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ABSTRACT
Mapping relationships, such as (country, country-code) or
(company, stock-ticker), are versatile data assets for an
array of applications in data cleaning and data integration
like auto-correction and auto-join. However, today there are
no good repositories of mapping tables that can enable these
intelligent applications.

Given a corpus of tables such as web tables or spread-
sheet tables, we observe that values of these mappings of-
ten exist in pairs of columns in same tables. Motivated by
their broad applicability, we study the problem of synthesiz-
ing mapping relationships using a large table corpus. Our
synthesis process leverages compatibility of tables based on
co-occurrence statistics, as well as constraints such as func-
tional dependency. Experiment results using web tables and
enterprise spreadsheets suggest that the proposed approach
can produce high quality mapping relationships.

1. INTRODUCTION
Mapping tables, sometimes also referred to as bridge ta-

bles [27], are two-column tables where each distinct value
in the left column maps to a unique value in the right col-
umn (or functional dependencies hold). Table 1 gives a few
example mapping tables with one-to-one mapping relation-
ships. Table 2 shows additional examples with many-to-one
mappings.

Mapping tables like these are important data assets for
a variety of applications such as data integration and data
cleaning. We briefly discuss three scenarios here.
Auto-correction. Real-world tables are often dirty, where

inconsistent values may be present in same columns. Ta-
ble 3 shows such an example. The last column about state
are mixed with both full state names and state abbrevia-
tions. An intelligent data quality agent, equipped with the
mapping table in Table 1c, can easily detect and alert users
about such inconsistency, by discovering that values in the
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Country	 Code	
United	States	 USA	

Canada	 CAN	
South	Korea	 KOR	

Japan	 JPN	
China	 CHN	
…	 …	

(a) ISO country codes

Ticker	 Company	
MSFT	 Microso+	Corp	
ORCL	 Oracle	
INTC	 Intel	
GE	 General	Electric	
UPS	 United	Parcel	Services	
…	 …	

(b) Stock tickers

State	 Abbrev.	
Alabama	 AL	
Alaska	 AK	
Arizona	 AZ	
Arkansas	 AR	
California	 CA	

…	 …	

(c) State abbreviations

Airport	Name	 IATA	
Los	Angeles	Interna.onal	Airport	 LAX	
San	Francisco	Interna.onal	Airport	 SFO	

Tokyo	Interna.onal	Airport	 HND	
London	Heathrow	Airport	 LHR	

Beijing	Capital	Interna.onal	Airport	 PEK	
…	 …	

(d) Airport IATA codes

Table 1: Example one-to-one mapping tables: (a) Countries
to ISO codes, (b) Company names to stock-tickers, (c) State
names to abbreviations, (d) Airports to IATA-codes.

Model	 Make	
F-150	 Ford	

Mustang	 Ford	
Accord	 Honda	
Camry	 Toyota	
Charger	 Dodge	

…	 …	

(a) Car make and model

City	 State	
Chicago	 Illinois	

San	Francisco	 California	
Los	Angeles	 California	
Houston	 Texas	
Sea9le	 Washington	

…	 …	

(b) City and state

Table 2: Example many-to-one mapping tables: (a) Car
makes and models, (b) Cities and states

ID	 Employee	 Residence	State	
2910	 Bren,	Steven	 California	
1923	 Morris,	Peggy	 Washington	
1928	 Raynal,	David	 Oregon	
2491	 Crispin,	Neal	 CA	
4850	 Wells,	William	 WA	
…	 …	 …	

Table 3: Auto-correction:
correct inconsistent values
(highlighted) using Table 1c.

City	 State	
San	Francisco	 California	

Sea/le	 Washington	
Los	Angeles	 California	
Houston	 Texas	
Denver	 Colorado	

…	 …	

Table 4: Auto-fill: automat-
ically populate values based
on mappings from Table 2b.

Ticker	 Market	Cap	 Company	 Total	'89	-'13	 Dem	 Rep	
GE	 255.88B	 General	Electric	 $59,456,031		 41%	 58%	

WMT	 212.13B	 Walmart	 $47,497,295		 52%	 44%	
MSFT	 380.15B	 Oracle	 $34,216,308		 35%	 64%	
ORCL	 255.88B	 MicrosoG	Corp.	 $33,910,357		 48%	 50%	
UPS	 94.27B	 AT&T	Inc.	 $33,752,009		 47%	 51%	
…	 …	 …	 …	 …	 …	

Table 5: Auto-join: joining related tuples based on map-
pings from Table 1b
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left and right column of Table 1c are mixed in one user data
column. Furthermore, it can automatically suggest correc-
tions based on the mapping relationship (e.g., correcting CA

to California).
Auto-fill. In this example scenario in Table 4, a user

has a list of city names. She wants to add a column of
state names corresponding to the cities. By just entering a
few example values (e.g., California for San Francisco),
the system automatically discovers the intent by matching
existing value pairs with those in Table 2b, and can thus
suggest to automatically fill remaining values in the right
column (grayed out in Table 4).
Auto-join. In data integration and ad-hoc data analysis,

users often need to “join” two tables together, whose key
columns may have different representations. In Table 5 for
example, an analyst needs to join the left table that has
stocks by their market capitalization, with the right table
that lists companies by their political contributions, to an-
alyze potential correlations. However a direct join is not
possible since the subject column of the left table is stock
tickers, while the right table uses company names. A system
equipped with mapping tables would make the join possible
by using Table 1b as an intermediate bridge that performs
a three-way join to connect these two user tables, without
asking users to provide an explicit mappings.

Synthesize mapping tables with human curation.
In this work, we develop methods to automatically syn-
thesize mapping relationships from existing table corpora,
where the goal is to generate as many high-quality map-
pings as possible. Because algorithms are bound to make
mistakes, additional human verification and curation can be
used to ensure very high precision (Section 4.3). The result-
ing mappings can then be utilized to enable the applications
discussed above in a unified manner.

Why pre-compute mappings. While there are sepa-
rate solutions for auto-join and auto-fill problems (e.g., [24,
38]), our approach has a few important advantages.

First, synthesized mappings are amenable to human in-
spection and curation, which is critical to ensure very high
quality. In attempting to commercialize technologies simi-
lar to [24, 38] in enterprise spreadsheet software like Excel,
the main feedback we received is the trustworthiness of re-
sults produced by black-box algorithms. Algorithms with
even 99% correctness is still unacceptable in the context of
enterprise spreadsheets, because any error introduced by al-
gorithms would be difficult for users to detect, but is highly
embarrassing and damaging in enterprise settings.

An analogy we would like to draw is the knowledge-bases
used in search engines such as Google and Microsoft Bing.
Similar to our problem, the quality required for knowledge-
bases is also very high, so commercial knowledge bases are
created in offline processes that combine algorithmic au-
tomation with human curation. Mapping tables can be
viewed as the counterpart of knowledge bases in the rela-
tional world, where a similar curation process may be needed
because of the quality requirement. And like search engines
that have millions of users, spreadsheet software can reach
millions of data analysts, such that the cost of curating map-
pings can be amortized over a large user base to make the
effort worthwhile.

Second, synthesized mapping relationships can be mate-
rialized as tables, which are easy to index and efficient to
scale to large problems. For example, instead of perform-

ing expensive online reasoning over large table corpora for
specific applications like auto-join [24] and auto-fill [38], one
could index synthesized mapping tables using hash-based
techniques (e.g., bloom filters) for efficiently lookup based
on value containment. Such logic is both simple to imple-
ment and easy to scale.

Lastly, mapping tables are versatile data assets with many
applications. By solving this common underlying problem
and producing mapping tables as something that can be
easily plugged into other applications, it brings benefits to
a broad class of applications as opposed to requiring sepa-
rate reasoning logic to be developed for different applications
(e.g., [24] for auto-join and [38] for auto-fill).

Why synthesize tables. Given table corpora such as
HTML tables from web or spreadsheets from enterprises,
fragments of useful mapping relationships exist. For exam-
ple, the country and country-ISO3-code columns in Ta-
ble 1a are often adjacent columns in same tables on the web.
As such, an alternative class of approaches is to “search”
tables based on input values and then ask users to select
relevant ones (e.g., Google Web Tables [1], Microsoft Power
Query [2], and DataXFormer [4]). However, because de-
sired values pairs often span across multiple tables, users
frequently need to search, inspect and understand table re-
sults, before manually piecing them together from multiple
tables. Our experience suggests that this process is often
too cumbersome for end users.

Mappings synthesized from multiple tables, on the other
hand, take away the complexity and make it easy for end
users. More specifically, synthesized mappings have the fol-
lowing benefits.
• Completeness. In many cases one table only covers a small
fraction of mappings in the same relationship. For example,
while there exist thousands of airports, a web table like Ta-
ble 1d often lists only a small fraction of popular airports.
Stitching together tables in the same relationship provides
better coverage and is clearly desirable.
• Synonymous mentions. Each individual table from a table
corpus typically only has one mention for the same entity.
For example, Table 1a has South Korea and KOR. In reality
different tables use different but synonymous names. Table 6
shows real results synthesized from many web tables, which
has different synonyms of South Korea. Similarly the right
part has many synonyms for Congo. Note that a specific
synonym of South Korea may not necessarily co-occur with
another synonym of Congo in the same web table, and the
probability of co-occurrence in conjunction with synonyms
of additional countries is even lower. However, any com-
bination of these synonyms may actually be used in user
tables that may require auto-join or auto-fill. Using single
tables as mappings would not provide sufficient coverage in
these cases. On the other hand, if all these synonyms are
synthesized together as one table like in Table 6, then any
combination of these synonyms can still be covered without
requiring users to perform manual synthesis from multiple
tables.
• Spurious mappings. Certain mappings that appear to hold
locally in single tables may not be meaningful. For example,
a random table listing departure-airport and arrival-

airport may happen to have values observe functional de-
pendency at the instance level. However, at a conceptual
level this is not a useful mapping. Such a spurious mapping,
when indexed from single tables, can trigger false-positive



Country	 Code	 Country	 Code	
Korea	(Republic)	 KOR	 Congo	(Democra6c	Rep.)	 COD	
Korea	(South)	 KOR	 Congo	(Demographic	Republic	of)	 COD	

KOREA	REPUBLIC	OF	 KOR	 Congo,	Democra6c	Republic	of	the	 COD	
Korea,	Republic	of	 KOR	 CONGO,	DEMOCRATIC	REPUBLIC	OF	(WAS	ZAIRE)	 COD	

Korea,	Republic	of	(South	Korea)	 KOR	 Congo,	Democra6c	Republic	of	the	(Congo	&	Kinshasa)	 COD	
Korea,	South	 KOR	 Congo,	The	Democra6c	Republic	of	 COD	

Republic	of	Korea	 KOR	 CONGO,	THE	DRC	 COD	
South	Korea	 KOR	 Democra6c	Republic	of	Congo	 COD	

…	 …	 …	 …	

Table 6: Examples from a synthesized mapping relationship
(country, country-ISO3-code) using real web tables. The
left table shows examples of synonyms for the country South

Korea, all of which map to the same code KOR. The right
table shows similar examples for Congo.

results for applications like auto-correct and auto-join. A
holistic analysis of global relationships are necessary to iden-
tify true mappings from spurious ones.

