
VFP: A Virtual Switch Platform for Host SDN in the Public Cloud

Daniel Firestone, Microsoft

Abstract

Many modern scalable cloud networking architectures
rely on host networking for implementing VM network
policy - e.g. tunneling for virtual networks, NAT for
load balancing, stateful ACLs, QoS, and more. We
present the Virtual Filtering Platform (VFP) - a
programmable virtual switch that powers Microsoft
Azure, a large public cloud, and provides this policy.
We define several major goals for a programmable
virtual switch based on our operational experiences,
including support for multiple independent network
controllers, policy based on connections rather than
only on packets, efficient caching and classification
algorithms for performance, and efficient offload of
flow policy to programmable NICs, and demonstrate
how VFP achieves these goals. VFP has been deployed
on >1M hosts running IaaS and PaaS workloads for
over 4 years. We present the design of VFP and its API,
its flow language and compiler used for flow
processing, performance results, and experiences
deploying and using VFP in Azure over several years.

1. Introduction
The rise of public cloud workloads, such as Amazon
Web Services, Microsoft Azure, and Google Cloud
Platform [13-15], has created a new scale of datacenter
computing, with vendors regularly reporting server
counts in the millions. These vendors not only have to
provide scale and the high density/performance of
Virtual Machines (VMs) to customers, but must provide
rich network semantics, such as private virtual networks
with customer supplied address spaces, scalable L4 load
balancers, security groups and ACLs, virtual routing
tables, bandwidth metering, QoS, and more.

This policy is sufficiently complex that it often cannot
economically be implemented at scale in traditional
core routers and hardware. Instead a common approach
has been to implement this policy in software on the
VM hosts, in the virtual switch (vswitch) connecting
VMs to the network, which scales well with the number
of servers, and allows the physical network to be
simple, scalable and very fast. As this model separates a
centralized control plane from a data plane on the host,
it is widely considered an example of Software Defined
Networking (SDN) – in particular, host-based SDN.

As a large public cloud provider, Azure has built its
cloud network on host based SDN technologies, using
them to implement almost all virtual networking
features we offer. Much of the focus around SDN in

recent years has been on building scalable and flexible
network controllers and services, which is critical.
However, the design of the programmable vswitch is
equally important. It has the dual and often conflicting
requirements of a highly programmable dataplane, with
high performance and low overhead, as cloud
workloads are cost and performance sensitive.

In this paper, we present the Virtual Filtering Platform,
or VFP – our cloud scale virtual switch that runs on all
of our hosts. VFP is so named because it acts as a
filtering engine for each virtual NIC of a VM, allowing
controllers to program their SDN policy. Our goal is to
present both our design and our experiences running
VFP in production at scale, and lessons we learned.

1.1 Related Work

Throughout this paper, we use two motivating examples
from the literature and demonstrate how VFP supports
their policies and actions. The first is VL2 [2], which
can be used to create virtual networks (VNETs) on
shared hardware using stateless tunneling between
hosts. The second is Ananta [4], a scalable Layer-4 load
balancer, which scales by running the load balancing
NAT in the vswitch on end hosts, leaving the in-
network load balancers stateless and scalable.

In addition, we make references and comparisons to
OpenFlow [5], a programmable forwarding plane
protocol, and OpenVswitch [1] (OVS), a popular open
source vswitch implementing OpenFlow. These are two
seminal projects in the SDN space. We point out core
design differences from the perspective of a public
cloud on how our constraints can differ from those of
open source projects. It is our goal to share these
learnings with the broader community.

2. Design Goals and Rationale
VFP’s design has evolved over time based on our
experiences running a large public cloud platform. VFP
was not our original vswitch, nor were its original
functions novel ideas in host networking – VL2 and
Ananta already pioneered such use of vswitches.

Originally, we built networking filter drivers on top of
Windows’s Hyper-V hypervisor for each host function,
which we chained together in a vswitch – a stateful
firewall driver for ACLs, a tunneling driver for VL2
VNETs, a NAT driver for Ananta load balancing, a
QoS driver, etc. As host networking became our main
tool for virtualization policy, we decided to create VFP
in 2011 after concluding that building new fixed filter
drivers for host networking functions was not scalable

or desirable. Instead, we created a single platform based
on the Match-Action Table (MAT) model popularized
by projects such as OpenFlow [5]. This was the origin
of our VFPAPI programming model for VFP clients.

VFP’s core design goals were taken from lessons
learned in building and running both these filters, and
the network controllers and agents on top of them.

2.1 Original Goals
The following were founding goals of the VFP project:

1. Provide a programming model allowing for
multiple simultaneous, independent network
controllers to program network applications,
minimizing cross-controller dependencies.

Implementations of OpenFlow and similar MAT models
often assume a single distributed network controller that
owns programming the switch (possibly taking input
from other controllers). Our experience is that this
model doesn’t fit cloud development of SDN – instead,
independent teams often build new network controllers
and agents for those applications. This model reduces
complex dependencies, scales better and is more
serviceable than adding logic to existing controllers. We
needed a design that not only allows controllers to
independently create and program flow tables, but
would enforce good layering and boundaries between
them (e.g. disallow rules to have arbitrary GOTOs to
other tables, as in OpenFlow) so that new controllers
could be developed to add functionality without old
controllers needing to take their behavior into account.

2. Provide a MAT programming model capable of
using connections as a base primitive, rather than
just packets – stateful rules as first class objects.

OpenFlow’s original MAT model derives historically
from programming switching or routing ASICs, and so
assumes that packet classification must be stateless due
to hardware resources available. However, we found
our controllers required policies for connections, not
just packets – for example end users often found it more
useful to secure their VMs using stateful Access Control
Lists (ACLs) (e.g. allow outbound connections, but not
inbound) rather than stateless ACLs used in commercial
switches. Controllers also needed NAT (e.g. Ananta)
and other stateful policies. Stateful policy is more
tractable in soft switches than in ASIC ones, and we
believe our MAT model should take advantage of that.

3. Provide a programming model that allows
controllers to define their own policy and actions,
rather than implementing fixed sets of network
policies for predefined scenarios.

Due to limitations of the MAT model provided by
OpenFlow (historically, a limited set of actions, limited
rule scalability and no table typing), OpenFlow switches

such as OVS have added virtualization functionality
outside of the MAT model. For example, constructing
virtual networks is accomplished via a virtual tunnel
endpoint (VTEP) schema [29] in OVSDB [8], rather
than rules specifying which packets to encapsulate
(encap) and decapsulate (decap) and how to do so.

We prefer instead to base all functionality on the MAT
model, trying to push as much logic as possible into the
controllers while leaving the core dataplane in the
vswitch. For instance, rather than a schema that defines
what a VNET is, a VNET can be implemented using
programmable encap and decap rules matching
appropriate conditions, leaving the definition of a
VNET in the controller. We’ve found this greatly
reduces the need to continuously extend the dataplane
every time the definition of a VNET changes.

