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Abstract. Visual patterns represent the discernible regularity in the vi-
sual world. They capture the essential nature of visual objects or scenes.
Understanding and modeling visual patterns is a fundamental problem in
visual recognition that has wide ranging applications. In this paper, we
study the problem of visual pattern mining and propose a novel deep neu-
ral network architecture called PatternNet for discovering these patterns
that are both discriminative and representative. The proposed Pattern-
Net leverages the filters in the last convolution layer of a convolutional
neural network to find locally consistent visual patches, and by com-
bining these filters we can effectively discover unique visual patterns.
In addition, PatternNet can discover visual patterns efficiently without
performing expensive image patch sampling, and this advantage provides
an order of magnitude speedup compared to most other approaches. We
evaluate the proposed PatternNet subjectively by showing randomly se-
lected visual patterns which are discovered by our method and quan-
titatively by performing image classification with the identified visual
patterns and comparing our performance with the current state-of-the-
art. We also directly evaluate the quality of the discovered visual patterns
by leveraging the identified patterns as proposed objects in an image and
compare with other relevant methods. Our proposed network and proce-
dure, PatterNet, is able to outperform competing methods for the tasks
described.

Keywords: visual pattern mining, convolutional neural network, image
classification, object proposal

1 Introduction

Visual patterns are basic visual elements that commonly appear in images but
tend to convey higher level semantics than raw pixels. Visual patterns are a re-
flection of our physical world, in which plants and animals reproduce themselves
by repeated replication and we as human being improve our world by constant
innovation and duplicative production. As a result, we see in images many sim-
ilar and repeated patterns at different semantic levels, for example, lines, dots,
squares, wheels, doors, cars, horses, chairs, trees, etc.

Understanding and modeling visual patterns is a fundamental problem in vi-
sual recognition, and much work has been done in the computer vision commu-
nity to address this problem, with varied approaches and success. For example,
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SIFT features can be used to detect robust local points that are scale-invariant
and can tolerate limited distortions [20]. The detected SIFT patches are often
regarded as low level image patterns.
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Fig. 1. Visual Pattern Mining with Deep Neural Network

Convolution Neural Network (CNN) can also be seen as a form of visual
pattern mining. CNNs have recently shown to exhibit extraordinary power for
visual recognition. The breakthrough performance on large-scale image classifi-
cation challenges [16] [25] is just one example. Many researchers recently have
been interested in understanding why CNNs exhibit such strong performance in
classification tasks and have been analyzing the changes in the structure and
underlying theory of CNNs. One of the the most popular interpretations is that
the trained convolution layers are able to capture local texture patterns of the
image set. Zeiler et al. [31] designed a deconvolutional neural network to visually
demonstrate the information captured by each convolutional filter in a convo-
lutional neural network [16]. Given any filter, the deconvolution process traces
back via the network and finds which pixels in the original image contribute to
the response of this filter. Using the deconvolution neural network, one can show
each filter is normally sensitive to certain visual appearances or patterns and
can demonstrate what type of patterns each filter is sensitive to. For example,
the first one or two convolution layers are able to capture simple textures like
lines or corners, whereas the upper layers are capable of capturing semantically
meaningful patterns with large variances in appearance. This means that similar
textures can trigger the same filters3.

Inspired by this observation, we study the problem of visual pattern mining
and propose a framework for leveraging the activations of filters in a convolu-
tional neural network to automatically discover patterns. However, filters and
activations from CNN architectures as currently constructed can not be used
directly to find visual patterns. Therefore, we propose a new network structure
designed specifically to discover meaningful visual patterns.

A typical CNN, like AlexNet, has 256 filters in its last convolutional layer
(conv5), which is a very small number compared with all the possible patterns

3 What we term “filter” is also known as neuron or convolutional kernel. In this paper,
we will use filter throughout for consistency. “Trigger” means a filter has fired a
strong response with respect to a given input.
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existing in the real world. This implies that a filter may be triggered by several
different patterns, that share the same latent structure that is consistent with
the filter. And we also find that an image patch can trigger several different
filters simultaneously when it exhibits multiple latent patterns that conform with
multiple filters. Filters can be triggered by image patches from the same visual
pattern, but for our definition of a visual pattern a set of similar image patches
must be 1) popular and 2) unique. Formally, each of our discovered patterns
should be representative and discriminative. Discriminative means the patterns
found from within one image category should be significantly different from
those that are found in other categories, and therefore only appear sparingly in
those other categories. This means that patterns should represent unique visual
elements that appear across images in the same category. Representative requires
that the patterns should appear frequently among images in the same category.
That is, a visual pattern should not be an odd patch only appearing in one or
two images. Patterns that do not appear frequently may be discriminative but
will not appear in enough images to be of use.