Existing approaches: Given that table synthesis is needed
to assist human curation, we look at existing techniques that
can be used here.
Union tables. Ling and Halevy et al. studied the prob-

lem of stitching together web tables in the same web-domain
(where tables are more homogeneous) based on meta data
such as column names [30]. While the technique is not de-
signed to synthesize relationships from a large heterogeneous
corpus, it is the only work we are aware of that performs
table synthesis from corpora. We will show that adapting
this to a large corpus of heterogeneous tables will fail, be-
cause column names are often undescriptive [15] that leads
to over-grouping and low-quality mappings. For example,
in Table 1a, the column name for countries are often just
name, and the column name for country-codes may be code.
As a result, grouping by column names tends to lump this
table with other name-to-code mappings. Our approach rea-
sons about compatibility of tables based on values, which are
more reliable in telling the true relationships.
Schema matching. There is a long and fruitful line of re-

search on schema matching that suggests possible mappings
between table columns [31]. However, schema matching is
typically used in database contexts for a small number of
schemas, and produces pair-wise matches for human users to
evaluate. In our problem we are given hundreds of millions
of schemas as input, for which pairwise human verification is
infeasible, and aggregation of pairwise decisions to a group
level is necessary for human curation. Furthermore, since
we are only interested in mapping relationships, which are a
specific type of tables that always observe functional depen-
dencies, we can deriving additional negative incompatibility
induced by FDs that is not explored by schema matching.
For example, there are multiple country-to-code relation-
ships such as (country→ ISO3-country-code), (country→
FIFA-country-code), (country → IOC-country-code), etc,
all of which share substantial value overlap as well as similar
column names. Schema matching techniques would identify
them as matches and merge them incorrectly, whereas we
would prevent the synthesis because of the FD-based incom-
patibility. Considering both positive and negative signals is
critical for high-quality synthesis at a large scale.
Knowledge base. Knowledge bases (KB) such as Free-

base [7] and YAGO [34] have important entity-relationships
that can be viewed as synthesized (semi-automatically) from
different sources. However, many mappings are missing from
KB. For instance, YAGO has none of the example mappings

Input:  
Table 
Corpus 

Step 1:  
Candidate  
Extraction 

Step 2:  
Table 
Synthesis Step 3:  

Conflict 
Resolution 

Figure 1: Solution overview with three main steps: (1) Ex-
tract candidate two-column-tables; (2) Synthesize related
tables; (3) Resolve conflicts in the same relationship.

listed in Table 1 (all of which are common mappings), while
Freebase misses two (stocks and airports). Furthermore, for
mappings that do exist in KB, they typically do not have
synonyms like the ones in Table 6. Lastly, KB have limited
coverage beyond the public web domain, such as mapping
(cost-center-name → cost-center-code) that is specific
to enterprises domains.

Contribution. Observing that mapping relationships
are well-represented in tables, we propose to automatically
synthesize mapping relationships using table corpora. We
formalize this as an optimization problem that maximizes
positive compatibility between tables while respecting con-
strains of negative compatibility imposed by functional de-
pendencies. We show a trichotomy of complexity for the
resulting optimization problem, and develop an efficient al-
gorithm that can scale to large table corpus (e.g., 100M ta-
bles). Our evaluation using real table corpora suggests that
the proposed approach can synthesize high quality mapping
tables.

2. SOLUTION OVERVIEW
In this section, we first introduce notions like mapping re-

lationships and table corpora necessary for discussions. We
then give a high-level overview of our synthesis solution.

2.1 Preliminaries
Mapping relationships. The goal of this work is to

discover mapping relationships. Specifically, we focus on
binary mappings involving two attributes.

Definition 1. Let R be a conceptual relation with two
attributes X,Y . The relationship is a mapping relationship,
denoted by M(X,Y ) or X → Y , if for all x ∈ X, x func-
tionally determines one and precisely one value y ∈ Y .

Examples of mapping relationships include (country →
country-code) and (company→ stock-ticker) as shown in
Table 1 and Table 2. There is a mapping relationship be-
tween attributes country and country-code, for instance,
since value in one attribute is uniquely associated with pre-
cisely one value in the other attribute.

Note that this is closely related to functional dependency
(FD), traditionally defined over one physical table. We make
the distinction to define mappings as conceptual relation-
ships that can be represented in multiple tables, but may
never be fully embodied in one physical table (e.g., the syn-



thesized mapping shown in Table 6 with both South Korea

and Korea (South) would not occur in one table).
Existing FD discovery work mainly focuses on efficiency

(e.g., [3]), because it is intended for interactive data explo-
ration on ad-hoc data sets. However, in our problem the
key challenge is to produce high-quality synthesis of tables
to assist human curation, where efficiency is not as impor-
tant because the corpus is given a priori and synthesis can
be run as offline jobs.

For cases where both X → Y and Y → X are map-
ping relationships, we call such bi-directional relationships
1:1 mappings (examples are in Table 1). If the mapping
relationship only holds in one direction, then it is an N:1
mapping (Table 2).

It is worth noting that in practice, because of name ambi-
guity, functional relationship in some mappings may appear
to only hold approximately. For example, city → state

is conceptually a mapping relationship. However, when en-
tities are represented as strings, the functional relationship
may not completely hold. For example, in the same table
there may be a city called Portland in the state of Oregon,
and another city Portland in the state of Maine, thus giving
the appearance of violating FD. To take such name ambi-
guity into account, we consider relationships whose surface
forms are approximate mapping relationships.

Definition 2. Let R be a conceptual relation with two
attributes X,Y . The relationship is a θ-approximate map-
ping relationship, denoted by Mθ(X,Y ) or X →θ Y , if there
exists a subset R ⊂ R with |R| ≥ θ|R|, in which all x ∈ X
functionally determines one and precisely one value y ∈ Y .

We consider approximate mappings with θ over 95%. Here-
after we will simply use mapping relationship to refer to its
θ-approximate version when the context is clear.

Table corpora. The only input to our problem is a cor-
pus of tables.

Definition 3. A table corpus T = {T} is a set of rela-
tional tables T , each of which consists of a set of columns,
or written as T = {C1, C2, ...}.

Today relational tables are abundant and are very rich in
nature. In this study, we use a corpus of 100M tables ex-
tracted from the Web, and a corpus of 500K tables extracted
from spreadsheet files crawled from the intranet of a large
enterprise.

2.2 Solution Overview
Our approach has three main steps, as shown in Figure 1.

Step 1: Candidate Extraction. This step starts by ex-
haustively extracting pairs of columns from all tables in
the corpus as candidates for synthesis. For each table T =
{C1, C2, ..., Cn} with n columns, we can extract 2

(
n
2

)
such

ordered pairs. However, many column pairs are not good
candidate for mapping relationships because (1) for some
column pair if the local relationship is already not functional,
then it is unlikely to participate in true mappings; and (2)
some table columns are of low quality and are not coherent
enough (e.g., with mixed concepts). To address these issues,
we use FD constraints as well as value-based co-occurrence
statistics to prune away low-quality candidate tables.

Step 2: Table Synthesis. In this step, we judiciously syn-
thesize two-column tables that describe the same relation-

Home	Team	 Away	Team	 Date	 Stadium	 Loca3on	
Chicago	Bears	 Greenbay	Packers	 10-12	 Soldier	Field	 Chicago,	IL	60605	
Detroit	Lions	 Minnesota	Vikings	 10-12	 Ford	Field	 Detroit,	MI	
Detroit	Lions	 Greenbay	Packers	 10-19	 Ford	Field	 Detroit,	MI	

Minnesota	Vikings	 Chicago	Bears	 10-19	US	Bank	Stadium	 Minneapolis	
Greenbay	Packers	 Minnesota	Vikings	 10-26	 Lambeau	Field	 1265	Lombardi	Ave	

…	 …	 …	 …	 …	

Table 7: An example input table. Candidate two-column
tables can be extracted using both PMI and FD filtering.

ship and are compatible with each other. The reason this is
necessary is because many web tables and spreadsheets are
for human consumption [30], and as a result contain only a
subset of instances for the ease of browsing. Furthermore,
one table in most cases mentions an entity by one name;
synthesis helps to improve coverage of synonyms that are
important for many applications.

Step 3: Conflict Resolution. Because results from table
synthesis piece together many tables, some of which are
bound to have erroneous values inconsistent with others,
namely two pairs of values in the same mapping with the
same left-hand-side value but different right-hand-side (thus
violating the definition of mappings). These can often hap-
pen due to quality issues or extraction errors. We apply a
post-processing step to resolve conflicts in synthesized map-
ping relationships to produce our final results.

3. CANDIDATE TABLE EXTRACTION
In this section we briefly describe the preprocessing of

tables. Recall that in this work we focus on synthesizing
binary mapping relationships. We start with two-column
tables extracted from an existing table corpus. Given a ta-
ble T = {C1, C2, ...Cn} with n columns, we can extract bi-
nary tables with pairs of columns {(Ci, Cj)|i, j ∈ [n], i 6= j},
for a total of 2

(
n
2

)
such column pairs. For example, in Fig-

ure 7, we can conceptually extract all pairs of columns such
as (Home Team, Away Team), (Home Team, Date), (Home Team,
Stadium), (Home Team, Location), etc.

Because not all these pairs are meaningful mappings, we
filter out candidates with a coherence-based filtering and a
local FD based filtering.

3.1 Column Filtering by PMI
When given a large table corpus (especially web tables),

some tables are inevitably of low quality. Quality issues
can arise because (1) columns may be mis-aligned due to
extraction errors (especially for complicated tables like pivot
table and composite columns); or (2) some table columns
just have incoherent values.

In both of these cases, the resulting table column will
appear to be “incoherent” when looking at all values in this
column. For example, the last column Location in Table 7
have mixed and incoherent values. We would like to exclude
such columns from consideration for mapping synthesis.

Therefore we measure the coherence of a table column
based on semantic coherence between pairs of values. We
apply a data-driven approach to define coherence based on
co-occurrence statistics in a corpus. Let s(u, v) be the co-
herence between two values u and v. Define C(u) = {C|u ∈
C,C ∈ T, T ∈ T } as the columns in the table corpus T
containing value u, and define C(v) similarly. Clearly, if
C(u)∩ C(v) is a large set, it means u and v are co-occurring



frequently (e.g., u = USA and v = Canada). Then they in-
tuitively are highly related and thus should have a high se-
mantic coherence score.

