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Abstract 

Many modern scalable cloud networking architectures 
rely on host networking for implementing VM network 
policy - e.g. tunneling for virtual networks, NAT for 
load balancing, stateful ACLs, QoS, and more. We 
present the Virtual Filtering Platform (VFP) - a 
programmable virtual switch that powers Microsoft 
Azure, a large public cloud, and provides this policy. 
We define several major goals for a programmable 
virtual switch based on our operational experiences, 
including support for multiple independent network 
controllers, policy based on connections rather than 
only on packets, efficient caching and classification 
algorithms for performance, and efficient offload of 
flow policy to programmable NICs, and demonstrate 
how VFP achieves these goals. VFP has been deployed 
on >1M hosts running IaaS and PaaS workloads for 
over 4 years. We present the design of VFP and its API, 
its flow language and compiler used for flow 
processing, performance results, and experiences 
deploying and using VFP in Azure over several years.  

1. Introduction 
The rise of public cloud workloads, such as Amazon 
Web Services, Microsoft Azure, and Google Cloud 
Platform [13-15], has created a new scale of datacenter 
computing, with vendors regularly reporting server 
counts in the millions. These vendors not only have to 
provide scale and the high density/performance of 
Virtual Machines (VMs) to customers, but must provide 
rich network semantics, such as private virtual networks 
with customer supplied address spaces, scalable L4 load 
balancers, security groups and ACLs, virtual routing 
tables, bandwidth metering, QoS, and more. 

This policy is sufficiently complex that it often cannot 
economically be implemented at scale in traditional 
core routers and hardware. Instead a common approach 
has been to implement this policy in software on the 
VM hosts, in the virtual switch (vswitch) connecting 
VMs to the network, which scales well with the number 
of servers, and allows the physical network to be 
simple, scalable and very fast. As this model separates a 
centralized control plane from a data plane on the host, 
it is widely considered an example of Software Defined 
Networking (SDN) – in particular, host-based SDN. 

As a large public cloud provider, Azure has built its 
cloud network on host based SDN technologies, using 
them to implement almost all virtual networking 
features we offer. Much of the focus around SDN in 

recent years has been on building scalable and flexible 
network controllers and services, which is critical. 
However, the design of the programmable vswitch is 
equally important. It has the dual and often conflicting 
requirements of a highly programmable dataplane, with 
high performance and low overhead, as cloud 
workloads are cost and performance sensitive. 

In this paper, we present the Virtual Filtering Platform, 
or VFP – our cloud scale virtual switch that runs on all 
of our hosts. VFP is so named because it acts as a 
filtering engine for each virtual NIC of a VM, allowing 
controllers to program their SDN policy. Our goal is to 
present both our design and our experiences running 
VFP in production at scale, and lessons we learned. 

1.1 Related Work 

Throughout this paper, we use two motivating examples 
from the literature and demonstrate how VFP supports 
their policies and actions. The first is VL2 [2], which 
can be used to create virtual networks (VNETs) on 
shared hardware using stateless tunneling between 
hosts. The second is Ananta [4], a scalable Layer-4 load 
balancer, which scales by running the load balancing 
NAT in the vswitch on end hosts, leaving the in-
network load balancers stateless and scalable.  

In addition, we make references and comparisons to 
OpenFlow [5], a programmable forwarding plane 
protocol, and OpenVswitch [1] (OVS), a popular open 
source vswitch implementing OpenFlow. These are two 
seminal projects in the SDN space. We point out core 
design differences from the perspective of a public 
cloud on how our constraints can differ from those of 
open source projects. It is our goal to share these 
learnings with the broader community. 

2. Design Goals and Rationale 
VFP’s design has evolved over time based on our 
experiences running a large public cloud platform. VFP 
was not our original vswitch, nor were its original 
functions novel ideas in host networking – VL2 and 
Ananta already pioneered such use of vswitches. 

Originally, we built networking filter drivers on top of 
Windows’s Hyper-V hypervisor for each host function, 
which we chained together in a vswitch – a stateful 
firewall driver for ACLs, a tunneling driver for VL2 
VNETs, a NAT driver for Ananta load balancing, a 
QoS driver, etc. As host networking became our main 
tool for virtualization policy, we decided to create VFP 
in 2011 after concluding that building new fixed filter 
drivers for host networking functions was not scalable 



or desirable. Instead, we created a single platform based 
on the Match-Action Table (MAT) model popularized 
by projects such as OpenFlow [5]. This was the origin 
of our VFPAPI programming model for VFP clients. 