The P4 language [9] attempts a similar goal for switches
or vswitches [38], but is very generic, e.g. allowing new
headers to be defined on the fly. Since we update our
vswitch much more often than we add new packet
headers to our network, we prefer the speed of a library
of precompiled fast header parsers, and a language
structured for stateful connection-oriented processing.

2.2 Goals Based on Production Learnings

Based on lessons from initial deployments of VFP, we
added the following goals for VFPv2, a major update in
2013-14, mostly around serviceability and performance:

4. Provide a serviceability model allowing for
frequent deployments and updates without
requiring reboots or interrupting VM connectivity
for stateful flows, and strong service monitoring.

As our scale grew dramatically (from O(10K) to O(1M)
hosts), more controllers built on top of VFP, and more
engineers joined us, we found more demand than ever
for frequent updates, both features and bug fixes. In
Infrastructure as a Service (IaaS) models, we also found
customers were not tolerant of taking downtime for
individual VMs for updates. This goal was more
challenging to achieve with our complex stateful flow
model, which is nontrivial to maintain across updates.

5. Provide very high packet rates, even with a large
number of tables and rules, via extensive caching.

Over time we found more and more network controllers
being built as the host SDN model became more
popular, and soon we had deployments with large
numbers of flow tables (10+), each with many rules,
reducing performance as packets had to traverse each
table. At the same time, VM density on hosts was
increasing, pushing us from 1G to 10G to 40G and even
faster NICs. We needed to find a way to scale to more
policy without impacting performance, and concluded
we needed to perform compilation of flow actions

across tables, and use extensive flow caching, such that
packets on existing flows would match precompiled
actions without having to traverse tables. Provide a fast
packet classification algorithm for cases with large
numbers of rules and tables.

While solving Goal #5 dramatically improved
performance for existing flows (e.g. all TCP packets
following a SYN), we found a few applications pushing
many thousands of rules into their flow tables (for
example, a distributed router BGP peering with
customers, using VFP as its FIB), which slowed down
our flow compiler. We needed to design an efficient
packet classifier to handle performance for these cases.

6. Implement an efficient mechanism to offload flow
policy to programmable NICs, without assuming
complex rule processing.

As we scaled to 40G+ NICs, we wanted to offload
policy to NICs themselves to support SR-IOV [22, 23]
and let NICs indicate packets directly to VMs while
applying relevant VFP policy. However, as controllers
created more flow tables with more rules, we concluded
that directly offloading those tables would require
prohibitively expensive hardware resources (e.g. large
TCAMs, matching in series) for server-class NICs. So
instead of trying to offload classification operations, we
wanted an offload model that would work well with our
precompiled exact-match flows, requiring hardware to
only support accessing a large table of cached flows in
DRAM, and support for our associated action language.

2.3 Non-Goals

The following are goals we’ve seen in other projects,
which based on our experiences we chose not to pursue:

1. Providing cross-platform portability.

Portability is difficult to achieve with a high
performance datapath in the kernel. Projects such as
OVS have done this by splitting into a kernel fastpath
and a portable userspace slowpath with policy – but this
comes at a cost of over an order of magnitude
slowdown when packets take the slowpath [16]. We run
entirely on one host OS, so this wasn’t a goal for us.

2. Supporting a network / remote configuration
protocol bundled with VFP itself.

OpenFlow contains both a network programming
model, as well as a wire protocol for configuring rules
over the network. The same is true of OVS and the
OVSDB protocol. In order to enable different controller
models of managing policy (e.g. a rule push model, or
the VL2 Directory System pull model), we instead
decoupled VFP as a vswitch from the agents that
implement network configuration protocols, and
focused on providing a high performance host API.

3. Providing a mechanism to detect or prevent

controllers from programming conflicting policy

Much literature [17-21] describes attempts to detect or
prevent conflicts or incorrect policy in flow table or rule
matching systems. Despite our first goal of supporting
multiple controllers programming VFP in parallel
without interfering with each other, we concluded early
on that explicit conflict management was neither a
feasible nor necessary goal, for several reasons.
Programming VFP on behalf of a VM is a protected
operation that only our controllers can perform, so we
are not worried about malicious controllers. In addition,
we concluded it was impossible to tell the difference
between a misprogrammed flow table overwriting
another flow table’s actions by accident, and a flow
table designed to filter the output of another table.
Instead we focused on tooling to help developers
validate their policy and interactions with other policies.

3. Overview and Comparison
As a motivating example throughout the paper, we
consider a simple scenario requiring 4 host policies
used for O(1M) VMs in a cloud. Each policy is
programmed by its own SDN controller and requires
both high performance and SR-IOV offload support: A
VL2-style VNET, an Ananta-style load balancer, a
stateful firewall, and per-destination traffic metering for
billing purposes. We begin by evaluating this against
existing solutions to demonstrate the need for a different
approach, which we describe. Sections 4-7 then detail
VFP’s core design.

3.1 Existing solutions: Open vSwitch
While Linux and Windows support bridging [26-28]
between multiple interfaces, which can be used as a
vswitch, these bridges don’t apply SDN policy. Other
public clouds such as Google have described [25] using
host SDN policy, but details are not public. OVS is the
primary solution today to provide vswitch-based SDN,
and so (as of version 2.5) is our main comparison point.

We believe OVS has had a great positive impact in
making programmable host networking widely
available. Many OVS design choices were driven by
OVS-specific goals such as cross-platform support and
the requirements of shipping in the Linux kernel1 [1].
Combined with OVS’s use of OpenFlow, these designs
enable deployments with controllers managing virtual
switches and physical switches via the same protocols,
which was a non-goal for our host-based networking
model. OVS also supports many protocols useful for
physical switches such as STP, SPBM, BFD, and

1 Windows is always backwards compatible with drivers, so
we can ship a single driver compatible with all recent
Windows versions without needing kernel integration.

IGMP Snooping [3], that we don’t use.

Partially as a result of OpenFlow in particular, however,
aspects of OVS make it unsuitable for our workload:

 OVS doesn’t natively support true independent multi-
controller models, as is required when our VL2 and
Ananta applications are controlled separately. The
underlying OpenFlow table model is unsuitable for
multi-controller use cases – table rules specify explicit
GOTOs to next tables, causing controllers to tie their
policy together. Also, tables can only be traversed in
the forward direction, whereas multi-controller
scenarios require packets to traverse tables in the
reverse direction for outbound packets as for inbound,
so that packets will be in a consistent state when
matching that controller’s policy in either direction.
VFP solves this with explicit table layering (§5.2).

 OVS doesn’t natively support stateful actions like
NAT in its MAT model, required by our Ananta
example (our firewall is stateful too) – in both cases
controllers need to operate on connections as a base
primitive rather than packets. OpenFlow provides
only for a packet model, however. OVS recently
added support for sending packets to the Linux
connection tracker to enable stateful firewall, but it’s
not exposed as a MAT and doesn’t easily support a
NAT, which requires explicit bidirectional stateful
tables so that the NAT is reversed on a flow’s return
path. VFP solves this with stateful layers (§5.2).