We formulate the problem of visual pattern mining as follows: given a set
of images from a category (images from the target category are referred to as
“positive images” throughout this manuscript), and a set of images from other
categories as reference (these are referred to as “negative images” in the rest of
this paper), find representative and unique visual patterns that can distinguish
positive images from negative images. Our discriminative property insures that
the patterns we find are useful for this task. If a pattern only appears in positive
images but not in negative images, we call it discriminative. If a pattern appears
many times in positive images, we call it representative.

In this paper, We follow our two defined criteria for discovering visual pat-
terns (representative and discriminative) and design a neural network inspired
by the standard convolutional neural network used for image classification tasks.
We name the proposed neural network PatternNet. PatternNet leverages the
capability of the convolution layers in CNN, where each filter has a consistent
response to certain high level visual patterns. This property is used to discover
the discriminative and representative visual patterns using a specially designed
fully connected layer and loss function to find a combination of filters which have
strong response to the patterns in the images from the target category and weak
response to the images from other categories.After we introduce the architecture
of PatternNet, we will analyze and demonstrate how PatternNet is capable of
finding the representative and discriminative visual patterns from images.

The contributions of this paper are highlighted as follows:

– We propose a novel end-to-end neural network architecture called PatternNet
for finding high quality visual patterns that are both discriminative and
representative.

– By introducing a global pooling layer between the last convolutional layer
and the fully connected layer, PatternNet achieves the shift-invariant prop-
erty on finding visual patterns. This allow us to find visual patterns on image
patch level without pre-sampling images into patches.
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2 Related Work

Visual pattern mining and instance mining are fundamental problems in com-
puter vision. Many useful and important image understanding research and ap-
plications rely on high quality visual pattern or visual instance mining results,
such as the widely used middle level feature representations for image classifi-
cation and visual summarization. Most previous works ([26],[14],[18],[27]) follow
the same general procedure. First, image patches are sampled either randomly
from images or by using object proposals, such as selective search, saliency de-
tection, or visual attention. Then visual similarity and geometry restrictions are
employed for finding and clustering visually similar image patches which are
often referred to as visual patterns. After that, the discovered visual patterns
are used to build a middle level feature representation that can improve the
performance of image classification.

As well as using visual patterns as middle level feature representations, visual
pattern mining itself can be used in broader research areas. Zhang et. al [33]
propose a method to use “thread-of-feature” and “min-Hash” technology to mine
visual instances from large scale image dataset and apply the proposed method
on the applications of multimedia summarization and visual instance search.

Some works, such as [21] and [15] use the term “parts” to describe a similar
concept to “visual patterns” in this paper. They define “part” as a partial object
or scene that makes up a larger whole. In part-based approaches the objects or
scenes are broken into parts and a binary classifier is trained for each part. The
parts are used as an image representation for image classification. Parts-based
image classification works focus on different aspects than our work. First, those
works are supervised approaches. The part detectors are learned from labeled
data, while PatternNet uses unsupervised learning techniques to find the visual
patterns from a set of images. Second, the goal of using parts-based models is to
obtain better classification results, while we focus on finding discriminative and
representative visual patterns.

More recently, [19] utilizes a convolution neural network for feature repre-
sentation and uses association rule mining [1], a widely used technique in data
mining, to discover visual patterns. The key idea of of this approach is to form
a transaction for each image based on its neuron responses in a fully connected
layer and find all significant association rules between items in the database.

In contrast to most existing approaches which normally have a separate stage
to extract patches or construct transactions, followed with a clustering algorithm
or an association rule mining algorithm for finding useful visual patterns, we
develop a deep neural network framework to discover visual patterns in an end-
to-end manner, which enables us to optimize the neural network parameters
more effectively for finding the most representative and discriminative patterns.

