and that 
interface is not likely to be useful for other classes. It may 
be useful for other film classes, but even that is not a 
foregone conclusion, since instructors’ teaching styles and 
class format differ significantly. 

PLATFORM REQUIREMENTS 
Our initial hope, that a single multimedia annotation 
interface would sufficiently support asynchronous group 
collaboration and would find broad applicability, has so far 
not been borne out. Wherever we have looked, we have 
found new and often orthogonal, perhaps incompatible, 
interface requirements.  

Are we involved in a process for defining a range of 
features that can eventually be brought into a single 
package that many users can adapt to their purposes? Or 
should we focus on building a platform or toolkit that 
others can use to design specific interfaces that will vary 
considerably based on domain and approach? 

 

Figure 6. Playlists: A major conceptual change. 

 

Figure 7. Annotation system embedded in a document. 



All indications point to the latter. There are clearly 
commonalities shared among the different task domains we 
have studied, however there are enough differences among 
them to require distinct interface features for each context. 
A general-purpose multimedia annotation interface that 
incorporates all features could be too complex to be useful 
in any context. The most prudent and fruitful direction to 
head in has been toward a generic annotation platform, on 
top of which task-specific user interfaces can easily be 
fashioned with a modicum of programming skill. 

There are general lessons to be learned from our 
experience. First, we distilled several requirements for a 
generic multimedia annotation platform for support of a 
wide variety of asynchronous collaboration scenarios: 

•  Thorough support for common activities. The most 
common annotation functions -- such as creating, 
saving, retrieving, and deleting annotations -- should 
be the easiest to incorporate into an interface. 

•  Extensibility and customizability at both the interface 
and platform levels. For instance, designers should be 
able to extend an annotation’s schema to accommodate 
task-specific features like voting, logging the number 
of times the annotation has been read, assigning an 
annotation “type” (“comment,” “question,” etc), or 
controlling annotation status (“open issue,” “resolved,” 
etc). 

•  Storage flexibility. Designers should be able to store 
annotations in a variety of configurations. For personal 
annotations, it may be important to store annotations in 
the video or audio file itself for portability purposes.  
For shared annotations on read-only media, 
annotations may be stored in a separate database. 
Storing annotations in one facility should not preclude 
transferring them to another. 

•  Universal annotation support. Ultimately, a general-
purpose annotation platform should support annotating 
any media type with any other media type.  Many of 
the problems encountered with annotations on video 
and audio apply to annotations on text, images, and 
complex composite presentations. 

•  Interoperability among task-specific interfaces. 
Annotations made in one interface based on the 
platform should be transferable to another interface 
based on the platform with minimal effort. 

We are currently developing a more powerful annotation 
platform with a more flexible interface toolkit. More 
generally, these studies and field deployments have 
implications for designers of other systems, for third parties 
who will tailor such platforms for specific domains, and for 
the users of resulting applications. 

GENERAL DISCUSSION 
We set out to explore a multimedia system, drawing on 
field studies to enrich our understanding of what such 
systems should support and laboratory studies to refine the 
interaction design, and on interface features of what we 
anticipated would be a widely-used product. We were led 
to a different goal, providing a toolkit or application 
development environment. 

Should we have anticipated this? If so, there is little point 
to this paper. But there is evidence that the world is 
changing. A single product and interface in an area this 
focused is still very intuitive, and until recently users might 
have been willing to adopt it and adjust to it ‘as is’. Yet the 
users and groups we encountered were not. 

Shifting from a product to platform focus has extensive 
implications for deployment, so if what we encountered 
reflects a general trend, it needs to be considered carefully 
across the software industry. 

The challenges we encountered were of course not 
anticipated by our team, despite considerable experience 
designing multimedia systems. Nor were the challenges 
anticipated by our numerous partners in these experiments. 
Quite the contrary, they were enthusiastic about the system 
based on initial viewings. Finally, when we published 
specific studies, we received numerous requests for the 
software ‘as is’ by a broad range of people, including 
computer scientists focused on educational technology at 
several major universities. The fact that it might not be 
accepted by users was voiced by no one. 

The process of analyzing general platform requirements 
from task-specific contexts and then driving them into a 
platform has been a crucial step in our work, because it 
makes quickly developing new task-specific interfaces 
easier. As users become more savvy and demand even 
more customization, providing platforms that can be easily 
specialized will become easier than providing one-off task-
specialized interfaces. 

Software specialization is not new. Novel interfaces have 
long been built to applications such as Microsoft Word or 

 
Figure 8. The Shakespeare interface: Understanding drama 
by comparing performances. 