 OVS’s VTEP Schema requires explicit tunnel
interfaces to implement VL2-style VNETs rather than
allowing the controller to specify its own encap /
decap actions, which aren’t natively supported in
OpenFlow2. This hardcodes a model of a VNET in the
dataplane rather than allowing the controller to define
how the VNET works (Goal 3). Adding complex
VNET logic like ECMP routing can be difficult in this
schema and requires vswitch changes, rather than
policy changes. VFP supports all of these directly in
its MAT (§5.3) by modeling encap/decap as actions.

 OVS doesn’t support a VL2-style Directory System,
required to dynamically look up Customer Address to
Physical Address mappings. OpenFlow’s design lacks
the scalability to support large VNETs this way –
OpenFlow exception packets must all go back to the
central controller, and in OVS, VTEPs on all hosts are
expected to be updated any time a mapping changes.
This is OK for NSX/vSphere, which support up to
1000 hosts [30], but we found this unusable at our
scale. VFP solves this by combining the schema-free

2 While OpenFlow can support header pushes like MPLS tags
as an action, it doesn’t work for VNETs, e.g. VXLAN.

MAT model with efficient asynchronous I/O
exception requests (§5.5.1) that an agent can redirect
to services separate from the controller.

 OVS doesn’t have a generic offload action language
or API that can support combinations of policy such
as an Ananta NAT plus a VL2 encap. While SR-IOV
offloads have been implemented on top of OVS builds
by NIC vendors for specific workloads (such as VTEP
schema) [31], doing general purpose offloads requires
hardware to support the complex multi-table lookups
of the original policy (e.g. [32]) that we’ve found
quite costly in practice. VFP’s Header Transposition
language (§6.1.2, 9.3) enables SR-IOV support for all
policy with only a single table lookup in hardware.

Thus we need a different design for our policy.

3.2 VFP Design

Figure 1. Overview of VFP Design

Figure 1 shows a model of the VFP design, which is
described in subsequent sections. VFP operates on top
of Hyper-V’s extensible switch, as described in Section
4’s filtering model. VFP implements MATs as layers
that support a multi-controller model, with a
programming model presented in Section 5. Section 6
describes VFP’s packet processor, including a fastpath
through unified flow tables and a classifier used to
match rules in the MAT layers. Section 7 presents the
switching model of VFP’s bridge.

4. Filtering Model
VFP filters packets in the OS through MAT flow table
policy. The filtering model is described below.

4.1 Ports and NICs

The core VFP model assumes a switch with multiple
ports which are connected to virtual NICs (VNICs).
VFP filters traffic from a VNIC to the switch, and from
the switch to a VNIC. All VFP policy is attached to a
specific port. From the perspective of a VM with a
VNIC attached to a port, ingress traffic to the switch is

considered to be “outbound” traffic from the VM, and
egress traffic from the switch is considered to be
“inbound” traffic to the VM. VFPAPI and its policies
are based on the inbound/outbound model.

Figure 2. Hyper-V Switch Extensibility vs NIC Filtering

VFP implements a switch abstraction interface to
abstract out different environments, instantiations of
which provide logic for management (e.g. create / delete
/ connect / disconnect) of ports, VNICs, and associated
objects. This interface supports both a Hyper-V switch
and a filter for native hosts, shown in Figure 2.

4.2 Hyper-V Switch Extensibility

Hyper-V includes a basic vswitch [28] to bridge VNICs
to a physical NIC. The switch is extensible, allowing
filters to plug in and filter traffic to and from VNICs.

VFP acts as a Forwarding Extension to Hyper-V’s
vswitch – it simply replaces the entire switch logic with
itself. Using this model allows us to keep our policy
module and virtual switching logic (VFP) separate from
the Hyper-V infrastructure to deliver packets to and
from VMs, improving modularity and serviceability.

VFP in this mode supports PacketDirect [11], which
allows a client to poll a NIC with very low overhead.

5. Programming Model
VFP’s core programming model is based on a hierarchy
of VFP objects that controllers can create and program
to specify their SDN policy. The objects are:

 Ports, the basic unit that VFP policy filters on.

 Layers, the stateful flow tables that hold MAT policy.

 Groups, entities to manage and control related groups
of rules within a layer.

 Rules, the match action table entries themselves.

Figure 3. VFP Objects: Layers, Groups, and Rules

5.1 Ports
VFP’s policy is implemented on a per-port basis – each
port has match action tables which can sit on the
inbound or outbound path of the port, acting as filters.
Since our controllers generally want to program policy
on behalf of a VM or VNIC, this clean separation of
ports allows controllers to independently manage policy
on different VMs, and instantiate and manage flow
tables only on ports where they are needed – for
example a VM in a virtual network may have tables to
encapsulate and decapsulate traffic into tunnels, which
another VM not in a virtual network wouldn’t need (the
VNET controller may not even be aware of the other
VM, which it doesn’t need to manage).

Policy objects on VFP are arranged in fixed object
hierarchies, used to specify which object a given API
call is referencing, such as Layer/Group/Rule. All
objects are be programmed with a priority value, in
which order they will be processed by rule matching.

5.2 Layers

VFP divides a port’s policy into layers. Layers are the
basic Match Action Tables that controllers use to
specify their policy. They can be created and managed
separately by different controllers, or one controller can
create several layers. Each layer contains inbound and
outbound rules and policies that can filter and modify
packets. Logically, packets go through each layer one
by one, matching rules in each based on the state of the
packet after the action performed in the previous layer.
Controllers can specify the ordering of their layers in a
port’s pipeline with respect to other layers, and create
and destroy layers dynamically during operation.

Figure 4. Example VFP Layers with Boundaries

Critically, packets traverse layers in the opposite order
when inbound than when outbound. This gives them a
“layering” effect when controllers implement opposite
policy on either side of a layer. Take for example a load
balancing layer implementing the Ananta NAT design.

On the inbound direction, the layer NATs connections
destined to a Virtual IP (a VIP) to a Direct IP (DIP)
behind the VIP – in this case the IP of the VM. On the
outbound direction, it NATs packets back from DIP to
VIP. The layer thus implements an address space
boundary – all packets above it are in “DIP Space”, and
all packets below it are in “VIP Space”. Other
controllers can choose to create layers above or below
this NAT layer, and can plumb rules to match VIPs or
DIPs respectively – all without coordination with or
involvement of the NAT controller.