3 Visual Pattern Mining

In this section, we introduce the architecture and analyze the properties of our
novel CNN, PatternNet.
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Fig. 2. PatternNet Architecture. The proposed system use PatternNet to discover vi-
sual patterns. The visual patterns are represented by a set of filters. Once the visual
patterns are discovered, a deconvolutional neural network is used to localize the loca-
tion of the visual pattern in the input image.

3.1 PatternNet Architecture

The convolutional layers in CNNs can be seen as feature extractors. An excellent
visual example demonstrating the capabilities of each CNN as a feature extrac-
tor exists in [31]. They demonstrate that first few convolutional layers tend to
capture lower level image features, such as edges and corners, while the last
convolutional layer captures higher level object information, such as people’s
faces, wheels, or other complicated structural patterns. Recently, the properties
of convolutional layers have been leveraged to address the problem of object
segmentation and have shown very promising results in [12]. The activations of
convolutional layers can be applied in object segmentation problems because:
1) a filter is normally selective to certain patterns, and 2) a filter is spatially
local and its response map can be utilized to localize the image patch which
has the object-of-interest in the original input image. We will leverage both of
these tendencies, especially the ability for a convolutional filter to provide local
information within the image in our construction of PatternNet.

As shown in Fig. 3, we visualize the local response region of the same filter
in the last convolutional layer of a CNN on different images. We can clearly see
that the filter can be activated by different visual patterns. Due to the fact that a
filter may be activated by multiple different visual patterns, we can not directly
use the single filter output to discover these visual patterns. On the other hand,
a visual pattern may activate multiple filters as well.
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Thusly, we can think of the filters in the last convolutional layer as more
like selectors for finding mid-level latent visual patterns rather than high-level
semantic visual patterns.

This observation motivates us to develop a neural network architecture to
find visual patterns as a combination of multiple filters from the final convolu-
tional layer. E.g. In Fig. 3, the visual pattern “flight” can be detected by the
filters {α, β}. A typical convolutional neural network has Nc filters in its last con-
volutional layer, each filter produces an Mc ×Mc dimensional feature response
map. The value of each pixel in a feature map is the response of a filter with
respect to a sub-region of an input image. A high value for a pixel means the
filter is activated by the content of the sub-region of the input image. If a filter
is activated, the Mc×Mc dimensional feature map records the magnitude of the
response and the location information of where in the input image the filter is
activated. We use a tune-able threshold Tr to decide if the response magnitude
is high enough such that the filter should be considered activated. We set the
response as 1 if the response magnitude is stronger than Tr, or 0 otherwise. To
achieve translation-invariance and more effectively utilize image sub-regions, we
intentionally ignore the location information. That is, as long as there is at least
one response value from the Mc ×Mc feature map larger than Tr, we consider
the filter is activated by the input image.

Fig. 3. Visualization of the local response region of filters in the last convolutional layer
of CNN on different images. The second row images show the local response region of
filter α. Filter α is activated by all the images. The third row images show the local
response region of filter β. Filter β is only activated by the “flight” images

In PatternNet, we use a global max pooling layer after the last convolutional
layer to discard the location information, which leads to a faster and more robust
pattern mining algorithm as the feature after global max pooing is more compact
and can effectively summarize input patches from any location. We utilize the
deconvolutional neural network to obtain the location information later in the
process when we need to localize the visual patterns. Each feature map produces
one max value after the global pooling layer. This value is then sent to a threshold
layer to detect if the corresponding filter is activated by the input image. After
thresholding, we get Nc of 0/1 indicators for Nc filters in the last convolution
layer. Each indicator represents if a filter is activated by the input image. We
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use a fully connected (FC) layer to represent the selection of filters for the visual
patterns. Each neuron in the fully connected layer is a linear combination of the
outputs from the global pooling layer after thresholding.

hi =

Nc∑
k=1

Wi,k · xk

where hi is the response of the i-th (i = 1, ..., Nf ) neuron in the FC layer, and
xk ∈ {0, 1} is the activation status of the k-th filter in the last convolutional
layer. The selection of filters is reflected by the values of parameter W in the
FC layer. After the fully connected layer, we add a sigmoid layer to map each
response hi ∈ R to pi ∈ [0, 1], indicating the probability that the pattern appears
in the input image.

pi =
1

1 + e−hi

The cost function is defined in Eq.1.