We use Point-wise Mutual Information (PMI) [14] to quan-
tify the strength of co-occurrence as a proxy for coherence.

PMI(u, v) = log
p(u, v)

p(u)p(v)
(1)

Where p(u) and p(v) are the probabilities of seeing u and
v from a total of N columns in a table corpus T , defined as

p(u) = |C(u)|
N

, p(v) = |C(v)|
N

and p(u, v) = |C(u)∩C(v)|
N

.

Example 4. Let u =USA and v = Canada. Suppose N =
100M (there are a total of 100M columns), |C(u)| = 1000,
|C(v)| = 500, and |C(u) ∩ C(v)| = 300 (individually, the two
strings occur 1000 and 500 times respectively; together they
co-occur 300 times). It can be calculated that PMI(u, v) =
4.78 > 0, suggesting that they have high co-occurrence and
strong semantic coherence.

We define coherence of two values, denoted by s(u, v), as a
normalized version of PMI called Normalized PMI (NPMI),
which has a range of [−1, 1]:

s(u, v) = NPMI(u, v) =
PMI(u, v)

− log p(u, v)

Using s(u, v), the coherence score of a column C = {v1, v2, ...},
denoted as S(C), is simply the average of all pair-wise scores.

S(C) =

∑
vi,vj∈C,i<j s(vi, vj)(|C|

2

) (2)

We can then filter out a column C if its coherence S(C)
is lower than a threshold.

Example 5. Table 7 is an example table with five columns.
Column coherence computed using NPMI in Equation (2)
would reveal that the first four columns all have high coher-
ence scores, because values in these columns co-occur often
in the table corpus.

The last column Location, however, has low coherence,
because values in this column are mixed and do not co-occur
often enough in other columns. We will remove this column
when generating column pairs.

3.2 Column-Pair Filtering by FD
After removing individual columns with low coherence

scores, we use the resulting table T = {C1, C2, ..., Cn} to
generate binary tables with ordered column pairs B(T ) =
{(Ci, Cj)| i, j ∈ [n], i 6= j} as candidate tables. However,
most of these two-column tables do not express meaning-
ful mapping relationships, such as (Home Team, Away Team),
and (Home Team, Date) in Table 7.

Since our goal is to produce mapping relationships, we
apply local FD checking to prune away column pairs unlikely
to be mappings. As discussed in Definition 3 we account for
name ambiguity (like (Portland → Oregon) and (Portland
→ Maine)) by allowing approximate FD that holds for 95%
of values.

Example 6. Continue with Example 5, we have pruned
away the last column Location from Table 7 based on coher-
ence scores. Four columns remain, for a total of 2

(
4
2

)
= 12

ordered column pairs. Only 2 out of the 12 column pairs sat-
isfy FD, namely, (Home Team, Stadium) and (Stadium, Home
Team).

Figure 2: Mappings from Wikipedia1 for country names and
three types of country codes: IOC, FIFA, and ISO. The three
have identical codes for many countries, but also different
ones for many others (in red circles).

Country	 IOC	
Afghanistan	 AFG	
Albania	 ALB	
Algeria	 ALG	

American	Samoa	 ASA	
South	Korea	 KOR	

US	Virgin	Islands	 ISV	

(a) B1: IOC-(1)

Country	 IOC	
Afghanistan	 AFG	
Albania	 ALB	
Algeria	 ALG	

American	Samoa	(US)	 ASA	
Korea,	Republic	of	(South)	 KOR	
United	States	Virgin	Islands	 ISV	

(b) B2: IOC-(2)

Country	 ISO	
Afghanistan	 AFG	
Albania	 ALB	
Algeria	 DZA	

American	Samoa	 ASM	
South	Korea	 KOR	

US	Virgin	Islands	 VIR	

(c) B3: ISO

Table 8: Example two-column binary tables for synthesis:
(a) Countries and IOC codes, (b) Countries and IOC codes,
where some countries use alternative synonyms compared to
the first table, (c) Countries and ISO codes, where the code
for some country can be different from the first two tables.

We note that around 78% candidates can be filtered out
with these methods. The procedure used in this step can be
found in Appendix A.

4. TABLE SYNTHESIS
Using candidate two-column tables produced from the

previous step, we are now ready to synthesize relationships.
Recall that synthesis provides better coverage for instances
(e.g., synonyms) as discussed in the introduction.

4.1 Compatibility of Candidate Tables
In order to decide what candidate tables should be stitched

together and what should not, we need to reason about com-
patibility between tables.

Positive Evidence for Compatibility.
Let B = {(li, ri)} and B′ = {(l′i, r′i)} be two binary rela-
tionships produced by the previous step, each with sets of
(left, right) value pairs. If these two relations share many
common value pairs, or |B ∩ B′| is large, they are likely in
the same relationship and compatible for synthesis.

Let w+(B,B′) be the positive compatibility between B
and B′. We would like to use set-based similarity to quan-
tify compatibility based on the overlap |B ∩ B′|. However,

common metrics like Jaccard Similarity, defined as |B∩B
′|

|B∪B′| ,

would not work because if one small relation is fully con-
tained by another (B ⊃ B′, |B| � |B′|), the compatibility

1
https://en.wikipedia.org/wiki/Comparison of IOC, FIFA, and

ISO 3166 country codes

https://en.wikipedia.org/wiki/Comparison_of_IOC,_FIFA,_and_ISO_3166_country_codes
https://en.wikipedia.org/wiki/Comparison_of_IOC,_FIFA,_and_ISO_3166_country_codes


should intuitively be high, but the Jaccard Similarity score
would actually be low.

Containment metrics would mitigate this issue, but Jac-
card Containment is asymmetric – we want it to be symmet-
ric because both the compatibility of B, B′ and the compat-
ibility of B′, B are essentially the same thing (w+(B,B′) =
w+(B′, B)). Given these we use a symmetric variant of Jac-
card Containment called Maximum-of-Containment [8] for
w+(B,B′):

w+(B,B′) = max{ |B ∩B
′|

|B| ,
|B ∩B′|
|B′| } (3)

Example 7. Table 8 shows three two-column candidate
tables, B1, B2 and B3, respectively. The first two are for
the IOC code, while the last is for a different ISO code. All
of these three are valid mappings but are for two different
country-code standards, as explained in Figure 2.

Using Equation (3), we can compute the positive compat-
ibility between each pair of tables. For example, we have
w+(B1, B2) = max{ 3

6
, 3

6
} = 0.5, because |B1 ∩ B2| = 3 (the

first three rows), suggesting that the two tables share a sig-
nificant fraction of mappings and are likely to be compatible
for synthesis.

Efficiency. Although conceptually compatibility scores
can be computed for all pairs of candidates, in reality most
tables share no common values, and will have a score of 0.
A practical issue here is that given N total candidate tables,
we need to perform O(N2) expensive containment compu-
tations. With millions of tables, this quadratic step is too
expensive even for large Map-Reduce clusters.

In reality we observe that the scores for most pairs of
tables are zero since they share no overlapping values at all.
For example, Table 1a is about countries and Table 1b is
about stock tickers. They have no overlaps in value-pairs,
so both positive and negative weights are 0. Computing
scores for these non-overlapping sets is clearly wasteful.

To address this problem, we use inverted-index-like re-
grouping in a Map-Reduce round to map all tables sharing
at least some common value-pairs to the same partition, so
that compatibility is computed only for pairs of tables within
each partition. Specifically, we evaluate w+(B,B′) only if
B and B′ share more than θoverlap value pairs (both left
and right values), and similarly we evaluate w−(B,B′) only
if B and B′ share more than θoverlap left-hand-side values.
In practice, the number of non-zero weighted edges is much
smaller than N2. This optimization makes it possible to
scale the pair-wise computation step to hundreds of millions
of tables.

Approximate String Matching. In real tables, val-
ues from different tables often have slight variations, such
as “Korea, Republic of” & “Korea Republic”, or “Ameri-
can Samoa” & “American Samoa (US)”. In practice, there
are other extraneous information in table cells, such as the
footnote mark “[1]” in the fourth row in Figure 2. These
artificially reduce positive compatibility and in some cases
increase negative compatibility between tables, which is un-
desirable.

To account for such minor syntactic variations, we use ap-
proximate string matching between cell values. Specifically,
we measure the Edit Distance, denoted as ded(v1, v2), be-
tween a pair of values v1 and v2. We treat v1 and v2 as a
match if ded(v1, v2) is smaller than a threshold θed. Here

we use a fractional threshold defined as θed = min{b|v1| ·
fedc, b|v2| · fedc}, which is dynamically determined based on
the length of string |v1|, |v2|, and a fixed fractional value fed
(e.g., 0.2). We choose to use a fractional distance instead
of an absolute distance, because the desired edit distance
should change based on the length of values. For example,
for short values such as “USA” or “RSA” (for South Africa),
any absolute distance threshold ≥ 1 would incorrectly match
the two. Fractional threshold on the other hand would re-
quire an exact match for short strings like these. We fur-
ther restrict the threshold to be within some fixed threshold
ked = 10 to safeguard false positives. Combining, we use
θed(v1, v2) = min{b|v1| · fedc, b|v2| · fedc, ked}.

Example 8. We continue with Example 7 in Table 8.
When using approximate matching for positive compatibil-
ity, w+(B1, B2) will now be updated to max{ 4

6
, 4

6
} = 0.67.

This is because in addition to the first three matching rows
between B1 and B2, now the fourth row “American Samoa”
and “American Samoa (US)” will also be considered as a
match, as the Edit Distance between the two values is 2
(ignoring punctuations), which is no greater than θed =
min{b13 · 0.2c, b15 · 0.2c, 10} = 2.

Efficiency. There are hundreds of millions of table pairs
for which we need to compute compatibility. Let m and n
be the numbers of values in a pair of tables. For each pair
we need to make O(nm) approximate string comparisons,
each of which is in turn O(|v1||v2|) when using conventional
dynamic programming on the full matrix. This is too ex-
pensive even for production Map-Reduce clusters.

Our observation is that the required edit distance thresh-
old θed is small in most cases. So using ideas similar to
the Ukkonen’s algorithm [35], we only compute DP on the
narrow band in the diagonal direction of the matrix, which
makes it O(θed ·min{|v1|, |v2|}). Since θed is small it makes
this step feasible. Pseudo-code of this step can be found in
Appendix B.

Synonyms. In some cases, synonyms of entity names
may be available, e.g., using existing synonym feeds such
as [10]. If we know, for instance, “US Virgin Islands” and
“United States Virgin Islands” are synonyms from external
sources, we can boost positive compatibility between B1 and
B2 in Table 8 accordingly. We omit discussions on possible
lookup-based matching in the interest of space.