Figure 4 shows layers for our SDN deployment
example. VL2 is implemented by a VNET layer
programmed by a virtual network controller, using
tunneling for Customer Addresses (CAs) so that packets
can traverse a physical network in Physical Address
(PA) space recognized by physical switches in the path
between VMs. This layer creates a CA / PA boundary
by having encapsulation rules on the outbound path and
decapsulation rules in the inbound path. In addition, an
ACL layer for a stateful firewall sits above our Ananta
NAT layer. The security controller, having placed it
here with respect to those boundaries, knows that it can
program policies matching DIPs of VMs, in CA space.
Finally a metering layer used for billing sits at the top
next to the VM, where it can meter traffic exactly as the
customer in the VM sees it – all traffic that made it in
and all traffic that was sent out from the VM.

Figure 5. A Layer with a stateful flow

Layering also gives us a good model on which to
implement stateful policy. Since packets on a given
connection should be in the same IP/Port state on both
the inbound and outbound path, we can keep flow state
on a layer by assuming that a TCP or UDP 5-tuple
(SrcIP, DstIP, IP Protocol, SrcPort, DstPort) will be the
opposite on each side of the layer, and encoding that in
a hash table of all connections in either direction. When
a stateful rule is matched, it creates both an inbound and
outbound flow in the layer flow tables, with the flow in
the direction of the rule having the action of the rule,
and the opposite direction taking the opposite action, to
maintain layering. These inbound and outbound flows
are considered paired – their actions simply change the
packet to the state of the opposite flow in the pair rather
than carrying their own action context.

When processing packets, VFP searches for a single
rule in each layer to match by searching the groups of

rules inside a layer for a matching rule. That rule’s
action is then performed on the packet – only one rule
can match a given packet in a given layer (other
matching rules of lower priority are ignored).

5.3 Rules

Rules are the entities that perform actions on matching
packets in the MAT model. Per Goal #3, rules allow the
controller to be as expressive as possible while
minimizing fixed policy in the dataplane. Rules are
made up of two parts: a condition list, specified via a
list of conditions, and an action, both described below.

5.3.1 Conditions

When a VFPAPI client programs a rule, it provides a
descriptor with a list of conditions. Conditions have a
type (such as source IP address), and a list of matching
values (each value may be a singleton, range, or prefix).
For a condition to match a packet, any of the matching
values can match (an OR clause). For a rule to match,
all conditions in the rule much match (an AND clause).

5.3.2 Actions
A rule descriptor also has an action. The action contains
a type and a data structure specific to that type with data
needed to perform the rule (for example, an
encapsulation rule takes as input data the source /
destination IP addresses, source / destination MACs,
encapsulation format and key to use in encapsulating
the packet). The action interface is extensible - example
conditions and actions are listed in Figure 6.

Rules are implemented via a simple callback interface
(Initialize, Process Packet, Deinitialize) so as to make
the base VFP platform easily extensible. If a rule type
supports stateful instantiation, the process handler will
create a pair of flows in the layer as well – flows are
also typed and have a similar callback interface to rules.
A stateful rule includes a flow time to live, which is the
time that flows it creates will remain in the flow table
after the last packet matches (unless expired explicitly
by the TCP state machine described in §6.4.2).

5.3.3 User Defined Actions

In addition to a large set of actions we’d created over

Figure 6. Example Conditions and Actions

time, in VFPv2 we added user-defined actions to further
Goal #3 – allowing the controllers to create their own
rule types using a language for header field
manipulations (Header Transpositions, see §6.1.2). This
allows extending the base VFP action set without
writing code to implement an action in the datapath.

5.4 Groups

Rules on a layer are organized into logical groups for
management purposes. Groups are the atomic unit of
policy in VFP – clients can transactionally update them.
When classifying packets, VFP iterates through groups
in a layer to find the highest priority rule in each group
that matches the packet. By default, VFP will select the
rule matched by the last group in the list. A rule can be
marked “terminating,” meaning that if it ever matches it
will be applied immediately without traversing further
groups. Groups can have conditions just like rules – if a
group’s condition doesn’t match, VFP will skip it.

Below are two examples of how we’ve seen groups
used for management of different policies in one layer:

 For VMs with Docker-style containers [35], each with
its own IP, groups can be created and managed on a
per-container basis by setting an IP condition on them.

 For our stateful firewall, infrastructure ACLs and
customer ACLs can be expressed as two groups in a
layer. Block rules would be marked terminating – if
either group blocks it, a packet is dropped. Only if
both sets of rules allowed a packet does it go through.

In addition to priority-based matching, individual
groups can be Longest Prefix Matching on a condition
type (for example, destination IP) to support routing
scenarios. This is implemented as a compressed trie.

5.5 Resources

MATs are a good model for programming general
network policy, but on their own aren’t optimal for
every scenario, especially ones with exception events.
VNET requires a CA->PA lookup on outbound traffic
(using a Directory System). Rules alone aren’t optimal
for such large mapping tables. So we support an
extensible model of generic resources – in this case, a
hash table of mappings. A resource is a port-wide
structure that any rule on a port can reference. Another
example is a range list, which can implement a dynamic
source NAT rule of the form described in Ananta.

5.5.1 Event Handling / Lookups

Fast eventing APIs are required for many SDN
applications where there is a lookup miss. We generally
handle events in the context of resources – e.g. if an
encap rule looks up a PA/CA mapping resource and
misses, a VFPAPI client can register an efficient
callback mechanism using async I/O and events. We use
the same mechanism for Ananta NAT port exhaustion.

6. Packet Processor and Flow Compiler
As we scaled production deployments of VFP, and SDN
became more widely used, it became necessary to write
a new VFP datapath for improved performance and
scalability across many rules and layers. Our work to
improve performance, without losing the flexibility and
programmability of VFPAPI, is described below.

6.1 Metadata Pipeline Model

VFP’s original 2012 release, while performant under
the workloads it was designed for, didn’t scale well
when the host SDN model took off even faster than we
expected and many new layers were created by
controllers. VFP rules and flows were implemented as
callbacks which took a packet as input and modified its
buffer - the next layer would have to reparse it. The
original rule classification logic was linear match (with
stateful flows accelerating this). At 10+ layers with
thousands of rules, we needed something better.

A primary innovation in VFPv2 was the introduction of
a central packet processor. We took inspiration from a
common design in network ASIC pipelines e.g. [34] –
parse the relevant metadata from the packet and act on
the metadata rather than on the packet, only touching
the packet at the end of the pipeline once all decisions
have been made. We compile and store flows as we see
packets. Our just-in-time flow compiler includes a
parser, an action language, an engine for manipulating
parsed metadata and actions, and a flow cache.

6.1.1 Unified FlowIDs

VFP’s packet processor begins with parsing. The
relevant fields to parse are all those which can be
matched in conditions (from §5.3.1). One each of an
L2/L3/L4 header (as defined in table 1) form a header
group, and the relevant fields of a header group form a
single FlowID. The tuple of all FlowIDs in a packet is a
Unified FlowID (UFID) – the output of the parser.