Loss = − 1

Nf

Nf∑
i=1

(
1

|B|

|B|∑
j=1

(1− yj)log(1− pi,j) + yj log(pi,j)) (1)

where yj ∈ {0, 1}, |B| is the size of a mini-batch B , and pi,j is the response
of the i-th neuron in fully connected layer w.r.t the j-th image in the mini batch.
Suppose there are Nf neurons in the fully connected layer. Then we can get Nf linear
combination of filters from PatternNet by checking the weights of the FC layer. Each
linear combination of filters represent a visual pattern from the given image set.

The intuition of this loss function is to learn multiple visual patterns for each target
category and use multiple visual patterns to distinguish positive and negative classes.

After we learn the PatternNet, for each positive image we can check the filters
which correspond to the non-zero output of the softmax function. Then we examine
the visual patterns from the input positive images using the selected filters. Each pixel
in the feature map of the selected filters can be mapped to a image patch in the input
image. By examining the feature map produced by the selected filters and using a
deconvolutional neural network, we can get the location of the max response in the
feature map and also the image patch in the original input image. If the selected filters
have the max response at the same location, it means that the same image patch
from the original image activates all the filters, and we treat this image patch as an
instance of the pattern defined by the selected filters.

We use the deconvolutional neural network architecture (see Fig. 2) to localize
where a visual pattern appears in the input image. The output of the deconvolutional
neural network Hdeconv

i is the derivative of the response value of the i-th filter Hconv
i

w.r.t the pixels in the input images.

Hdeconv
i (x, y) =

∂Hconv
i

∂I(x, y)
(2)

where Hdeconv
i is the output of a deconvolutional neural network. It has the same

size (x×y) as the input image I. A deconvolutional neural network has two passes: the
convolution pass and the deconvolution pass. The deconvolution pass shares a similar
architecture with the convolution pass, but it performs inverse-like operations, such
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as pooling vs. unpooling and convolution vs deconvolution. Unpooling is fairly simple.
The unpooling operation uses “switches” from the pooling layer to recover the feature
map prior to the pooling layer. The “switches” recover the max value at the original
location within each pooling kernel and set all the other locations in the feature map to
zero. The deconvolution operation we use is equivalent to the standard weight update
equations during back-propagation. Using the chain-rule, we compute Eq. 2. For each
deconvolutional layer, given a convolution kernel F , the deconvolution operation is:

Hk−1 =
∂Hk

∂F
= Hk ∗ FT

given the feature map Hk from the k-th layer, we use the transpose of the convolution
kernel FT to compute the output of the deconvolutional layer Hk−1. Hdeconv

i reflects
the importance (or relevance) of each pixel in the input image to the response value
of the ith filter. Let Ri be the region of non-zero pixels in Hdeconv

i . Only the pixels in
this region contribute to the response value of the filter. The region (patch) of a visual
pattern in the input image is

RP =
⋂
i∈P

Ri

where P is a set of filters which define a visual pattern.
To illustrate how a set of filters finds a visual pattern, we generate heat maps to

visualize the local response region of CNN filters in Fig. 4. Fig. 4 shows a “seat” pattern
is found in the image collection with filter #178, #39 and #235. For each image, all
the filters are activated at the same location. The figure clearly shows which region
activates the filters and it is obvious that “seat” is the target of this pattern.

Fig. 4. Visualization of the local response magnitude of CNN filters in image patches.
The heatmap shows different filters are selective to different latent patterns.

3.2 Mining Representative and Discriminative Visual Patterns with
PatternNet

Each neuron in the FC layer selects a few filters to represent a pattern. If the filter
is activated by an image and its corresponding weights in W are nonzero, it will con-
tribute to the output of the FC layer. The nonzero weights of the parameters of the
FC layer control which filters can contribute to the loss function. The loss function en-
courages the network to discover filters which are triggered by positive images but not
by negative images. A collection of filters combined together can effectively represent a
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unique pattern from positive images. The discovered pattern is representative because
most of the positive images are required to trigger the selected filters in the pattern
mining process. And the discovered pattern is also discriminative because most of the
negative images cannot trigger those filters.

3.3 Finding Discriminative Patterns from a Category w.r.t
Different Reference Images

In contrast to Representative, Discriminative is a relative concept. For example, the
visual pattern “book shelf” is a discriminative pattern in the “library” images w.r.t to
the random background images 4. But it is not a discriminative pattern if we use images
from “bookstore” category as reference images since there are also many “bookshelf”
visual instances in the “bookstore” images.