Negative Evidence for Incompatibility.
Positive evidence alone is often not sufficient to fully capture
compatibility between tables, as tables of different relation-
ships may sometimes have substantial overlap. For example,
it can be computed that the positive compatibility between
B1 in Table 8a and B3 Table 8c is max{ 3

6
, 3

6
} = 0.5 (the first,

second and fifth rows match). Given the high score, the two
will likely merge incorrectly (note that one is for IOC code
while the other is for ISO). This issue exists in general when
one of the columns is short and ambiguous (e.g. codes),
or when one of the tables has mixed values from different
mappings (e.g., both city to state and city to country).

We observe that in these cases the two tables actually
also contain conflicting value pairs, such as the third and
fourth row in the example above where the two tables have
the same left-hand-side value, but different right-hand-side
values. This violates the definition of mapping relationship,



and is a clear indication that the two tables are not compat-
ible, despite their positive scores.

We thus introduce a negative incompatibility between ta-
bles. Given two tables B and B′, define their conflict set as
F (B,B′) = {l|(l, r) ∈ B, (l, r′) ∈ B′, r 6= r′}, or the set of
values that share the same left-hand-side but not the right-
hand-side. For example, between B1 in Table 8a and B3

Table 8c, (Algeria, ALG) and (Algeria, DZA) is a conflict.
To model the (symmetric) incompatibility between two

tables B and B′, we define a negative incompatibility score
w−(B,B′) similar to positive compatibility in Equation (3):

w−(B,B′) = −max{ |F(B,B′)|
|B| ,

|F(B,B′)|
|B′| } (4)

Example 9. We continue with Example 8 in Table 8. As
discussed earlier, the positive compatibility between B1 in
Table 8a and B3 in Table 8c is max{ 3

6
, 3

6
} = 0.5, which

is substantial and will lead to incorrect merges between two
different relationships (IOC and ISO).

Using negative incompatibility, we can compute w−(B1, B3)
as −max{ 3

6
, 3

6
} = −0.5, since the third, forth and sixth rows

conflict between the two tables, and both tables have 6 rows.
This suggests that B1 and B3 have substantial conflicts, in-
dicating that a merge will be inappropriate.

In comparison, for B1 in Table 8a and B2 in Table 8b,
which talk about the same relationship of IOC, their conflict
set is empty and w−(B1, B2) = 0, indicating that we do not
have negative evidence to suggest that they are incompatible.

4.2 Problem Formulation for Synthesis
We use a graph G = (B, E) to model candidate tables and

their relationships, where B is the union of all binary tables
produced in the preprocessing step in Section 3. In G each
vertex represents a table B ∈ B. Furthermore, for each pairs
of vertices B,B′ ∈ B, we use compatibility scores w+(B,B′)
and incompatibility scores w−(B,B′) as the positive and
negative edge weights of the graph.

Example 10. Given the tables B1, B2 and B3 in Table 8,
we can represent them and their compatibility relationships
as a graph as in Figure 3(a).

As discussed in Example 8, the positive compatibility be-
tween w+(B1, B2) = 0.67, which is shown as solid edge with
positive weight in this graph. Similarly we have negative
edge weights like w−(B1, B3) = −0.5 as discussed in Exam-
ple 9. This graph omits edges with a weight of 0, such as
w−(B1, B2).

Since we need to synthesize compatible tables into larger
mapping relationships, in the context of graph G we need
to group compatible vertices/tables together. This natu-
rally corresponds to a partitioning P = {P1, P2, ...} of B,
where each Pi ⊆ B represents a subset of tables that can be
synthesized into one relationship. Since different partitions
correspond to distinct relationships, the partitioning should
be disjoint (Pi ∩ Pj = ∅, i 6= j), and they should collectively
cover B, or

⋃
P∈P P = B.

Intuitively, there are many ways to partition B disjointly,
but we want to find a good partitioning that has the follow-
ing desirable properties: (1) compatible tables are grouped
together as much as possible to improve coverage of indi-
vidual mapping relationships; and (2) incompatible tables
should not be placed in the same partition.

We translate these intuitive requirements into an opti-
mization problem. First, we want each partition P to have
as many compatible tables as possible. Let w+(P ) be the
sum of positive compatibility in a partition P :

w+(P ) =
∑

Bi,Bj∈P,i<j

w+(Bi, Bj)

We want to maximize the sum of this score across all parti-
tions, or

∑
P∈P w

+(P ). This is our optimization objective.
On the other hand, we do not want to put incompati-

ble tables with non-trivial w− scores, such as B1 and B3

in Example 10, in the same partition. Since we disallow
this to happen, we treat edges with negative scores w− be-
low a threshold τ as hard-constraints. Note that a negative
threshold τ (e.g., −0.2) is used in place of 0 because we do
not over-penalize tables with slight inconsistency due to mi-
nor quality and extraction issues. We ignore the rest with
insignificant negative scores by essentially forcing them to
0. Let w−(P ) be the sum of substantial negative weights in
P defined below.

w−(P ) =
∑

Bi,Bj∈P,w−(Bi,Bj)<τ

w−(Bi, Bj)

We use this as a constraint of our formulation – we want no
edges in the same partition to have substantial conflicts, or,
w−(P ) = 0, ∀P ∈ P.

Putting these together, we formulate table synthesis as
follows.

Problem 11 (Table Synthesis).

max
∑
P∈P

w+(P ) (5)

s.t.
∑
P∈P

w−(P ) = 0 (6)

Pi
⋂
Pj = ∅, ∀Pi 6= Pj (7)⋃

P∈P

P = B (8)

By placing compatible tables in the same partition, we score
more in the objective function in Equation (5), but at the
same time Equation (6) guarantees that no conflicting nega-
tive edge can be in the same partition. Equation (7) and (8)
are used to ensure that P is a proper disjoint partitioning.

Example 12. We revisit the example in Figure 3(a). Us-
ing the formulation above, it can be verified that the best par-
titioning is {{B1, B2}, {B3, B4, B5}}, which groups two ISO
tables and three IOC tables into separate partitions. This
partitioning has a total score of 2.77 based on Equation (5),
without violating constraints in Equation (6) by not placing
negative edges in the same partition.

It is worth noting that existing techniques like schema
matching [31] only consider positive similarity (because FD
do not generally hold in tables), and as a result merge all 5
tables in this example, producing results of low quality.

Theorem 13. The problem Table-Synthesis is NP-hard.

We prove this using a reduction from graph multi-cut.
There also exists a trichotomy of complexity depending on
the number of negative edges in the graph. A proof of the
hardness can be found in Appendix C.



1	 -0. 7 

2	

3	

5	

4	

ISO 

IOC 

0.5 

0.67 

0.67 

0.7 

0.6 0.8 -0.33 
1,2	

3,4,5	

1.5 
-0.7 

ISO IOC 

(a) 

(b) (c) 

(d) 

0.33 

-0.5 

-0.7 1	

2	

3,5	

4	0.5 

0.67 

1.3 

-0.33 
1.0 

-0.5 

1	

2	

3,4,5	

0.5 

0.67 -0.33 
1.0 

-0.7 

Figure 3: Graph representation of candidate tables. Solid
vertices on the left represent tables for ISO codes; hollow
vertices on the right represent tables for IOC codes. Fur-
thermore, solid edges indicate positive compatibility, while
dashed edges indicate negative incompatibility. Edges with
weight of 0 are omitted on the graph.

What is interesting is that there exists a trichotomy result
in terms of complexity [17]. Specifically, if the graph has ex-
actly 1 negative edge, the problem is equivalent to min-cut,
max-flow because we can make the pair of vertices incident
to the negative edge as source and sink, respectively. When
there exist 2 negative edges, the problem can be solved in
polynomial time using results from [39]. In the more gen-
eral case when there are no fewer than 3 negative edges, the
problem becomes NP-hard.

Despite the hardness, there is a O(logN)-approximation
algorithm for the loss-minimization version of Problem 11.
Specifically, the loss-minimization version of the problem
can be written as follows, which minimizes the positive edge
weights that are lost as a result of the partitioning that dis-
connects all the negative edges.

Problem 14 (Loss Minimization).

min
∑

B∈Pi,B′∈Pj ,i 6=j

w+(B,B′) (9)

s.t.
∑
P∈P

w−(P ) = 0 (10)

Pi
⋂
Pj = ∅, ∀Pi 6= Pj (11)⋃

P∈P

P = B (12)

Using standard embedding techniques, we can encode par-
tition decisions using distance variables dij . dij = 0 if ver-
tices Bi and Bj are in the same partition, and dij = 1 if
they are in different partitions. This produces the following
formulation.

Problem 15 (Embedding).

min
∑

w+(Bi, Bj) · dij
s.t. dij + djk ≥ dik, ∀i, j, k (13)

dij = dji (14)

dij ∈ {0, 1} (15)

dij = 1, ∀w−(Bi, Bj) < τ (16)

Figure 4: A real table with errors that can cause conflicts.

This problem is known to be APX-hard [16]. Using clas-
sical techniques including LP-relaxation and region-growing
for randomized rounding [5, 19, 36], it is possible to produce
O(logN) approximation. More discussions of this can be
found in Appendix D in the interest of space.

Such an approximation scheme requires to model each pair
of vertices as a decision variable dij , and then solve the as-
sociated LP before applying randomized rounding. While
it may be practical for problems of moderate sizes, we are
dealing with graphs with millions of vertices, where solv-
ing an LP with a quadratic number of variables is clearly
infeasible.

As a result, we use an efficient heuristic to perform greedy
synthesis. Specifically, we initially treat each vertex as a par-
tition. We then iteratively merge a pair of partitions (P1, P2)
that are the most compatible to get a new partition P ′, and
update the remaining positive/negative edges.The algorithm
terminates when no partitions can be merged. Pseudo-code
of this procedure can be found in Appendix E.

Efficiency. While the procedure above appears straight-
forward for graphs that fit in a single machine, scaling to
large graphs on Map-Reduce is not straightforward. We use
a divide-and-conquer approach to first produce components
that are connected non-trivially by positive edges on the full
graph, and then look at each subgraph individually. More
discussions on this step can be found in Appendix F.

Example 16. Figure 3 shows how Algorithm 3 works on
a small graph. The algorithm first merges {B3} and {B5}
to get Figure 3b because Edge ({B3}, {B5}) has the great-
est weight. The weight of Edge ({B2}, {B3, B5}) changes as
w+({B2}, {B3, B5}) ⇐ w+({B2}, {B3}) + w+({B2}, {B5}).
The weight of Edge ({B4}, {B3, B5}) also changes similarly.