6.1.2 Header Transpositions

Our action primitives, Header Transpositions (HTs), so
called because they change or shift fields throughout a
packet, are a list of paramaterizable header actions, one
for each header. Actions (defined in table 2) are to Push
a header (add it to the header stack), Modify a header
(change fields within a given header), Pop a header
(remove it from the header stack), or Ignore a header
(pass over it). HTs are parameterized with all fields in a
given header that can be matched (so as to create a
complete language – any valid VFP flow can be
transformed into any other valid VFP flow via exactly
one HT). Actions in a HT are grouped into header
groups. Table 3 shows examples of a NAT HT used by
Ananta, and encap/decap HTs used by VL2.

As part of VFPv2, all rule processing handlers were

updated to take as input a FlowID and output a
transposition. This has made it easy to extend VFP with
new rules, since implementing a rule doesn’t require
touching packets – it’s a pure metadata operation.

Table 1. Valid Parameters for Each Header Type

Table 2. Header Transposition Actions

Table 3. Example Header Transpositions

6.1.3 Transposition Engine

VFP creates an action for a UFID match by composing
HTs from matched rules in each layer, as in Pseudocode
1. For example, a packet passing the example Ananta
NAT layer and the VL2 VNET encap layer may end up
with the composite Encap+NAT transposition in Table
3. This transposition engine also contains logic to apply
a transposition to an actual packet, by breaking the final
transposition down into a series of steps (NAT, encap,
decap) that can be applied by a packet modifier.

6.1.4 Unified Flow Tables and Caching

The intuition behind our flow compiler is that the action
for a UFID is relatively stable over the lifetime of a
flow – so we can cache the UFID with the resulting HT
from the engine. Applications like Ananta create per-
connection state already, so it’s not expensive to cache
this whole unified flow (UF) per TCP/UDP flow. The
resulting flow table where the compiler caches UFs is

called the Unified Flow Table (UFT).

With the UFT, we segment our datapath into a fastpath
and a slowpath. On the first packet of a TCP flow, we
take a slowpath, running the transposition engine and
matching at each layer against rules. On subsequent
packets, VFP takes a fastpath, matching a unified flow
via UFID, and applying a transposition directly. This
operation is independent of the layers or rules in VFP.

The UFT is used similarly to the OVS microflow cache
to skip tables, and scales well across CPUs because it
requires no write lock to match. However, a key
difference for our workload is the HT, which combines
encap/decap with header modification. This allows us to
have a single flow for all actions rather than one before
and after a tunnel interface, and is critical for offloading
flows with only a single hardware table (§9.3).

Figure 7. VFP Unified Flow Table

6.2 Action Contexts

Some rule actions have side effects beyond header
modification, or take action on packet payloads.
Examples include metering to a global counter
(supporting our example metering layer), or encrypting
packet payloads. For these actions, HTs can be
extended with Action Contexts which can implement
arbitrary logic via callback. An Action Context can be
added to an HT (and the resulting UF) by a rule. This
allows rules to extend the packet actions themselves
even though they are not matched for every packet.

6.3 Flow Reconciliation

A requirement of the VFP flow compiler is transparency
to VFPAPI clients. This means that if a controller
changes the rules in a layer, the new rules should be

Process(UFID input, Port port):
 Transposition action = {0};
 For each layer in port.layers:
 UFID localId = Transpose(input, action);
 Rule rule = Classify(layer, localId);
 action = action.compose(rule.process(localId));
 return composite;

Pseudocode 1. Transposition Engine

applied to subsequent packets even if a UF exists. This
is supported by a reconciliation engine in VFP.

The reconciliation engine maintains a global generation
number on each port. When a UF is created, it’s tagged
with the current generation number at creation time.
Upon policy update, the port generation is incremented.

VFP implements lazy reconciliation, reconciling a UF
only when matching a UF whose generation number is
less than the port’s current generation number. The UF
is then simulated against the current rules on the port,
by running its UFID through the transposition engine,
and determining if the resulting HT has changed.

6.4 Flow State Tracking

By default, the expiration policy for UFs is to expire
them after some configurable period of time. However,
this is not efficient for short flows and leads to large
numbers of UFs idling in the UFT. Instead, for TCP
flows we can expire them by tracking the state of the
underlying connections. This requires determining
which UF should pair with a UF in the opposite
direction to form a bidirectional connection.

6.4.1 Flow Pairing

Unlike layer flows, we cannot pair UFs just by
reversing the FlowID – UF pairs can be asymmetric, for
example if a connection is tunneled to the VM on
inbound but returned directly without tunneling on the
outbound side (e.g. the Direct Server Return feature in
Ananta). The key idea in our solution is pairing
connections on the VM-side of the VFP pipeline rather
than the network side (e.g. the UFID of a connection on
the inbound path after processing should be the opposite
of the UFID on the outbound path before processing).

When an inbound UF is created by an inbound packet,
we create an outbound UF to pair it to by reversing the
UFID of the packet after the inbound action, and
simulating it through the outbound path of that port,
generating a full UF pair for the connection. For a new
outbound UF, we wait for an inbound packet to try to
create an inbound UF – when the new UF looks up the
reverse UFID it will find an existing flow and pair itself.

6.4.2 TCP State Tracking

Once we have established a pairing of UFs, we use a
simple TCP state machine in VFP to track them as
connections. For example, new flows are created in a
probationary half-open state – only when a three-way
handshake is verified with proper sequence numbers
does it become a full flow (this helps protect against
SYN floods). We can also use this state machine to
track FIN handshakes and RSTs, to expire flows early.
We also track connections in TIME_WAIT, allowing
NAT rules to determine when they can reuse ports
safely. VFP tracks port-wide statistics such as average

RTT, retransmits, and ECN marks, which can be useful
in diagnosing VMs with networking issues [37].

6.5 Packet Classification
In practice, VFPv2’s UFT datapath solved performance
and scalability issues for most packets (even short lived
flows are usually at least 10 packets). However, rule
matching is still a factor for scenarios with thousands of
rules, such as complex ACLs or routes. We implement a
better classification algorithm for these cases.

We support 4 classifier types: a compressed trie, an
interval tree, a hash table, and a list. Each classifier can
be instantiated on each condition type from §5.3.1. We
assign each rule to a classifier based on a heuristic
described in detail in [40] to optimize total matching
time in a VFP group. In practice we have found this to
be successful at handling a wide range of rule types that
users plumb, such as 5-tuple ACLs with IP ranges, and
large routing tables.

7. Switching Model
In addition to SDN filtering, VFP also forwards traffic
to ports. VFP’s forwarding plane is described below.

7.1 Packet Forwarding

VFP implements a simple bridge, forwarding packets by
destination MAC address to the port attached to the
VNIC created with that MAC. This can be an outer
MAC, or an inner MAC inside a VXLAN/NVGRE
encaped packet for VMs running in a virtualized mode.
Efficient spreading based on this policy is widely
supported by NICs as Virtual Machine Queue [33].

