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Single-Agent Paradigm
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Multi-Agent Paradigm
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Multi-Agent Systems are Everywhere
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Types of Multi-Agent Systems

Cooperative:
I Shared team reward
I Coordination problem

Competitive:
I Zero-sum games
I Individual opposing rewards
I Minimax equilibria

Mixed:
I General-sum games
I Nash equilibria
I What is the question?
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Coordination Problems are Everywhere
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Multi-Agent MDP

All agents see the global state s

Individual actions: ua ∈ U

State transitions: P(s ′|s,u) : S ×U× S → [0, 1]

Shared team reward: r(s,u) : S ×U→ R

Equivalent to an MDP with a factored action space
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Dec-POMDP

Observation function: O(s, a) : S × A→ Z

Action-observation history: τ a ∈ T ≡ (Z × U)∗

Decentralised policies: πa(ua|τ a) : T × U → [0, 1]

Natural decentralisation: communication and sensory constraints

Artificial decentralisation: coping with joint action space

Centralised learning of decentralised policies
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Key Challenges

Curse of dimensionality in actions

Multi-agent credit assignment

Modelling other agents’ information state
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Single-Agent Policy Gradient Methods

Optimise πθ with gradient ascent on expected return:

Jθ = Es∼ρπ(s),u∼πθ(s,·) [r(s, u)]

Good when:
I Greedification is hard, e.g., continuous actions
I Policy is simpler than value function

Policy gradient theorem [Sutton et al. 2000]:

∇θJθ = Es∼ρπ(s),u∼πθ(s,·) [∇θ log πθ(u|s)Qπ(s, u)]

REINFORCE [Williams 1992]:

∇θJθ ≈ g(τ) =
T∑
t=0

∇θ log πθ(ut |st)Rt
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Single-Agent Actor-Critic Methods [Sutton et al. 00]
Reduce variance in g(τ) by learning a critic Q(s, u):

g(τ) =
T∑
t=0

∇θ log πθ(ut |st)Q(st , ut)
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Single-Agent Baselines

Further reduce variance with a baseline b(s):

g(τ) =
T∑
t=0

∇θ log πθ(ut |st)(Q(st , ut)− b(st))

b(s) = V (s) =⇒ Q(s, u)− b(s) = A(s, a), the advantage function:

g(τ) =
T∑
t=0

∇θ log πθ(ut |st)A(st , ut)

TD-error rt + γV (st+1)− V (s) is an unbiased estimate of A(st , ut):

g(τ) =
T∑
t=0

∇θ log πθ(ut |st)(rt + γV (st+1)− V (st))
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Single-Agent Deep Actor-Critic Methods

Actor and critic are both deep neural networks

I Convolutional and recurrent layers

I Actor and critic share layers

Both trained with stochastic gradient descent

I Actor trained on policy gradient

I Critic trained on TD(λ) or Sarsa(λ):

Lt(ψ) = (y (λ) − C (·t , ψ))2

y (λ) = (1− λ)
∞∑
n=1

λn−1G
(n)
t

G
(n)
t =

n∑
k=1

γk−1rt+k + γnC (·t+n, ψ)
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Independent Actor-Critic

Inspired by independent Q-learning [Tan 1993]
I Each agent learns independently with its own actor and critic
I Treats other agents as part of the environment

Speed learning with parameter sharing
I Different inputs, including a, induce different behaviour
I Still independent: critics condition only on τ a and ua

Variants:
I IAC-V: TD-error gradient using V (τ a)
I IAC-Q: Advantage-based gradient using A(τ a, ua) = Q(τ a, ua)− V (τ a)

Limitations:
I Nonstationary learning
I Hard to learn to coordinate
I Multi-agent credit assignment
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Counterfactual Multi-Agent Policy Gradients

Centralised critic: stabilise learning to coordinate

Counterfactual baseline: tackle multi-agent credit assignment

Efficient critic representation: scale to large NNs
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Centralised Critic

Centralisation → Hard greedification → actor-critic

ga(τ) =
T∑
t=0

∇θ log πθ(uat |τ at )(rt + γV (st+1)− V (st))
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Wonderful Life Utility [Wolpert & Tumer 2000]
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Difference Rewards [Tumer & Agogino 2007]

Per-agent shaped reward:

Da(s,u) = r(s,u)− r(s, (u−a, ca))

where ca is a default action

Important property:

Da(s, (u−a, u̇a)) > Da(s,u) =⇒ r(s, (u−a, u̇a)) > r(s, (u−a, a))

Limitations:

I Need (extra) simulation to estimate counterfactual r(s, (u−a, ca))

I Need expertise to choose ca
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Counterfactual Baseline

Use Q(s,u) to estimate difference rewards:

ga(τ) =
T∑
t=0

∇θ log πθ(uat |τ at )Aa(st ,ut)

Aa(s,u) = Q(s,u)−
∑
ua

πa(ua|τ a)Q(s, (u−a, ua))

Baseline marginalises out ua

Critic obviates need for extra simulations

Marginalised action obviates need for default

Shimon Whiteson (Oxford) Counterfactual Policy Gradients July 6, 2017 19 / 31



Efficient Critic Representation
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Starcraft
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Starcraft Micromanagement [Synnaeve et al. 2016]
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Centralised Performance

Local Field of View (FoV) Full FoV, Central Control

map heur. IAC-V IAC-Q cnt-V cnt-QV
COMA

heur. DQN GMEZO
mean best

3m .35 .47 .56 .83 .83 .87 .98 .74 - -
5m .66 .63 .58 .67 .71 .81 .95 .98 .99 1.
5w .70 .18 .57 .65 .76 .82 .98 .82 .70 .74
2d 3z .63 .27 .19 .36 .39 .47 .65 .68 .61 .90
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Decentralised Starcraft Micromanagement

x
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Heuristic Performance

Local Field of View (FoV) Full FoV, Central Control

map heur. IAC-V IAC-Q cnt-V cnt-QV
COMA

heur. DQN GMEZO
mean best

3m .35 .47 .56 .83 .83 .87 .98 .74 - -
5m .66 .63 .58 .67 .71 .81 .95 .98 .99 1.
5w .70 .18 .57 .65 .76 .82 .98 .82 .70 .74
2d 3z .63 .27 .19 .36 .39 .47 .65 .68 .61 .90
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Baseline Algorithms

IAC-V: independent actor-critic with V (τ a)

IAC-Q: independent actor-critic with A(τ a, ua) = Q(τ a, ua)− V (τ a)

Central-V: centralised critic V (s) with TD-error-based gradient

Central-QV:

I Centralised critics Q(s,u) and V (s)

I Advantage gradient A(s,u) = Q(s,u)− V (s)

I COMA but with b(s) = V (s)
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Results (3m, 5m, 5w, 2d-3z)
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Compared to Centralised Controllers

Local Field of View (FoV) Full FoV, Central Control

map heur. IAC-V IAC-Q cnt-V cnt-QV
COMA

heur. DQN GMEZO
mean best

3m .35 .47 .56 .83 .83 .87 .98 .74 - -
5m .66 .63 .58 .67 .71 .81 .95 .98 .99 1.
5w .70 .18 .57 .65 .76 .82 .98 .82 .70 .74
2d 3z .63 .27 .19 .36 .39 .47 .65 .68 .61 .90
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Future Work

Factored centralised critics for many agents

Multi-agent exploration

Starcraft macromanagement
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