Counterfactual Multi-Agent Policy Gradients

Shimon Whiteson Dept. of Computer Science University of Oxford

joint work with Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, and Nantas Nardelli

July 6, 2017

Single-Agent Paradigm

Multi-Agent Paradigm

Multi-Agent Systems are Everywhere

Types of Multi-Agent Systems

• Cooperative:

- \blacktriangleright Shared team reward
- \blacktriangleright Coordination problem

• Competitive:

- \blacktriangleright Zero-sum games
- \blacktriangleright Individual opposing rewards
- \blacktriangleright Minimax equilibria

• Mixed:

- \blacktriangleright General-sum games
- \blacktriangleright Nash equilibria
- \blacktriangleright What is the question?

Coordination Problems are Everywhere

Multi-Agent MDP

- All agents see the global state s
- Individual actions: $u^a \in U$
- State transitions: $P(s'|s, u) : S \times U \times S \rightarrow [0, 1]$
- Shared team reward: $r(s, u) : S \times U \rightarrow \mathbb{R}$
- Equivalent to an MDP with a factored action space

Dec-POMDP

- Observation function: $O(s, a) : S \times A \rightarrow Z$
- Action-observation history: $\tau^a \in \mathcal{T} \equiv (Z \times U)^*$
- Decentralised policies: $\pi^a(u^a|\tau^a): \mathcal{T} \times U \rightarrow [0,1]$
- Natural decentralisation: communication and sensory constraints
- Artificial decentralisation: coping with joint action space
- **•** Centralised learning of decentralised policies

Key Challenges

- Curse of dimensionality in actions
- Multi-agent credit assignment
- Modelling other agents' information state

Single-Agent Policy Gradient Methods

• Optimise π_{θ} with gradient ascent on expected return:

$$
J_{\theta} = \mathbb{E}_{s \sim \rho^{\pi}(s), u \sim \pi_{\theta}(s, \cdot)} \left[r(s, u) \right]
$$

- Good when:
	- \triangleright Greedification is hard, e.g., continuous actions
	- \blacktriangleright Policy is simpler than value function
- Policy gradient theorem [Sutton et al. 2000]:

$$
\nabla_{\theta} J_{\theta} = \mathbb{E}_{s \sim \rho^{\pi}(s), u \sim \pi_{\theta}(s, \cdot)} \left[\nabla_{\theta} \log \pi_{\theta}(u|s) Q^{\pi}(s, u) \right]
$$

REINFORCE [Williams 1992]:

$$
\nabla_{\theta} J_{\theta} \approx g(\tau) = \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(u_t | s_t) R_t
$$

Single-Agent Actor-Critic Methods [Sutton et al. 00]

• Reduce variance in $g(\tau)$ by learning a *critic* $Q(s, u)$:

$$
g(\tau) = \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(u_t | s_t) Q(s_t, u_t)
$$

Single-Agent Baselines

 \bullet Further reduce variance with a *baseline* $b(s)$:

$$
g(\tau) = \sum_{t=0}^T \nabla_{\theta} \log \pi_{\theta}(u_t|s_t) (Q(s_t, u_t) - b(s_t))
$$

•
$$
b(s) = V(s) \implies Q(s, u) - b(s) = A(s, a)
$$
, the advantage function:

$$
g(\tau) = \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(u_t|s_t) A(s_t, u_t)
$$

TD-error $r_t + \gamma V(s_{t+1}) - V(s)$ is an unbiased estimate of $A(s_t, u_t)$:

$$
g(\tau) = \sum_{t=0}^T \nabla_\theta \log \pi_\theta(u_t|s_t)(r_t + \gamma V(s_{t+1}) - V(s_t))
$$

Single-Agent Deep Actor-Critic Methods

- Actor and critic are both deep neural networks
	- \triangleright Convolutional and recurrent layers
	- \blacktriangleright Actor and critic share layers
- Both trained with stochastic gradient descent
	- \triangleright Actor trained on policy gradient
	- **F** Critic trained on $TD(\lambda)$ or Sarsa (λ) :

$$
\mathcal{L}_t(\psi) = (y^{(\lambda)} - C(\cdot_t, \psi))^2
$$

$$
y^{(\lambda)} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}
$$

$$
G_t^{(n)} = \sum_{k=1}^n \gamma^{k-1} r_{t+k} + \gamma^n C(\cdot_{t+n}, \psi)
$$