7.2 Hairpinning and Mirroring

Gateway VMs are often used to bridge different tunnels
or address spaces in different routing domains. To
accelerate these workloads, we support hairpin rules in
VFP layers, which can redirect packets to a VNIC back
out through VFP ingress processing, either on the same
or a different VNIC. This enables high speed gateways
without the overhead of sending packets to a VM. This
policy also supports programmable port mirroring.

7.3 QoS

VFP supports applying max cap policies on transmit
and receive to ports or groups of ports on a switch. This
is implemented using atomic operations to update token
bucket counters and interlocked packet queues for high
performance. Bandwidth reservations across ports are
also supported. Our algorithm for measurement-based
weighted fair sharing is described in [39].

8. Operational Considerations
As a production cloud service, VFP’s design must take
into account serviceability, monitoring and diagnostics.

8.1 Rebootless Updates

In an update, we first pause the datapath, then detach

VFP from the stack, uninstall VFP (which acts as a
loadable kernel driver), install a new VFP, attach it to
the stack, and restart the datapath. This operation
typically completes in <1s, and looks like a brief
connectivity blip to VMs, while the NIC stays up.

8.2 State Save/Restore

Because we support stateful policy such as ACLs and
NAT, a rebootless VFP update by default forces VMs
to reset all TCP connections, since flow state is lost. As
we saw more and more frequent updates, we concluded
we needed to build State Save/Restore (SSR) functions
to eliminate impact of VFP updates to VMs.

We support serialization and deserialization for all
policy and state in VFP on a port. Every VFP object has
a serialization and deserialization handler, including
layers/groups/rules/flows, rule contexts, action contexts,
UFs, HTs, resources and resource entries, and more. All
objects are versioned, so if structures are updated, SSR
can support multiple source object versions.

8.2.1 VM Live Migration

VFP also supports live migration of VMs. In this case,
the port state is serialized out of the original host and
deserialized on the new host during the VM blackout
time of the migration. VFP policies/rules are updated on
the new host by all VFPAPI clients based on policy that
may have changed in migration, such as the VM
physical address. VFP flow reconciliation (§6.3) then
handles updating flows, keeping TCP connections alive.

8.3 Monitoring

VFP implements over 300 performance counters and
flow statistics, on per port, per layer, and per rule bases,
as well as extensive flow statistics. This information is
continuously uploaded to a central monitoring service,
providing dashboards on which we can monitor flow
utilization, drops, connection resets, and more, on a VM
or aggregated on a cluster/node/VNET basis. Figure 8
shows distributions measured in production for the
number of active flows and rate of new connections per
VM, and SSR time for a recent VFP update.

8.4 Diagnostics
VFP provides diagnostics for production debugging,

both of VFP itself and for VFPAPI clients. The
transposition engine’s simulation path can be queried on
arbitrary UFIDs to provide a trace of how that UFID
would behave across all rules/flows in VFP. This
enables remotely debugging incorrect rules and policies.

VFP tracing, when enabled, provides detailed logs of
actions performed on the data path and control path.

If we need to track a bug in VFP’s logic, SSR can
snapshot a port’s state in production, and restore it on a
local test machine, where packets can then be simulated
using the above diagnostic under a kernel debugger.

9. Hardware Offloads and Performance
As we continue to scale up our cloud servers, we are
very performance and cost sensitive. VFP implements
several hardware offloads, described below.

9.1 Stateless Tunneling Offloads

Commercial NICs have been available since 2013 with
the ability to parse NVGRE/VXLAN, and support
stateless checksum, segmentation, and receive scaling
offloads with them. VFP programs NICs with these
offloads for tunneling, which are widely deployed in our
datacenter. This has largely eliminated the performance
overhead of encap/decap to our platform – with offloads
we can support encap at 40Gbps line rate on our NICs.

9.2 QoS Offloads

Many commercial NICs support transmit max caps, and
bandwdith reservations, across transmit queues. We
have implemented and deployed an interface to offload
port-level QoS policy from §7.3. This removes the
overhead of applying QoS through software.

9.3 Offloading VFP Policy

Many attempts to offload SDN policy and accomplish
Goal #7 of SR-IOV support focus on offloading packet
classification, such that no packets traverse the host.
We’ve found this impractical on server NICs, as it often
requires large TCAMs, CPU cores or other specialized
hardware when doing lookups on 10+ tables in series.

However, offloading Unified Flows as defined in §6
turns out to be much more tractable. These are exact
match flows representing each connection on the
system, and so they can be implemented via a large hash

Figure 8. Example VFP Production Monitoring Statistics

table, typically in inexpensive DRAM. In this model,
the first packet of a new flow goes through software
classification to determine the UF, which is then
offloaded so that packets take a hardware path.

We’ve used this mechanism to enable SR-IOV in our
datacenters with VFP policy offload on custom
hardware we’ve deployed on all new Azure servers. Our
VMs reach 25Gbps+ VNICs at line rate with near-zero
host CPU and <25μs e2e TCP latencies inside a VNET.

Figure 10. VFP Offloading Flow Tables per Port

9.4 Performance

In Figure 9, we first see that under a TCP SYN load the
classification algorithm in §6.5 improves by 1-2 orders
of magnitude over linear match a distribution of random
rules. Measuring VFP’s fastpath against long lived
flows, we next see that on layers of 200 rules each, UFT
caching improves performance even at one layer, but
more dramatically as more layers are added. We then
see that due to locking, in VFPv1 performance doesn’t
improve as we scale to 8 CPUs, while UFT scales well.
Finally, we see that received packets per second
improves by over 60% with PacketDirect.

10. Experiences
We have deployed 21 major releases of VFP since
2012. VFP runs on all Azure servers, powering millions
of VMs, petabits per second of traffic, and providing
load balancing for exabytes of storage, in hundreds of
datacenters in over 30 regions across the world. In
addition, we are releasing VFP publicly as part of
Windows Server 2016 for on-premises workloads.

10.1 Results

We believe we accomplished all of our goals from §2:

1.We have had multiple independent controllers
successfully program VFP for several years. New
controllers have deployed SDN applications by
inserting layers without changes in other controllers.

2.Every single connection in our datacenters is treated
statefully by VFP – all pass through stateful ACLs,
and many pass through a stateful NAT.

3.The definition of a VNET, a load balancer, and other
policies have changed over time as newer, richer
semantics were implemented. Most of these were
policy changes without any change to VFP.

4.We’ve pushed dozens of rebootless updates to VFP.

5.The introduction of UFT dramatically improved VFP
performance, especially for scenarios with large
numbers of layers. This has helped us scale our
servers to 40G+ NICs, with many more VMs.

6.The VFP packet classification algorithm has sped up
classification on real production workloads by 1-2
orders of magnitude over linear search.

7.We have successfully offloaded VFP flows to flow-
programmable hardware and deployed SR-IOV.