The algorithm then merges {B3, B5} and {B4} to get Fig-
ure 3c and finally combines {B1} and {B2} to get Figure 3d.
The algorithm stops because of the negative weight between
{B1, B2} and {B3, B4, B5}.

Conflict Resolution. We observe that synthesized relations
often have conflicts that require post-processing. Specifi-
cally, when we union all tables in the same partition to-
gether, there will be a small fraction of rows that share the
same left-hand-side value, but have different right-hand-side
values. This could be due to quality issues in the original
input tables, such as the example in Figure 4 that has in-
correct chemical symbols for two of the rows (the symbol of
Tellurium should be Te and Tellurium should be I). Qual-
ity issues like this are actually common in large corpus, and
manifest themselves as inconsistent mappings in synthesized
results. Since the majority of tables in the partition should
agree with the ground-truth mapping, we resolve conflicts by



removing the least number of low-quality tables, such that
the resulting partition has no conflicts.

Let P be a partition with candidate tables {B1, B2, ...},
each of which is a set of value pairs Bi = {(l, r)}. Recall
that in Section 4.1 we define a conflict set F (B,B′) to be
{l|(l, r) ∈ B, (l, r′) ∈ B′, r 6= r′}. We can again leverage
synonyms and do not treat (l, r), (l, r′) as conflicts if (r, r′)
are known to be synonyms.

Now we want to find out the largest subset PT ⊆ P such
that no two tables in PT conflict with each other, which can
be formulated as follows.

Problem 17 (Conflict Resolution).

max

∣∣∣∣∣∣
⋃

Bi∈PT

Bi

∣∣∣∣∣∣
s.t. F (Bi, Bj) = ∅, ∀Bi, Bj ∈ PT (17)

The objective is to include as many value pairs as possible,
under the constraint that no pairs of tables in the selected
subset PT can have conflict.

This problem is NP-hard (reduction from Independent
Set). So we iteratively find and remove a value pair that
conflicts with the most other value pairs. Pseudo-code of
this procedure can be found in Appendix H.

Table Expansion. Another potential issue is that for large
mapping relationships such as (airport-name, airport-code)
that has more than 10K instances, synthesized tables may
still miss values that are unpopular with little or no pres-
ence in web tables. We expand synthesized results that are
robust “cores”, using trustworthy sources such as data.gov
or spreadsheet files (.xlsx). Appendix I gives more details
for this optional step.

We note that there are many existing methods for conflict
resolution [28] that can conceptually be applied to the post-
processing step, and it is interesting to explore their applica-
bility. Because we do not consider this post-processing step
to be our key contribution, and we include this step here for
completeness, we do not perform an exhaustive comparison.

4.3 Synthesized Mappings for Curation
While the synthesized mappings produced by our algo-

rithm are generally of high quality, for many applications a
very high precision is required. For example, for commer-
cial spreadsheet software like Excel, any error introduced by
black-box algorithms can be hard to detect by users, but
has damaging consequences and thus unacceptable. In such
settings, our approach of pre-computing all candidate map-
pings from table corpora allows humans to inspect and cu-
rate these mappings to ensure very high accuracy. High-
quality mappings produced by automatic algorithms can
greatly reduce the effort required by human curators.

It is interesting to note that synthesized results we pro-
duce have a natural notion of importance/popularity. Specif-
ically, for each synthesized mapping, we have statistics such
as the number of web domains whose tables contributed to
this mapping, and how many raw tables are synthesized in
the same cluster, etc. Such statistics are very well corre-
lated to the importance of the mapping, because the more
it occurs in the table corpus, the more likely it is frequently
used and important. This property makes results produced
by our approach amenable to human curation – instead of

list of countries and capitals list of pokemons and categories

list of car models and makes list of amino acids and symbols

Figure 5: Example queries with “list of A and B”

looking at a full corpus with millions of tables, one just needs
to look at synthesized results popular enough.

In our experiments using a web corpus, we only use about
60K synthesized mappings from at least 8 independent web
domains, which is orders of magnitude less than the the num-
ber of input tables. Additional filtering can be performed to
further prune out numeric and temporal relationships.

While most mappings are static that rarely change, some
are temporal in nature and may be changing over time. But
like knowledge-bases used by search engines that also face
the same “data freshness” problem (e.g., when a famous ac-
tor gets newly married, the knowledge-card used by search
engines should reflect that new fact within a short period of
time), algorithms and human curation can for the most part
mitigate this problem (e.g., regularly refreshing the data by
rerunning the pipeline and alert human curator for changes).
Additional mechanisms include crowd-sourcing that allows
users to report/flag stale values for them to be corrected.
We would like to note that because a large fraction of the
mappings harvested are static in nature, a one-shot cura-
tion of just these mappings can already produce significant
values to a variety of applications.

5. EXPERIMENTS

5.1 Experimental Setup

Table Corpus. We use two table corpora for our evaluation.
The first table corpus, henceforth denoted as Web, has over

100 million tables crawled and extracted from the public
web. These tables cover diverse domains of interests.

The second table corpus, denoted as Enterprise, has about
500K tables extracted from spreadsheets files crawled from
the intranet of a large IT company.

Computing Environment. We implemented algorithms de-
scribed in this paper as Map-Reduce programs. We ran our
jobs in a large Map-Reduce cluster, alongside with other pro-
duction jobs. Our input for Web has about 223M two-column
tables with a size of over 200GB.

Benchmarks. We have built a benchmark dataset to eval-
uate our framework on Web table corpus 2. This benchmark
dataset contains 80 desirable mapping relationships that we
manually curated. These relationships are collected from
two sources.
• Geocoding: We observe that geography is a common do-
main with rich mapping relationships that are often used in
auto-join and auto-correction scenarios. Examples here in-
clude geographical and administrative coding such as coun-
try code, state code, etc. So we take 14 cases from a Wikipedia
list of geocoding systems3. We omit codes that are impos-

2Mappings in the web benchmark is available at
https://www.microsoft.com/en-us/research/publication/
synthesizing-mapping-relationships-using-table-corpus/
3https://en.wikipedia.org/wiki/Geocoding

https://www.microsoft.com/en-us/research/publication/synthesizing-mapping-relationships-using-table-corpus/
https://www.microsoft.com/en-us/research/publication/synthesizing-mapping-relationships-using-table-corpus/
https://en.wikipedia.org/wiki/Geocoding
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Figure 6: Geocoding Systems

sible to enumerate such as military grid reference system,
and ones not completely listed on Wikipedia such as HASC
code. Figure 6 lists all cases we take.
• Query Log: We sample queries of the pattern“list of A and
B” in Bing query logs that search for mapping relationships.
Figure 5 shows a few examples with true mappings.

For Web, after selecting mapping relationships, we curate
instances for each relationship, by combining data collected
from web tables as well as knowledge bases. Specifically,
we find a group of tables for each relationship, and then
manually select high-quality ones to merge into the ground
truth. Finally we combine these high-quality web tables
with instances in Freebase and YAGO if they have cover-
age. Note that the resulting mapping relationships have rich
synonyms for the same entity (e.g., as shown in Table 6), as
well as more comprehensive coverage for instances. Con-
structing such a benchmark set, and ensuring its correct-
ness/completeness is a time-consuming process. We intend
to publish this benchmark set online to facilitate future re-
search in this area.
Enterprise is more difficult to benchmark because of the

difficulty in ensuring completeness of instances in certain
mappings – the ground truth may be in master databases for
which we have no access (e.g., employee and login-alias).
Nevertheless, we built 30 best effort benchmark cases. Recall
results on these tests should be interpreted as relative-recall
given the difficulty to ensure completeness.

Metrics. We use the standard precision, recall and f-score
to measure the performance. Let B∗ = {(l∗, r∗)} be a
ground truth mapping, and B = {(l, r)} be a synthesized
relationship for which we want to evaluate its quality. The

precision of B is defined as |B∩B
∗|

|B| , the recall is |B∩B
∗|

|B∗| , and

the f-score is 2precision·recall
precision+recall

.

Methods compared. We compare the following methods.
• UnionDomain. Ling and Halevy et al. [30] propose to union
together tables within the same website domain, if their col-
umn names are identical but row values are disjoint. We
apply this technique by essentially grouping tables based on
column names and domain names. We evaluate the result-
ing union tables against each benchmark case by picking the
union table with the highest F-score.
• UnionWeb. Noticing that only union-ing tables in the same
domain may be restrictive and missing instances for large
relationships, we extend the previous approach to also merge
tables with the same column names across the web, and
evaluate all benchmark cases like above. This is a variant of
UnionDomain.
• Synthesis. This is our approach that synthesizes map-
ping relationships as described in Section 4.

• SynthesisPos. This is the same as Synthesis except that
it does not use the negative signals induced by FDs. This
helps us to understand the usefulness of negative signals.
• WiseIntegrator [22, 23]. This is a representative method
in a notable branch in schema matching that collectively
matches schemas extracted from Web forms. It measures
the similarity between candidates using linguistic analysis
of attribute names and value types, etc., and performs a
greedy clustering to group similar attributes.
• SchemaCC. In this method, we mimic pair-wise schema
matchers that use the same positive/negative similarity as
our approach. Because match decisions are pair-wise, we
aggregate these to a group-level based on transitivity (e.g.,
if table A matches B and B matches C, then A also matches
C). This is implemented as connected components on very
large graphs, where edges are threshold based on a weighted
combination of positive/negative scores. We tested different
thresholds in the range of [0, 1] and report the best result.
• SchemaPosCC. This is the same as SchemaCC but without
negative signals induced by FDs, since they are not explored
in the schema matching literature. We again test thresholds
in [0, 1] and report the best number.
• Correlation [12]. In this method, we again mimic pair-
wise schema matchers with the same positive/negative scores
as Synthesis. Instead of using connected components for
aggregation as in SchemaCC above, here we instead use the
correlation clustering that handles graphs with both posi-
tive or negative weights. We implement the state-of-the-
art correlation clusterin on map-reduce [12], which requires
O(log |V | ·∆+) iterations and takes a long time to converge
(|V | is the number of vertices of the graph and ∆+ is the
maximum degree of all vertices). We timeout after 20 hours
and evaluate the results at that point.
• WikiTable. Wikipedia has many high-quality tables cov-
ering various domains, many of which have mapping rela-
tionships. To understand the quality of using raw tables in-
stead of performing synthesis, we also evaluate each bench-
mark case by finding best pair of columns in a Wikipedia
table that has the highest in F-score.
• WebTable. This method is very similar to the previous
WikiTable, but use all tables in the Web corpus instead of
just Wikipedia ones.
• Freebase. Freebase [7] is a well-known knowledge base
that has been widely used. We obtained its RDF dump4

and extract relationships by grouping RDF triples by their
predicates. We treat the subject → object as one candidate
relationship, and the object→ subject as another candidate.
• YAGO. YAGO [34] is another public knowledge base that
is extensively used. We process a YAGO data dump simi-
lar to Freebase, by grouping YAGO RDF triples using their
predicates to form subject-object and object-subject rela-
tionships.