As shown in Fig. 5 (A) and (B), we use random background images as reference
images and find visual patterns from “library” images and “bookstore” images. We find
both “books” and “book shelf” visual patterns are discriminative patterns for the two
categories w.r.t random background images. But if we want to find the discriminative
patterns from “library” images w.r.t “bookstore” images, as shown in Figure 5 (C), the
unique patterns like “chairs”, “the hall’ and “reading desks” are discovered, instead of
patterns like “bookshelf”, which are shared between the two categories.

Library 
Images

(Positive)

Background 
Images

(Negative)
PatternNet

Bookstore 
Images

(Positive)

Background 
Images

(Negative)
PatternNet

Library 
Images

(Positive)

Bookstore 
Images

(Negative)
PatternNet

A B C

Fig. 5. Find discriminative patterns by using different negative images.

This characteristic demonstrates that PatternNet has the capability to find the
“true” discriminative patterns from a set of images w.r.t different reference images.
This is quite a useful feature. For example, given a set of images taken in London and
another set of images taken in New York, we can use this algorithm to find out what
are the unique visual characteristics in London.

4 Experiment

4.1 Subjective Evaluation

To demonstrate the performance of PatternNet, we first present in Fig. 6 some ran-
domly selected visual patterns discovered from a variety of datasets, including VOC2007,

4 e.g. random images downloaded from Flickr, or random images selected from all the
other categories
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MSCOCO and CUB-Bird-200. The mask images are generated from a deconvolutional
neural network [31], which demonstrates the ability of PatternNet to discover and vi-
sualize visual patterns in images. For more examples of the discovered visual patterns,
please visit http://[hidden for double-blind review]. We can clearly see that PatternNet
is able to find and localize the intricate visual patterns from different datasets.

Fig. 6. Randomly selected visual patterns discovered by PatternNet from a variety of
datasets. The mask images show the localization results of each visual pattern.

4.2 Objective Evaluation

It is not easy to directly evaluate visual pattern mining works due to the lack of
well annotated datasets for this task. Some previous works use image classification
task as a proxy to evaluate visual pattern mining results [19]. In this paper, we also
conduct experiments for image classification as a proxy to evaluate our work. We
compare the PatternNet model with several baseline approaches across a wide variety of
datasets. We also compare with several state-of-the-art visual pattern mining or visual
instance mining works for scene classification and fine-grained image classification. It is
important to note that we use the classification tasks as a proxy to evaluate the quality
of visual pattern mining methods. We are not aiming to outperform all the state-of-
the-art image classification methods. Instead, we believe that our visual pattern mining
approach could be used to improve current image classification methods. Thus, in the
following experiments, we only compare our proposed PatternNet with other state-of-
the-art visual pattern mining methods on image classification tasks.

We believe it is not enough to evaluate the quality of visual patterns by solely
using image classification. Ideally, we should use a dataset with all possible patterns
labeled by human beings to measure the precision, recall, and F-score of the discovered
visual patterns. But it is almost impossible to label a large scale dataset due to the
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difficulty and amount of human labor this would take. Instead, we notice that the
current available datasets for object detection can be used to evaluate pattern mining
works. Because the labeled objects for detection task in those datasets are indeed
“discriminative” and “representative” visual patterns. If the pattern mining algorithm
is robust, those objects should be detected and found by our approach. In this paper, we
follow the evaluation metric proposed in [29] to directly evaluate the quality of visual
patterns discovered by our work. [29] developed a technique to propose a bounding box
for candidate objects from images. In their paper, they use Mean Average Best Overlap
(MABO) as the evaluation metric. ABO for a specific class c is defined as follows:

ABO =
1

|Gc|
∑

gci∈G
c

max
lj∈L

Overlap(gci , lj)

Overlap(gci , lj) =
area(gci ) ∩ area(lj)

area(gci ) ∪ area(lj)

where gci ∈ Gc is the ground truth annotation and L is the bounding box of the detected
visual patterns.