10.2 Lessons Learned
Over 5 years of developing and supporting VFP, we
learned a number of other lessons of value:

 L4 flow caching is sufficient. We didn’t find a use
for multi-tiered flow caching such as OVS megaflows.
The two main reasons: being entirely in the kernel
allowed us to have a faster slowpath, and our use of a
stateful NAT created an action for every L4 flow and
so reduced the usefulness of ternary flow caching.

 Design for statefulness from day 1. The above point
is an example of a larger lesson: support for stateful
connections as a first class primitive in a MAT is
fundamental and must be considered in every aspect
of a MAT design. It should not be bolted on later.

 Layering is critical. Some of our policy could be
implemented as a special case of OpenFlow tables
with custom GOTOs chaining them together, with
separate inbound and outbound tables. We found,

Figure 9. Selected VFP Performance Data, 2.9Ghz Xeon Sandy Bridge CPU

however, that our controllers needed clear layering
semantics or else they couldn’t reverse their policy
correctly with respect to other controllers.

 GOTO considered harmful. Controller developers
will implement policy in the simplest way needed to
solve a problem, but that may not be compatible with
future controllers adding policy. We needed to be
vigilant in not only providing layering, but enforcing
it to prevent this. We see this layering enforcement
not as a limitation compared to OpenFlow’s GOTO
table model, but instead as the key feature that made
multi-controller designs work for 4 years running.

 IaaS cannot handle downtime. We found that
customer IaaS workloads cared deeply about uptime
for each VM, not just their service as a whole. We
needed to design all updates to minimize downtime,
and provide guarantees for low blackout times.

 Design for serviceability. SSR (§8.2) is another
design point that turned out to pervade all of our logic
– in order to regularly update VFP without impact to
VMs, we needed to consider serviceability in any new
VFP feature or action type.

 Decouple the wire protocol from the data plane.
We’ve seen enough controllers/agents implement wire
protocols with different distributed systems models to
support O(1M) scale that we believe our decision to
separate VFPAPI from any wire protocol was a
critical choice for VFP’s success. For example,
bandwidth metering rules are pushed by a controller,
but VNET required a VL2-style directory system (and
an agent that understands that policy comes from a
different controller than pulled mappings) to scale.

Architecturally, we believe it helps to view the
resulting “Smart Agents” as part of a distributed
controller application, rather than part of the
dataplane, and we consider VFP’s OS level API the
real common Southbound API [36] in our SDN stack,
where different applications meet.

 Conflict resolution was not needed. We believe our
choice in §2.3 to not focus on automated conflict
resolution between controllers was correct, as this was
never really an issue when we enforced clean layering
between the controllers. Good diagnostics to help
controller developers understand their policy’s impact
were more important.

 Everything is an action. Modeling VL2-style
encap/decap as actions rather than tunnel interfaces
was a good choice. It enabled a single table lookup
for all packets – no traversing a tunnel interface with
tables before and after. The resulting HT language
combining encap/decap with header modification

enabled single-table hardware offload.

 MTU is not a major issue. There were initial
concerns that using actions instead of tunnel interfaces
would cause issues with MTU. We found this not to
be a real issue – we support either making use of
larger MTU on the physical network to support
encapsulation (this was our choice for Azure), or
using a combination of TCP Maximum Segment Size
clamping and fragmentation of large non-TCP frames
(for deployments without large MTU).

 MAT Scale. In our deployments, we typically see up
to 10-20 layers, with up to hundreds of groups within
a layer. We’ve seen up to O(50k) rules per group,
(when supporting customers’ distributed BGP
routers). We support up to 500k simultaneous TCP
connections per port (after which state tracking
becomes prohibitively expensive).

 Keep forwarding simple. §7.1 describes our MAC-
filter based forwarding plane. We considered a
programmable forwarding plane based on the MAT
model, however, we found no scenario for complex
forwarding policy or learning. We’ve concluded that a
programmable forwarding plane is not useful for our
cloud workload, because VMs want a declarative
model for creating NICs with known MAC addresses.

 Design for E2E monitoring. Determining network
health of VMs despite not having direct access to
them is a challenge. We found many uses for in-band
monitoring with packet injectors and auto-responders
implemented as VFP rule actions. We used these to
build monitoring that traces the E2E path from the
VM-host boundary. For example, we implemented
Pingmesh-like [24] monitoring for VL2 VNETs.

 Commercial NIC hardware isn’t ideal for SDN.
Despite years of interest from NIC vendors about
offloading SDN policy with SR-IOV, we have seen no
success cases of NIC ASIC vendors supporting our
policy as a traditional direct offload. Instead, large
multi-core NPUs [32] are often used. We used custom
FPGA-based hardware to ship SR-IOV in Azure,
which we found was lower latency and more efficient.

11. Conclusions and Future Work
We introduced the Virtual Filtering Platform (VFP), our
cloud scale vswitch for host SDN policy in Microsoft
Azure. We discussed how our design achieved our dual
goals of programmability and scalability. We discussed
concerns around serviceability, monitoring, and
diagnostics in production environments, and provided
performance results, data, and lessons from real use.

Future areas of investigation include new hardware
models of SDN, and extending VFP’s offload language.

Acknowledgements
We would like to thank the developers who worked on
VFP since the project’s inception in 2011 – Yue Zuo,
Harish Kumar Chandrappa, Praveen Balasubramanian,
Vikas Bhardwaj, Somesh Chaturmohta, Milan
Dasgupta, Mahmoud Elhaddad, Luis Hernandez,
Nathan Hu, Alan Jowett, Hadi Katebi, Fengfen Liu,
Keith Mange, Randy Miller, Claire Mitchell,
Sambhrama Mundkur, Chidambaram Muthu, Gaurav
Poothia, Madhan Sivakumar, Ethan Song, Khoa To,
Kelvin Zou, and Qasim Zuhair, as well as PMs Yu-Shun
Wang, Eric Lantz, and Gabriel Silva. We thank Alireza
Dabagh, Deepak Bansal, Pankaj Garg, Changhoon Kim,
Hemant Kumar, Parveen Patel, Parag Sharma, Nisheeth
Srivastava, Venkat Thiruvengadam, Narasimhan
Venkataramaiah, Haiyong Wang, and other architects of
Azure’s SDN stack who had significant influence on
VFP’s design, as well as Jitendra Padhye, Parveen
Patel, Shachar Raindel, Monia Ghobadi, George
Varghese, our shepherd David Wetherall, and the
anonymous reviewers, who provided valuable feedback
on earlier drafts of this paper. Finally, we thank Dave
Maltz, Mark Russinovich, and Albert Greenberg for
their sponsorship of and support for this project over the
years, and Jitendra Padhye for convincing us to write a
paper about our experiences.

References
[1] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A.

Zhou, J. Rajahalme, J. Gross, A. Wang, J.
Stringer, and P. Shelar. The Design and
Implementation of Open vSwitch. In NSDI, 2015.