Note that in all these cases, we score each benchmark
case by picking the relationship in each data set that has
the best f-score. This is favorable to all the methods – a
human who wishes to pick the best relationship to be used
as mappings, and who could afford to inspect all these tables,
would effectively pick the same tables.

5.2 Quality Comparison
Figure 7 shows the average f-score, precision and recall

across all 80 benchmark cases in the Web benchmark for all

4https://developers.google.com/freebase/

https://developers.google.com/freebase/
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Figure 7: Average f-score, precision and recall comparison.

methods compared. Synthesis scores the best in average
recall (0.88) and f-score (0.90), while WikiTable has the best
average precision (0.98) 5.

In comparison, using only raw tables from WikiTable with
no synthesis has high precision but low recall, because not
only are certain instances and synonyms missing (these ta-
bles tend to be short for human consumption), many rela-
tionships are also missing altogether from WikiTable. So the
approach of manually going over high-quality WikiTable to
curate mapping relationships is unlikely to be sufficient.

The WebTable approach uses raw tables similar to Wik-

iTable, but considers tables not limited to the Wikipedia
domain and thus has substantially better recall. While the
precision of WebTable and Synthesis are comparable, the
recall of Synthesis is substantially higher (0.88 vs. 0.32).
Despite this, we want to note that the setup of this com-
parison of is very favorable for WebTable – we select the
best table among the hundreds of millions of raw tables in
WebTable, whereas in Synthesis we only use relations syn-
thesized from over 8 website domains that is three orders of
magnitude less (Section 4.3). Because it is not possible for
human to go over millions of tables to pick useful mappings
in practice, WebTable only provides an upper-bound of what
can be achieved and not really a realistic solution.
UnionDomain and UnionWeb synthesize tables based on ta-

ble column names and domain names. The recall of these
two approaches is considerably better than WikiTable and
WebTable, showing the benefit of performing table synthe-
sis. However, this group of approaches merge tables only
based on column names, which are known to be uninforma-
tive and undescriptive in many cases. We observe that when
applied to the whole web, this often leads to over-grouping
and under-grouping. The overall f-scores of these approaches
are the best among all existing methods, but still lag behind
Synthesis, which uses values that are more indicative of
table compatibility.
SynthesisPos uses the same algorithm as Synthesis but

does not consider the negative incompatibility induced by
FDs. It is interesting to observe that result quality suffers
substantially, which underlines the importance of the nega-
tive signals.
SchemaCC performs substantially worse than Synthesis.

Recall that it uses the same positive/negative signals, but
aggregate pair-wise match decisions using connected com-

5Since WikiTable methods miss many relationships, we ex-
clude cases whose precision is close to 0 from the average-
precision computation. This makes the average precision
favorable to WikiTable. The same is applied to other table
and knowledge based methods.

ponents. This simple aggregation tends to over-group and
under-group different tables, producing undesirable table
clusters.
SchemaPosCC ignores the negative signals used in SchemaCC,

since FD-induced negative signals are not explored in schema
matching. Unsurprisingly, result quality drops even further.
Correlation is similar to SchemaCC that also mimics schema

matchers with same signals, but aggregate using correlation
clustering. Overall, its f-score is better than SchemaCC, but
is still worse than Synthesis. We think there are two main
reasons why it does not work well. First, at the conceptual
level, the objective of correlation clustering is the sum of
positive and negative edges. Because the number of table
pairs that would be in different clusters far exceeds the ones
that should be in the same clusters, making negative edges
dominate the objective function. However, in our problem,
we should actually only care about whether tables in the
same clusters correspond to the identical mapping, which
are the intra-cluster positive edges that are more precisely
modeled in our objective function. Second, a shortcoming
of the parallel-pivot algorithm [12] is that it only looks at
a small neighborhood for clusters (i.e. one-hop neighbors of
cluster centers) for efficiency. When small tables in the same
mapping form a chain of connected components, looking at
the immediate neighborhood of a pivot (cluster center) will
misses most other tables, producing results with low recall.

We implemented the collective schema-matching method
WiseIntegrator. It performs reasonably well but still lags
behind Synthesis, mainly because of the difference in how
scores are aggregated to produce holistic matches.

Please see Appendix J and K for more analysis on the
experimental results.

5.3 Run-time Comparison
We analyze the the complexity of our approach in this

section. The basic input of our problem is a graph G =
(V,E) where V represents candidate tables and E represents
their similarity. The most expensive part of our algorithm
is in table synthesis (Step 2) that computes edge similarity
and performs iterative grouping.

Figure 8 compares the runtime of all approaches. Knowl-
edge bases are the most efficient because it amounts to a
lookup of the relation with the highest f-score among all
relations. WikiTable, WebTable, UnionDomain, UnionWeb,
and WiseIntegrator are all relatively efficient but requires
scans of large table corpus. Our approach Synthesis usually
finishes within 10 hours (e.g., using parameters suggested
here). Correlation is clearly the slowest, as correlation clus-
tering converges very slowly even using the state-of-the-art
parallel implementation on map-reduce [12].

To test scalability of the proposed method, we sample
{20%, 40%, 60%, 80%} of the input data and measures exe-
cution time, as shown in Figure 9. The complexity of the
algorithm depends on the number of edges |E|. In the worst
case |E| can be quadratic to the number of tables |V |, but in
practice |E| is usually almost linear to |V | due to edge spar-
sity. Figure 9 suggests that the algorithm scales close to
linearly to the input data, which is encouraging as it should
also scale to even larger data sets with billions of tables.

5.4 Sensitivity Analysis
We analyze the effect of parameters used in Synthesis.
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Figure 10: Comparison with the alternative on Enterprise

• θ. We use θ as a parameter when defining approximate
mapping relationship, which is empirically set as 95%. When
we vary θ between 93% and 97%, the number of resulting
mappings change very little (by up to 1%). We have also
reverse-engineered by calculating the degree of approxima-
tion in desirable ground truth mappings (e.g. Springfield
→ Illinois and Springfield → Texas will create a violation).
95% is sufficient to ensure that desired mappings will not be
pruned incorrectly in almost all cases.
• τ . This parameter controls when we determine two candi-
dates conflict. Our results suggest that the quality is gener-
ally insensitive to small τ . The performance peaks at around
−0.05. In our other experiments we actually used τ = −0.2
that also produces good quality.
• θoverlap is a parameter for efficiency that determines the
number of pruned edges |E| in our graph. As θoverlap in-
creases, |E| drops quickly. The quality of resulting clusters
are insensitive to θoverlap.
• θedge. We make θedge the threshold to filter out edges with
insignificant positive weight. Our experiment suggests that
θedge = 0.85 has the best performance.

5.5 Experiments on Enterprise
As we discussed earlier, unlike the Web domain where a

large fraction of ground truth mappings can be constructed
using common sense knowledge and online data sources, the
ground truth mappings in the Enterprise domain is difficult
to build. We are not familiar with many enterprise-specific
data values and encodings in this corpus, which makes ensur-
ing completeness and correctness of these mappings difficult.

We build 30 benchmark cases with best effort to ensure
completeness (for some mappings the ground truth may be
in master databases we have no access to). To put the
quality numbers in perspective, we compare Synthesis with
single-table based EntTable, which is similar to WebTable in
Web. As Figure 10 suggests that Synthesis achieve signifi-
cantly higher recall by merging small tables. Its precision is
also high by avoiding merging conflicting content.

Figure 11 shows some examples of mapping relationships
produced. A large fraction of relationships are indeed impor-
tant mappings, such as (product-family→ code), (profit-
center → code), (data-center → region), etc. Most of
these results are well-structured and look consistent (shown
in the right column of Figure 11), which is a good indication
that results produced are of high quality.

Mapping Relationship Example Instances

(product-family, code)
(Access, ACCES),

(Consumer Productivity, CORPO), ...

(profit-center, code)
(P10018, EQ-RU - Partner Support),

(P10021, EQ-NA - PFE CPM), ...

(industry, vertical)
(Accommodation, Hospitality),

(Accounting, Professional Services), ...

(ATU, country)
(Australia.01.EPG, Australia),

(Australia.02.Commercial, Australia), ...

(data-center, region)
(Singapore IDC, APAC),

(Dublin IDC3, EMEA), ...

Figure 11: Example mapping relationships and values, from
the enterprise spreadsheets corpus

Just like in the Web domain, applications equipped with
these mapping relationships and some human curation can
perform intelligent operations such as auto-join as discussed
earlier. We note that these mappings are specific to this en-
terprise in question. Using tables to build such relationships
would be the only reasonable choice, since alternatives like
knowledge bases would not exist in enterprise domains.

Inspecting the results produced in Enterprise does reveal
interesting issues. For example, we observe that for certain
mapping relationships, the results are of low quality with
mixed data values and meta-data values (e.g., column head-
ers). It turns out that in spreadsheets, tables with complex
structures such as pivot tables are popular. These complex
tables are usually not flat relational tables that create diffi-
culty for correct extraction.

Overall, given that rich mappings are produced for a com-
pletely different Enterprise corpus, we believe that this
exercise shows the promise of the Synthesis approach to
generalize and produce mappings by just using a corpus of
tables as input.

5.6 Effect of Conflict Resolution
Conflict resolution improves the f-score for 48 out of the

80 cases tested. On average, the precision increases from
0.903 to 0.965, while the average recall only dips slightly
from 0.885 to 0.878. Such improvements shows that this
post-processing step is useful in removing inconsistent value
pairs without affecting coverage.

Cases such as (state → capital) sees the biggest im-
provement. These relationships tend be confused with other
relationships that disagree only on a small number of values.
For example, the relationship (state → capital) tends to
be confused with (state → largest-city) with only minor
disagreements such as Washington and Olympia vs. Wash-

ington and Seattle. These conflicting value pairs will get
mixed into results because for some subset of values there
may not be sufficient incompatibility to prevent merges from
happening. The conflict resolution step helps to prune away
such incorrect values.

We compare our conflict resolution with majority voting.
The proposed approach has a slightly higher f-score than
majority voting. Appendix K has detailed results comparing
the f-scores.

6. RELATED WORK
Ling and Halevy et al. studied the problem of stitching

together web tables from the same domain based on col-
umn names [30]. When adapting this technique to gener-
ate mapping relationships for the whole Web, however, it



tends to lead over-grouping and low-quality mappings (as
we show in the experiments), because column names are of-
ten undescriptive and too generic to be indicative of the true
meanings [15] (e.g., column names like code and name are
common).