Independent Actor-Critic

- Inspired by *independent Q-learning* [Tan 1993]
	- \triangleright Each agent learns independently with its own actor and critic
	- \triangleright Treats other agents as part of the environment
- Speed learning with *parameter sharing*
	- \triangleright Different inputs, including a, induce different behaviour
	- Still independent: critics condition only on τ^a and u^a
- Variants:
	- IAC-V: TD-error gradient using $V(\tau^a)$
	- ► IAC-Q: Advantage-based gradient using $A(\tau^a, u^a) = Q(\tau^a, u^a) V(\tau^a)$
- **o** Limitations:
	- \triangleright Nonstationary learning
	- \blacktriangleright Hard to learn to coordinate
	- \blacktriangleright Multi-agent credit assignment

Counterfactual Multi-Agent Policy Gradients

- Centralised critic: stabilise learning to coordinate
- Counterfactual baseline: tackle multi-agent credit assignment
- **•** Efficient critic representation: scale to large NNs

Centralised Critic

Centralisation \rightarrow Hard greedification \rightarrow actor-critic

$$
g_a(\tau) = \sum_{t=0}^T \nabla_{\theta} \log \pi_{\theta}(u_t^a | \tau_t^a)(r_t + \gamma V(s_{t+1}) - V(s_t))
$$

Shimon Whiteson (Oxford) [Counterfactual Policy Gradients](#page-0-0) July 6, 2017 16 / 31

Wonderful Life Utility [Wolpert & Tumer 2000]

Shimon Whiteson (Oxford) [Counterfactual Policy Gradients](#page-0-0) July 6, 2017 17 / 31

Difference Rewards [Tumer & Agogino 2007]

Per-agent shaped reward:

$$
D^a(s, \mathbf{u}) = r(s, \mathbf{u}) - r(s, (\mathbf{u}^{-a}, c^a))
$$

where c^a is a *default action*

• Important property:

$$
D^a(s,(\mathbf{u}^{-a},\dot{u}^a))>D^a(s,\mathbf{u})\implies r(s,(\mathbf{u}^{-a},\dot{u}^a))>r(s,(\mathbf{u}^{-a},a))
$$

o Limitations:

► Need (extra) simulation to estimate counterfactual $r(s, (u^{-a}, c^a))$

Need expertise to choose c^a

Counterfactual Baseline

• Use $Q(s, u)$ to estimate difference rewards:

$$
g_a(\tau) = \sum_{t=0}^T \nabla_\theta \log \pi_\theta(u_t^a | \tau_t^a) A^a(s_t, \mathbf{u}_t)
$$

$$
A^a(s, \mathbf{u}) = Q(s, \mathbf{u}) - \sum_{u^a} \pi^a(u^a | \tau^a) Q(s, (\mathbf{u}^{-a}, u^a))
$$

- Baseline marginalises out u^a
- **•** Critic obviates need for extra simulations
- Marginalised action obviates need for default

Efficient Critic Representation

Starcraft

Starcraft Micromanagement [Synnaeve et al. 2016]

Centralised Performance

Decentralised Starcraft Micromanagement

Heuristic Performance

Baseline Algorithms

- IAC-V: independent actor-critic with $V(\tau^a)$
- *IAC-Q:* independent actor-critic with $A(\tau^a, u^a) = Q(\tau^a, u^a) V(\tau^a)$
- Central-V: centralised critic $V(s)$ with TD-error-based gradient
- Central-QV:
	- **Centralised critics** $Q(s, u)$ **and** $V(s)$
	- Advantage gradient $A(s, u) = Q(s, u) V(s)$
	- \triangleright COMA but with $b(s) = V(s)$

Results (3m, 5m, 5w, 2d-3z)

Compared to Centralised Controllers

Future Work

- **•** Factored centralised critics for many agents
- Multi-agent exploration
- **•** Starcraft macromanagement

Counterfactual Multi-Agent Policy Gradients

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson

<https://arxiv.org/abs/1705.08926>

Thank You Microsoft!

This work was made possible thanks to a generous donation of Azure cloud credits from Microsoft.