[2] A. Greenberg, J. R. Hamilton, N. Jain, S.
Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel,
S. Sengupta. VL2: A scalable and flexible data
center network. In SIGCOMM, 2009.

[3] Open vSwitch – An Open Virtual Switch.
http://www.openvswitch.org.

[4] P. Patel, D. Bansal, L. Yuan, A. Murthy, A.
Greenberg, D. A. Maltz, R. Kern, H. Kumar, M.
Zikos, H. Wu, C. Kim, N. Karri. Ananta: Cloud
scale load balancing. In SIGCOMM, 2013.

[5] N. Mckeown, T. Anderson, H. Balakrishnan, G.
M. Parulkar, L. L. Peterson, J. Rexford, S.
Shenker, and J. S. Turner. OpenFlow: Enabling
Innovation in Campus Networks. In SIGCOMM,
2008.

[6] M. Mahalingam et al. RFC 7348: Virtual
eXtensible Local Area Network (VXLAN): A
Framework for Overlaying Virtualized Layer 2
Networks over Layer 3 Networks. 2015.

[7] M. Sridharan et al. RFC 7637: NVGRE: Network

Virtualization Using Generic Routing
Encapsulation. 2015.

[8] B. Pfaff et al. RFC 7047: The Open vSwitch
Database Management Protocol. 2015.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N.
McKeown, J. Rexford, C. Schlesinger, D.
Talayco, A. Vahdat, G. Varghese, D. Walker. P4:
Programming Protocol-Independent Packet
Processors. ACM Sigcomm Computer
Communications Review (CCR). Volume 44,
Issue #3 (July 2014).

[10] NDIS Filter Drivers.
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff565492(v=vs.85).a
spx

[11] PacketDirect Provider Interface.
https://msdn.microsoft.com/en-
us/library/windows/hardware/mt627758(v=vs.85).
aspx.

[12] Hyper-V Extensible Switch.
https://msdn.microsoft.com/en-
us/library/windows/hardware/hh582268(v=vs.85).
aspx

[13] Amazon Web Services. http://aws.amazon.com.

[14] Microsoft Azure. http://azure.microsoft.com.

[15] Google Cloud Platform. http://cloud.google.com.

[16] M. Challa. OpenVswitch Performance
measurements & analysis. 2014.
http://openvswitch.org/support/ovscon2014/18/16
00-ovs_perf.pptx

[17] A. AuYoung, Y. Ma, S. Banerjee, J. Lee, P.
Sharma, Y. Turner, C. Liang, J. C. Mogul.
Democratic Resolution of Resource Conflicts
Between SDN Control Programs. In CoNEXT,
2014.

[18] J. Mogul, A. AuYoung, S. Banerjee, L. Popa, J.
Lee, J. Mudigonda, P. Sharma, Y. Turner.
Corybantic: towards the modular composition of
SDN control programs. In HotNets-XII, 2013.

[19] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walker. Composing Software-Defined
Networks. In NSDI, 2013.

[20] N. Foster, M. J. Freedman, R. Harrison, J.
Rexford, M. L. Meola, and D. Walker. Frenetic: A
High-Level Language for OpenFlow Networks. In
PRESTO, 2010.

[21] N. Foster, R. Harrison, M. J. Freedman, C.
Monsanto, J. Rexford, A. Story, and D. Walker.
Frenetic: A Network Programming Language. In
ICFP, 2011.

[22] Overview of Single Root I/O Virtualization (SR-
IOV). https://msdn.microsoft.com/en-
us/windows/hardware/drivers/network/overview-
of-single-root-i-o-virtualization--sr-iov-

[23] Y. Dong, X. Yang, X. Li, J. Li, K. Tan, H. Guan.
High performance network virtualization with SR-
IOV. In IEEE HPCA, 2010.

[24] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang,
D. Maltz, Z. Liu, V. Wang, B. Pang, H. Chen, Z.-
W. Lin, and V. Kurien. Pingmesh: A large-scale
system for data center network latency
measurement and analysis. In SIGCOMM, 2015.

[25] A. Vahdat. Enter the Andromeda zone - Google
Cloud Platform’s latest networking stack. 2014.
https://cloudplatform.googleblog.com/2014/04/ent
er-andromeda-zone-google-cloud-platforms-latest-
networking-stack.html

[26] Linux Bridge. Linux Foundation.
https://wiki.linuxfoundation.org/networking/bridg
e

[27] Network Bridge Overview. Microsoft.
https://www.microsoft.com/resources/documentati
on/windows/xp/all/proddocs/en-
us/hnw_understanding_bridge.mspx?mfr=true

[28] Hyper-V Virtual Switch Overview. Microsoft.
https://technet.microsoft.com/en-
us/library/hh831823(v=ws.11).aspx

[29] VTEP Schema. Open vSwitch.
http://openvswitch.org/support/dist-
docs/vtep.5.html

[30] vSphere 6.0 Configuration Maximums. VMWare.
2016.
https://www.vmware.com/pdf/vsphere6/r60/vsphe
re-60-configuration-maximums.pdf

[31] Mellanox Presentation on OVS Offload.
Mellanox. 2015.
http://events.linuxfoundation.org/sites/events/files/

slides/Mellanox%20OPNFV%20Presentation%20
on%20OVS%20Offload%20Nov%2012th%2020
15.pdf

[32] Open vSwitch Offload and Acceleration with
Agilio CX Intelligent Server Adapters.
Netronome.
https://www.netronome.com/media/redactor_files/
WP_OVS_Benchmarking.pdf

[33] Virtual Machine Queue. Microsoft.
https://msdn.microsoft.com/en-
us/windows/hardware/drivers/network/virtual-
machine-queue--vmq-

[34] J. Naous, D. Erickson, G. A. Covington, G.
Appenzeller, N. McKeown. Implementing an
OpenFlow switch on the NetFPGA platform. In
ANCS, 2008.

[35] D. Merkel. Docker: lightweight Linux containers
for consistent development and deployment.
Linux Journal, Issue 239, March 2014.

[36] C. Beckmann. Southbound SDN API’s. In IETF
84 SDNRG Proceedings, 2012.
https://www.ietf.org/proceedings/84/slides/slides-
84-sdnrg-7.pdf

[37] M. Moshref, M. Yu, R. Govindan, A. Vahdat.
Trumpet: Timely and Precise Triggers in Data
Centers. In SIGCOMM, 2016.

[38] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N.
Feamster, N. McKeown, J. Rexford. PISCES: A
Programmable, Protocol-Independent Software
Switch. In SIGCOMM, 2016.

[39] K. To, D. Firestone, G. Varghese, J. Padhye.
Measurement Based Fair Queuing for Allocating
Bandwidth to Virtual Machines. In
HotMiddlebox, 2016.

[40] D. Firestone, H. Katebi, G. Varghese. Virtual
Switch Packet Classification. In Microsoft
TechReport, MSR-TR-2016-66, 2016.