Knowledge bases such as Freebase [7], and YAGO [34]
curate important entity-relationships, some of which may be
mapping relationships. However, the coverage of knowledge
bases is low as they often miss important mappings. For
instance, YAGO has none of the example mappings listed
in Table 1, while Freebase misses two (stock and airport).
For mappings that do exist in knowledge bases, there are
typically no or very few synonyms such as ones listed in
Table 6. Lastly, knowledge bases are expensive to build, yet
their mappings only cover the public Web domain, and does
not generalize to other domains such as enterprises.

There is a long and fruitful line of research on schema
matching [31] that can suggest semantic correspondence be-
tween columns for human users. These matching relation-
ships provide useful information about positive compatibil-
ity between tables. However, using only positive signals of
compatibility are insufficient for an unsupervised algorithm
to synthesize diverse tables on the web, since distinct re-
lationships can share substantial value overlap. We intro-
duce negative incompatibility specific to functional depen-
dency observed by mapping relationships, which is shown in
experiments to be critical for high-quality synthesis.

A notable branch in schema matching [9, 21, 23, 33, 40]
deals with schemas extracted from Web forms collectively for
matches. These techniques mainly use linguistic similarity
of attribute names and distributions. However, the input
schemas are required to be homogeneous and from the same
conceptual domain (e.g., all forms are required to be about
books, or automobiles, but not mixed). Methods in this
class are the closest to our problem in the schema matching
literature – we experimentally compare with a representative
method from this class [23].

Compared to the traditional schema matching, there are
two key aspects that differentiate our work from existing
schema matching. (1) Traditional schema matching is stud-
ied in the context of a small number of database schemas.
In our problem, while we also “match” semantically compat-
ible table columns, we have to deal with millions of schemas
(223M for the Web data set), which is many orders of mag-
nitude larger than previously studied. (2) As a consequence
of the scale, we can no longer afford to ask humans to verify
results produced by the traditional pair-wise “match” op-
erator ([6, 31]), which is designed to be recall-oriented with
false-positives that human users are supposed manually filter
out. Because in our problem pair-wise manual verification
for millions of schemas is no longer feasible, we choose to
group all compatible schemas and have them verified only
at the group level, which would be easier and more efficient
for human curation.

Although our problem would appear more difficult than
schema matching, it is still tractable because we are in-
terested in a very specific type of schemas, that are two-
column tables satisfying functional-dependencies. This in-
duces strong constraints for schema compatibility (the neg-
ative signal we exploit), which has not been explored in the
classical schema matching for general tables (the existing lit-
erature mostly uses single-column type information to infer
incompatibility). Furthermore, by looking at schemas holis-

tically instead of one-pair-at-a-time, it allows us to reason
globally and actually produce better matches (e.g., if table B
is mostly contained by table A, and table C is also contained
by A, then even if B and C share little overlap, we may still
be able to group B and C using these information holistically,
which may not be possible for pair-at-a-time matching).

Techniques such as the novel DataXFormer [4] represent
an alternative class of approaches that“searches”tables based
on user input and asks users to select relevant results to
fill/join. While this is already a great improvement, our
experience suggests that in many cases the need to search,
retrieve, read, and manually piece together results from mul-
tiple tables is too cumbersome for this to be a viable feature
in Google Doc or Microsoft Excel, where most users may not
have the necessary experience to go through the full process.
Like knowledge-bases used by search engines today, we hope
curating knowledge of mappings can make them easily ac-
cessible to a large number of spreadsheet users.

Additional related work can be found in Appendix L.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we study the problem of synthesizing map-

ping relationships using tables. Our work is a first step in
the direction to facilitate the curation of mapping relation-
ships. Questions that we would like to address in the future
include: (1) how to best present related result clusters with
overlapping values to human users to solicit feedback, so
that users will not be confused by clusters with repeating
values; (2) how to complement the corpus-driven approach
to better cover mappings with large numbers of instances,
by using other sources such as authoritative third-party data
sets. We hope our work will serve as a springboard for fu-
ture research on the important problem of curating mapping
relationships.
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APPENDIX
A. TABLE EXTRACTION

Algorithm 1 gives the pseudo-code for candidate table ex-
traction. The two steps correspond to PMI-based filtering
and FD-based filtering, respectively.

B. APPROXIMATE STRING MATCHING
The algorithm for efficient approximate string matching

is shown in Algorithm 2. We leverage the fact that the
desired distance θed is often small to only perform dynamic
programming on a narrow band in the diagonal direction of
the matrix instead of performing a full DP, which is in spirit
similar to Ukkonen’s algorithm [35].

C. PROOF OF THEOREM 13
Proof. We prove it by showing that Problem 11 is a more

general case of a typical multi-cut problem in a weighted
graph [26]. Given an undirected graph GC = (VC , EC), a
weight function wC of the edges, and a set of kC pairs of
distinct vertices (si, ti), the multi-cut problem is to find the
minimum weight set of edges of GC that disconnect every si
from ti. The multi-cut problem is NP-hard [16].

Now we transform GC = (VC , EC) to graph G = (B, E) as
follows: (i) We first divide the weights by a large number,
max{wC(vi, vj)}, to change the range of weights to (0, 1].
(ii) We define B = VC and E = EC . (iii) We make pos-
itive weights w+(vi, vj) = w+(vj , vi) = wC(vi, vj). (iv)
For each pair of vertices (si, ti), we make negative weights
w−(si, ti) = w−(ti, si) = −1 < τ .

As a result, each partitioning P in Problem 11 corre-
sponds to exactly one cut Ecut in the above multi-cut prob-
lem because: (i) Constraint (6) guarantees that si and ti
are never in the same partition. (ii) The edges across par-
titions are Ecut (i.e. the set of edges to be removed) in the
multi-cut problem. (iii) Let w+(P) be the objective func-
tion

∑
P∈P w

+(P ) of Problem 11, the sum of weights of
the graph be wC(GC), and the weight of cut be wC(Ecut).
Then w+(P)+wC(Ecut) = wC(GC). So maximizing w+(P)
is equivalent to minimizing wC(Ecut). Therefore we reduce
the multi-cut problem to Problem 11.

So Problem 11 is NP-hard.

https://www.microsoft.com/en-us/research/wp-content/uploads/2017/03/mapping-synthesis-full.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/03/mapping-synthesis-full.pdf


Mapping Relationship Example Instances

(US-city, state-abbr.)
(New York, NY),
(Chicago, IL), ...

(gun-powder-name, (Varget, Hodgdon),
company) (RL-15, Alliant), ...

(UK-county, (Suffolk, England),
country) (Lothian, Scotland), ...

(India-railway-station, (Vadodara Junction, Gujarat),
state) (Itarsi Junction, Madhya Pradesh), ...

(wind, (gentle breeze, 3),
Beaufort-scale) (storm, 10), ...

(state/province abbr., (QLD, AU),
country) (ON, CA), ...

(ISO3166-1-Alpha-3, (USA, US),
ISO3166-1-Alpha-2) (FRA, FR), ...

(movie, year)
(Pulp Fiction, 1994),
(Forrest Gump, 1994), ...

(movie, distributor)
(The Dark Knight Rises, WB),
(Life of Pi, Fox), ...

(ODBC-configuration, (odbc.check persistent, on),
default-value) (odbc.default db, no value), ...

(automobile, type)
(F-150, truck),
(Escape, SUV), ...

(family-member, (Mother, F),
gender) (Brother, M), ...

(ASCII-abbr., code)
(NUL, 0),
(ACK, 6), ...

(ISO-4217-currency- (USD, 840),
code, num) (EUR, 978), ...

Figure 12: Additional mappings synthesized from Web.

Algorithm 4: Conflict Resolution
Input: Partition P = {B1, B2, ...}
Output: PT without conflict

1 PT ⇐ P
2 while ∃Bi,Bj ∈ PT , |F (Bi,Bj)| > 0 do

3 InstSet ⇐
⋃
Bi∈PT

Bi

4 foreach (v1, v2) ∈ InstSet do
5 cntV (v1, v2) ⇐ # conflicting value pairs in InstSet

6 foreach Bi ∈ PT do
7 cntB(Bi) ⇐ max(v1,v2)∈Bi

{cntV (v1, v2)}

8 Bi ⇐ argmaxBi∈PT cntB(Bi)

9 PT ⇐ PT \{Bi}

Algorithm 3: Table-Synthesis by Partitioning
Input: Graph G = (B, E), threshold τ
Output: Set of Partitions P

1 P (Bi) ⇐ {Bi}, ∀Bi ∈ B
2 BP ⇐

⋃
Bi∈B{P (Bi)}

3 EP ⇐
⋃
(Bi,Bj)∈E

{(P (Bi), P (Bj))}

4 w
+
P

(P (Bi), P (Bj)) ⇐ w+(Bi,Bj)

5 w
−
P

(P (Bi), P (Bj)) ⇐ w−(Bi,Bj)

6 GP ⇐ (BP ,EP )
7 while true do

8 e(P1, P2) ⇐ argmax

P1 6=P2,w
−
P

(P1,P2)≥τ
(w

+
P

(P1, P2))

9 if e =NULL then
10 break

11 P ′ ⇐ P1 ∪ P2
12 Add P ′ and related edges into BP and EP
13 foreach Pi /∈ {P1, P2} do

14 w
+
P

(Pi, P
′) ⇐ w

+
P

(P ′, Pi) ⇐ w
+
P

(Pi, P1) + w
+
P

(Pi, P2)

15 w
−
P

(Pi, P
′) ⇐ w

−
P

(P ′, Pi) ⇐ min{w−
P

(Pi, P1), w
−
P

(Pi, P2)}

16 Remove P1, P2 and related edges from BP and EP

17 P ⇐ BP

D. LP RELAXATION & APPROXIMATION
Problem 15 is formulated as an integer linear program.

We can relax it by replacing the integrality constraint with
dij ∈ [0, 1] to make it an LP, which can then be solved using
a standard solver in polynomial time.

Using the optimal fractional solution from the LP, one
can round such a solution in a region-growing procedure [5,
19, 36] that finds an integral solution close to the frac-
tional solution. This randomized rounding process guaran-

tees O(logN) approximation for the loss minimization ver-
sion of the problem.

As discussed earlier, the number of variables dij required
in this approach is quadratic to the number of candidate
tables. Given millions of candidates and a quadratic number
of variables, in practice solving the resulting LP is difficult.
So despite the nice theoretical guarantees, we are not using
this LP-based rounding approach due to the scale required
in our problem.