4.3 Using Image Classification as a Proxy to Evaluate PatternNet

We follow similar settings used by most existing pattern mining or instance mining
works to evaluate our approach on image classification. That is, after we discover the
visual patterns from the training images, we use the visual patterns to extract a middle
level feature representation for both training and test images. Then, the middle level
feature representations are used in the classification task. As our visual patterns are
discovered and represented by a set of filters in the last convolution layer, it is easy and
natural for us to integrate the pattern detection, training and testing phrases together
in one neural network. To do this, we add a static fully connected layer on top of the
last convolution layer. The parameters of this FC layer are manually initialized using
the visual patterns learned in PatternNet . During the training phase, we freeze this
static FC layer by setting the learning rate to zero. Assume we have Nf unique visual
patterns for a dataset. Then the FC layer has Nf dimensional outputs. Each dimension
collects the response from the filters associated with one visual pattern. After scaling
and normalization, the value of each dimension represents the detection score of a
visual pattern from an input image. On top of this FC layer, a standard FC layer and
softmax layer are used to get classification results.

Baseline Comparison We compare PatternNet with several baseline approaches,
including: 1) use the response of fc7 layer of a CNN [25] as image feature representation
and train a multi-class SVM model for image classification, 2) use the response of pool5
layer from a CNN [25] as image feature representation and train a multi-class SVM
model for image classification. We simply use a fully connected layer and a softmax
layer on top of the PatternNet architecture to classify images. The results can be
found in Table 1. PatternNet outperforms the baseline approaches which directly use
the response from pool5 and fc7 layer as image features. The response of each neuron
in the last fully connected layer in PatternNet indicates if the input image has a
certain visual pattern. The results in Table 1 prove that the selected visual patterns
are discriminative and can be used as good image features for classification.
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Table 1. Comparison with the baseline approaches on some popular benchmark
datasets. PatternNet uses the same structure of convolutional layers as in [25], and
uses their pre-trained model to initialize the convolutional layers

Method MITIndoor CUB-BIRD-200 StanfordDogs

CNN [25] fc7 + SVM 67.6 54.6 78.1
CNN [25] pool5 + SVM 61.6 40.7 67.1

PatternNet 75.3 70.0 83.1

Scene Classification We use the MITIndoor dataset for scene classification, which
has 67 classes of indoor images. We follow the split of training and test images as
in [23]: about 80 training images and 20 test images per category. About 20 visual
patterns are discovered by PatternNet on training images for each category. For each
indoor scene category, we use its 80 images as positive samples and the images from
other categories as negative samples to train the PatternNet model to discover visual
patterns. The convolutional layers are initialized by a pre-trained CNN model [16], and
frozen during the training phase. PatternNet converges within about 100 iterations,
which takes about 1-2 mins on a workstation with GTX Titan X GPU. After this
procedure, we find approximately 20-30 unique patterns per scene category. Note that
the number of discovered patterns are controllable by using different dimensions of
parameters in the fully connected layer of PatternNet. From Table 2, we can see that
PatternNet outperforms the state-of-the-art works. Compared with MDPM, we directly
modify the current CNN architecture to perform the scene classification task, while
their approach has to sample image patches from test images and produce the middle-
level feature representation for classification. In addition to performance, this allows
our approach to provide an order of magnitude speedup compared with MDPM.

Table 2. Scene classification results on MITIndoor dataset. PatternNet uses the pre-
trained AlexNet [16] to initialize the convolutional layers for the fair comparison.

Method Accuracy (%)

ObjectBank [17] 37.60
Discriminative Patch [26] 38.10
BoP [14] 46.10
HMVC [18] 52.30
Discriminative Part [27] 51.40
MVED [7] 66.87
MDPM [19] 69.69
PatternNet 71.30

Fine-grained Object Classification Recently, fine-grained image classification
has attracted much attention in visual recognition. Compared with traditional image
classification problems (dogs vs. cars, buildings vs. people), the fine-grained image
classification (Labrador vs. Golden Retriever, Husky vs. Samoyed) is a much harder
problem, since it requires attention to detailed visual features in order to distinguish
the fine-grained categories. Similar to the scene classification task, our insight is that
discriminative patterns are able to capture the information from local parts of the
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image/object. With PatternNet, the discriminative patterns of each fine-grained class
can be effectively discovered. As the property of discriminative patterns, the patterns
from one category rarely appear in other categories. Hence such patterns have a great
potential to improve the fine-grained object classification task.