Excel to support vertical markets. But generic off-the-shelf 
Word and Excel were useful applications to many people 
‘out of the box.’ Customized versions came later. It is not 
clear that a generic multimedia annotation system can be 
designed that will be widely appreciated ‘as is.’ A toolkit 
approach that supports a range of interfaces customized to 
different content and styles looks more promising here. 
Because the trends of more knowledgeable users desiring 
more fine-grained support that includes communication and 
collaboration support are general, many other applications 
are likely to show the same pattern. 

This has implications for developers and vendors, and for 
customers and users. The former must focus on developing 
platforms or toolkits, and must consider who will use these 
to develop specific interfaces for each customer or group of 
users. The dream of ‘end-user programming’ or extensive 
personal customization is not safe to rely upon. 

Consider the educational environment that we targeted. We 
could not construct interfaces for many courses ourselves. 
At the same time, course instructors could not be expected 
to recognize in advance what features and interfaces would 
work for their classes. Third parties are needed, whether 
consultants, vendors specializing in particular kinds of 
classes, or academic IT support staff.  

CONCLUSION 
Software users are becoming more sophisticated and 
demand support at a more detailed level. Their willingness 
to adapt to an all-purpose interface appears to be 
diminished, with significant implications for vendors. 

We have described experiences with multimedia annotation 
systems designed to support classes and other groups. 
Despite favorable responses to our specialized interfaces, 
we came to appreciate the elusiveness of a single interface 
that would be widely useful. The technology is promising, 
but the path to realizing its uses is likely to be through 
development of a platform on which third parties can build. 
This did not seem appropriate for what initially appeared to 
be a simple application. 

To support specialized activities carried out by increasingly 
demanding customers, potential partners in development 
must be considered from the outset. Turn-key systems or 
shrinkwrap software are rapidly losing viability. Designers 
of systems should take this into consideration and plan field 
studies as well as laboratory studies to identify the range of 
interfaces and components that will be needed, and partners 
who will work with specific individuals and groups. 

We hope that this paper will save other researchers and 
developers who are working on problems of comparable 
complexity the years we spent reaching this view of the 
changes in our field. 

ACKNOWLEDGMENTS 
We thank Anoop Gupta, Scott LeeTiernan, Francis Li, 
Elizabeth Sanocki, Peter Donaldson, Belinda Yung, 
Marshall McClintock, Randy Hinrichs, David Aster, and 
others for their contributions. 

REFERENCES 
1. Abowd, G., Atkeson, C.G., Feinstein, A., Hmelo, C., 

Kooper, R., Long, S., Sawhney, N., and Tani, M. 
Teaching and Learning as Multimedia Authoring: The 
Classroom 2000 Project, Proceedings of Multimedia ’96 
(Boston, MA, Nov 1996), ACM Press, 187-198. 

2. Bargeron, D., Gupta, A., Grudin, J. & Sanocki, E., 
1999. Annotations for streaming video on the Web: 
system design and usage studies. Proc. WWW8, 61-75. 

3. Bargeron, D., Gupta, A., Grudin, J., Sanocki, E. & Li, 
F., 2001. Asynchronous collaboration around 
multimedia and its application to on-demand training. 
Proc. HICSS-34, CD-ROM, 10 pages. 

4. Dourish, P., 1995. Developing a reflective model of 
collaborative systems. ACM Transactions on Computer-
Human Interaction, 2, 1, 40-63. 

5. Eisenberg, M. & Fischer, G., 1994. Programmable 
design environments: Integrating end-user programming 
with domain-oriented assistance. Proc. CHI’94, 431-
437. 

6. Fischer, G. & Girgensohn, A., 1990. End-user 
modifiability in design environments. Proc. CHI’90, 
183-191. 

7. Grudin, J., 1994. Groupware and social dynamics: Eight 
challenges for developers. Communications of the ACM, 
37, 1, 92-105. 

8. LeeTiernan, S. and Grudin, J., 2001. Fostering 
engagement in asynchronous learning through 
collaborative multimedia annotation. Proc. INTERACT 
2001, 472-479. 

9. Mackay, W., 1990. Users and customizable software: A 
co-adaptive phenomenon. Ph.D. thesis, Sloan School of 
Management, MIT. 

10. Mørch, A., 1997. Three levels of end-user tailoring: 
Customization, integration, and extension. In 
Computers and Design in Context. M. Kyng & L. 
Mathiassen (Eds.), pp. 51-76. MIT Press. 

11. Reiss, S.P., 1990. Connecting tools using message 
passing in the field environment. IEEE Software, July, 
57-66. 

12. Teitelman, W. & Masinter, L., 1981. The Interlisp 
programming environment. Computer, 14, 4, 25-34. 