E. TABLE SYNTHESIS BY PARTITIONING
Algorithm 3 shows the pseudo-code for table synthesis.

F. SCALABILITY OF ITERATIVE PARTI-
TION

We use the Hash-to-Min algorithm to compute connected
components on Map-Reduce [13]. This algorithm treats ev-
ery vertex and its neighbors as a cluster initially. Then for
each cluster, it sends a message of the cluster ID to all its
members. Next every vertex chooses the minimum cluster
ID it receives and propagate this minimum ID as the new
ID of all the other clusters who sends message to it. The al-
gorithm iteratively apply the above steps until convergence.
This algorithm solves our problem very efficiently.

Now given a subgraph, we apply Algorithm 3 to solve
Problem 11. Set union and lookup are two frequent opera-
tions in Algorithm 3. So we use a disjoint-set data structure
to speed up the process [25]. Its idea is to maintain a tree
to represent each set so that union and lookup of the tree
root are much faster than a näıve set operation.

G. PROOF OF HARDNESS FOR CONFLICT
RESOLUTION

Proof. We prove the hardness of conflict resolution by
reducing the maximum independent set (MIS) problem to it.
Given a graph GM = (VM , EM ) in MIS, we correspondingly
build a partition P = {B1, B2, ...} in Problem 17 as fol-
lows: (1) For each vm ∈ VM , we create a Bm. (2) For each
em(vi, vj) ∈ EM , we create a pair of contradicting value
pairs ((l, r), (l, r′)). We add (l, r) to Bi and (l, r′) to Bj .
(3) Let the maximum vertex degree of GM be deg. We add
dummy value pairs to each Bi to make |Bi| = deg. These
dummy value pairs do not conflict with any existing value
pairs. Obviously, the MIS problem has a solution with size
SMIS , if and only if Problem 17 has a solution with weight
SMIS · deg.

H. CONFLICT RESOLUTION
Algorithm 4 iteratively finds value pairs that conflict with

the most other value pairs and removes its candidate ta-
ble. Specifically, given a value pair (v1, v2), Line 3 to Line 5
counts the number of conflicting value pairs. Line 6 to Line 9
finds the candidate that introduces the most conflicts and
removes it. In practice, we maintain an index for each value
pair and each candidate to keep track the number of con-
flicts. We use a heap that supports update to select the most
conflicting candidate efficiently.



Mapping Relationship Example Instances

(MiLB-leagues, level)
(PCL, AAA),
(IL, AAA), ...

(baseball-team, league)
(NYY, AL),
(LAD, NL), ...

(English-football-club, (Manchester City, 16),
points) (Liverpool, 17), ...

(US-soccer-club, (Houston Dynamo, 48),
points) (Chicago Fire, 49), ...

(F1-driver, team)
(Sebastian Vettel, Ferrari),
(Lewis Hamilton, Mercedes), ...

(college-football-team, (Alabama, 1),
ranking) (Clemson, 3), ...

(college-football-team, (Stanford, 5-0),
score) (Michigan, 5-0), ...

(football-player, (Marques Colston, NO),
team) (Victor Cruz, NYG), ...

(month, month)
(January, July),
(February, August), ...

(day, hour)
(Monday, 7:30AM - 5:30PM),
(Tuesday, 7:30AM - 5:30PM), ...

Figure 13: Synthesized relationships not ideal as mappings.

I. TABLE EXPANSION
We see that synthesized relationships provides a robust

“core”, which can be used to bring in additional instances.
We perform an optional expansion step, by using external
data resources such as data.gov or spreadsheet files (.xlsx)
crawled from other trustable web sources, that are more
likely to be comprehensive (web tables on the other hand
are often for human consumption and tend to be short).
We compute the similarity and dissimilarity between our
synthesized “cores” and these external sources, and merge if
certain requirements are met. Note that this step can also
happen at curation time with human users in the loop.

We compare the f-score before and after table expansion.
Overall the effect is limited. F-score is improved substan-
tially for only two cases, namely (airport-name → IATA-

code) and (airport-name → ICAO-code). These two have
over 10k instances in ground truth. So synthesis alone is
not sufficient to recover the full relationship, and expansion
brings more pronounced effect.

J. MORE EXAMPLE MAPPINGS
Here we discuss additional synthesized mappings that are

not in the benchmark. Figure 12 lists additional popular
mappings synthesized using Web. Many relationships in-
volve geographic information such as (US-city → state-

abbreviation), (India-railway-station → state), (UK-
county → country), etc. There are a variety of other rela-
tionships such as (wind→ Beaufort-scale), (ASCII-abbre-
viation → code), (automobile → type) etc. We find rea-
sonable meanings of these binary relationships and consider
them to be high quality.

However, certain synthesized binary relationships are less
ideal as mappings. We show such cases in Figure 13. For ex-
ample, certain relationships are temporal that only hold for a
period of time. Examples like (F1-driver, team), (English-
football-club, points), (college-football-team, rank-

ing) are in this category. Because this leads to many map-
pings of the same type that are true in different point of
time (e.g., points of soccer teams), additional reasoning of
conflicts between synthesized clusters can potentially iden-
tify such temporal mappings. We leave improving results in
this regard as future work.

Certain tables are used repeatedly for formatting purpose,
whose values would get extracted as popular mappings. For
example, the (month, month) in Figure 13 maps January to

July, Feb to August and so on, simply because many pages
list 12 month calendar as two column tables. Results in
this category are not significant in numbers, and should be
relatively easy for human to prune out.

Usefulness of Mappings. We sample the top clusters pro-
duced based on popularity (the number of tables/domains
contributing to the cluster). We classify the mapping cor-
responding to each cluster into three categories: Meaning-
ful mapping (static), Meaningful mapping (temporal), and
Meaningless mapping. For top 500 clusters we inspected,
49.6% are static, 37.8% are temporal, and only 12.6% are
meaningless, which is encouraging.

K. MORE EXPERIMENTAL RESULTS
Methods using knowledge bases Freebase and YAGO have

reasonable precision, which is expected because they are ex-
tensively curated. The recall numbers of these methods,
however, are substantially lower, because a significant frac-
tion of useful mappings are missing from existing knowledge
bases. This indicates that knowledge bases alone are un-
likely to be insufficient for harvesting rich mappings.

Figure 14 gives detailed quality numbers for individual
cases in the benchmark. The overall observation here is
consistent with Figure 7. We can see that for a large frac-
tion of test cases, Synthesis produces results of high quality,
which are amenable to further human curation before they
are applied in data-driven applications. It is interesting to
note that even when high-precision methods WikiTable and
Freebase already have a complete table covering instances
in certain benchmark cases such as chemical element and
country code, their f-scores are still low despite almost per-
fect precision. This is because the ideal ground truth map-
ping should contain many synonymous names for the same
entity (e.g., shown in Figure 6 for country code). In fact,
the results Synthesis produces have over 470 entries for
country code (compared to around 200 distinct countries),
and over 200 entries for chemical element (compared to
about 100 distinct ones). Methods like WikiTable and Free-

base tend to have only one name mention for the same en-
tity in one table, thus producing inferior scores for recall.
As we have discussed in the introduction, such synonymous
entity names are important for applications like auto-join
and auto-correct, since a user data table can always have
one name but not the other.

Interestingly, for a number of cases where Synthesis does
not produce satisfactory results (towards the right of the
figure), Freebase performs surprisingly well. It appears
that for domains like chemicals, mappings such as (Case 80:
chemical-compound → formula) and (Case 74: substance

→ CAS number) have little web presence, which gives limited
scope for synthesis using tables. On the other hand, Free-
base has many structured data sets curated by human from
specialized data sources covering different domains, thus
providing better coverage where no techniques using web
tables gives reasonable performance. We believe this shows
that knowledge bases are valuable as a source for mapping
tables, which in fact can be complementary to Synthesis

for producing mapping relationships.
An issue we notice for Synthesis, is that while it already

distills millions of raw tables into popular relations that re-
quires considerable less human efforts to curate, in some
cases it still produces many somewhat redundant clusters
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Figure 14: Comparison with alternatives on individual cases (Sorted by f-score of our Synthesis approach).
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Figure 15: Conflict resolution improves performance.

for the same relationship because inconsistency in value rep-
resentations often lead to incompatible clusters that cannot
be merged. Optimizing redundancy to further reduce human
efforts is a useful area for future research.

Figure 15 compares the f-scores with and without conflict
resolution. Conflict resolution improves the f-score in many
cases.

L. ADDITIONAL RELATED WORK
A related problem is to discover and validate logic rules

given knowledge bases [11, 18]. Our problem is not about
efficiently discovering rules that are satisfied by a monolithic
knowledge base, instead we start from a large set of isolated
tables and we synthesize relationships that are functional.
To some extent, the relationships discovered by our tech-
nique can be used to by humans to complement and enhance
existing knowledge bases.

Gupta et al. [20] build Biperpedia, which is an ontology
of attributes extracted from query stream and Web text.
They focus on attribute name extraction for different entity
classes, and not instance values in these relationships.

Mapping tables and FDs are powerful constructs that have
been studied in other contexts. For example, authors in [29,
32] study the problem of automatically inferring functional
relationships using results extracted by Information-Extraction

systems from a text corpus. The difficulty there is that in-
stances extracted for the same relation may be inconsistent.
For example, from sentences like “Barack Obama was born
in Hawaii” and “Barack Obama was born in USA” IE sys-
tems would extract “Barack Obama” on the left, “Hawaii”
and “USA” on the right, thus leading to the incorrect con-
clusion that the relationship of birth-place is not functional.
If the results extracted by a text-pattern can be thought of
as a table, then the task here is to infer if FD exists for that
table, and the challenge is that values in the table may not
be consistent. In comparison, we use tables where values are
in most cases consistent in the same column. Our task is to
go across the boundary of single tables and produce larger
relations.

While separate solutions have been proposed for certain
applications of mapping tables such as auto-join [24] and
auto-fill [4, 38], we argue that there are substantial bene-
fits for using synthesized mapping tables. First, mapping
tables are general data assets that can benefit applications
beyond auto-join and auto-fill. Synthesizing mapping tables
in essence provides a unified approach to these related prob-
lems, instead of requiring a different solution for each prob-
lem. Second, without mapping tables, techniques like [24]
perform heavy duty reasoning at runtime where the com-
plexity grows quickly for large problem instances, and thus
have trouble scaling for latency-sensitive scenarios. In com-
parison, mapping table synthesis happens offline. Apply-
ing mapping tables to online applications often reduces to
table-lookup that is easy to implement and efficient to scale.
Lastly, in trying to productizing auto-join and auto-fill using
techniques like [24, 38], we notice that while the quality are
good in many cases, they can also be unsatisfactory in oth-
ers, which prevents wider adoption in commercial systems.
Synthesized mapping tables, on the other hand, provide in-
termediate results that are inspectable, understandable, and
verifiable, which are amenable to human curation and con-
tinuous user feedback. Thus it is an important problem
worth studying.
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