Table 3. Fine-grained object classification results on Stanford dogs dataset

Method Accuracy (%)

Alignments [10] 36.8
GMTL [22] 39.3
Symb [5] 45.6
Unsupervised Alignments [9] 50.1
SPV [6] 52.0
Google LeNet ft [28] 75.0
Attention [24] 76.8
PatternNet 83.1

Table 4. Fine-grained classification results on CUB-200 dataset

Method Accuracy (%)

GMTL [22] 44.2
SPV [6] 48.9
Alignments [10] 53.6
POOF [3] 56.8
R-CNN [11] 58.8
Symb [5] 59.4
PB-R-CNN [32] 65.9
PatternNet 70.0

We evaluate our approach on two popular datasets for fine-grained image classi-
fication task: CUB-bird 200 and Stanford Dogs. CUB-200 dataset has 200 classes of
different birds. And Stanford Dogs dataset has 120 categories of different dogs. We fol-
low the suggested training-test split from the original dataset and compare our results
with some state-of-the-art works as listed in Table 3 and 4. The parameters of the
convolution layers are imported from a pre-trained CNN model [25] without any fine-
tuning. During any of our training phases, we do not fine-tune any parameters from
convolution layers to prevent over-fitting. The only parameters we learned for Pattern-
Net are the fully connected layer as the indicator of linear combination of convolution
filters. The training phase for discovering patterns are stopped after a few hundreds of
iterations when the training loss is stable. We notice that some recent works reported
significantly high performance by leveraging the manually labeled bounding box infor-
mation, such as 82.0% reported by PD [15] on CUB-200 dataset. In our approach, we
use neither manually labeled bounding box nor parts information. The purpose of this
experiment is to evaluate the quality of the discovered visual patterns. It is important
to evaluate our approach on the whole image instead of clean objects given by the
manually labeled bounding box. Thus, we only compare with the approaches which
do not use the manually labeled bounding box information. We also do not compare
with works which use additional images to fine-tune a CNN model, since those works
involve additional training data and thus are not a fair comparison. From table 3 and
4, we can see the clear advantage of our approach compared with the state-of-the-art
works on the same experiment setup.
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4.4 Evaluate PatternNet on Object Proposal Task

As we have discussed before, visual pattern mining technology can be used for the ob-
ject proposal task. The main difference between pattern mining and traditional object
proposal methods ([29] [2]) is that we do not need manually labeled object bounding
boxes to train the model. Our algorithm directly mines the regularity from the given
image set and finds important (“discriminative” and “representative”) objects in im-
ages. Also, instead of proposing thousands of object bounding box proposals in [29],
we only generate tens of object bounding boxes with a much higher accuracy. As [29]
is widely used in many research works for pre-processing images, we compare our ap-
proach with the state-of-the-art object proposal works and show the results in Table
5. Our advantage is that we propose much fewer bounding boxes than the traditional
object proposal works. We compare the recall rate and MABO reported in the litera-
ture when about 100 bounding boxes are proposed by those works. The results show
that the PatternNet outperforms the other works with much less number of proposed
bounding boxes.

Table 5. Comparison of recall rate and MABO for a variety of methods on the Pascal
VOC 2007 test set. For PatternNet, we propose about 5 bounding boxes per image.
For the other methods, we compare their reported number when about 100 bounding
boxes are proposed.

Method Recall MABO # proposed bounding boxes

Sliding window search [13] 0.75 - 100
Jumping windows [30] 0.60 - 100
Objectness [2] 0.77 0.66 100
The boxes around the regions [4] 0.70 0.63 100
The boxes around the regions [8] 0.74 0.65 100
Selective Search [29] 0.74 0.63 100
PatternNet 0.86 0.77 5

5 Conclusion

In this paper, we have presented a novel neural network architecture called Pattern-
Net for discovering visual patterns from image collections. PatternNet leverages the
capability of the convolutional layers in a CNN, where each filter normally has consis-
tent response to certain high-level visual patterns. This property is used to discover
discriminative and representative visual patterns by using a specially designed fully
connected layer and a lost function to find a sparse combinations of filters, which have
strong responses to the patterns in images from the target category and weak responses
to images from the rest of the categories. We conducted experimental evaluation on
both the scene classification task and the fine-grained object classification task. The
evaluation result shows that the discovered visual patterns by PatternNet are both
representative and discriminative. We believe that PatternNet has shown promising
performance in automatically discovering the useful portions of an image and enables
advanced computer vision applications without expensive bounding box based labeling
of datasets.
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