VFP’s core design goals were taken from lessons 
learned in building and running both these filters, and 
the network controllers and agents on top of them. 

2.1 Original Goals 
The following were founding goals of the VFP project: 

1. Provide a programming model allowing for 
multiple simultaneous, independent network 
controllers to program network applications, 
minimizing cross-controller dependencies. 

Implementations of OpenFlow and similar MAT models 
often assume a single distributed network controller that 
owns programming the switch (possibly taking input 
from other controllers). Our experience is that this 
model doesn’t fit cloud development of SDN – instead, 
independent teams often build new network controllers 
and agents for those applications. This model reduces 
complex dependencies, scales better and is more 
serviceable than adding logic to existing controllers. We 
needed a design that not only allows controllers to 
independently create and program flow tables, but 
would enforce good layering and boundaries between 
them (e.g. disallow rules to have arbitrary GOTOs to 
other tables, as in OpenFlow) so that new controllers 
could be developed to add functionality without old 
controllers needing to take their behavior into account. 

2. Provide a MAT programming model capable of 
using connections as a base primitive, rather than 
just packets – stateful rules as first class objects. 

OpenFlow’s original MAT model derives historically 
from programming switching or routing ASICs, and so 
assumes that packet classification must be stateless due 
to hardware resources available. However, we found 
our controllers required policies for connections, not 
just packets – for example end users often found it more 
useful to secure their VMs using stateful Access Control 
Lists (ACLs) (e.g. allow outbound connections, but not 
inbound) rather than stateless ACLs used in commercial 
switches. Controllers also needed NAT (e.g. Ananta) 
and other stateful policies. Stateful policy is more 
tractable in soft switches than in ASIC ones, and we 
believe our MAT model should take advantage of that. 

3. Provide a programming model that allows 
controllers to define their own policy and actions, 
rather than implementing fixed sets of network 
policies for predefined scenarios. 

Due to limitations of the MAT model provided by 
OpenFlow (historically, a limited set of actions, limited 
rule scalability and no table typing), OpenFlow switches 

such as OVS have added virtualization functionality 
outside of the MAT model. For example, constructing 
virtual networks is accomplished via a virtual tunnel 
endpoint (VTEP) schema [29] in OVSDB [8], rather 
than rules specifying which packets to encapsulate 
(encap) and decapsulate (decap) and how to do so. 

We prefer instead to base all functionality on the MAT 
model, trying to push as much logic as possible into the 
controllers while leaving the core dataplane in the 
vswitch. For instance, rather than a schema that defines 
what a VNET is, a VNET can be implemented using 
programmable encap and decap rules matching 
appropriate conditions, leaving the definition of a 
VNET in the controller. We’ve found this greatly 
reduces the need to continuously extend the dataplane 
every time the definition of a VNET changes.  

The P4 language [9] attempts a similar goal for switches 
or vswitches [38], but is very generic, e.g. allowing new 
headers to be defined on the fly. Since we update our 
vswitch much more often than we add new packet 
headers to our network, we prefer the speed of a library 
of precompiled fast header parsers, and a language 
structured for stateful connection-oriented processing. 

2.2 Goals Based on Production Learnings 

Based on lessons from initial deployments of VFP, we 
added the following goals for VFPv2, a major update in 
2013-14, mostly around serviceability and performance: 

4. Provide a serviceability model allowing for 
frequent deployments and updates without 
requiring reboots or interrupting VM connectivity 
for stateful flows, and strong service monitoring. 

As our scale grew dramatically (from O(10K) to O(1M) 
hosts), more controllers built on top of VFP, and more 
engineers joined us, we found more demand than ever 
for frequent updates, both features and bug fixes. In 
Infrastructure as a Service (IaaS) models, we also found 
customers were not tolerant of taking downtime for 
individual VMs for updates. This goal was more 
challenging to achieve with our complex stateful flow 
model, which is nontrivial to maintain across updates. 

5. Provide very high packet rates, even with a large 
number of tables and rules, via extensive caching. 

Over time we found more and more network controllers 
being built as the host SDN model became more 
popular, and soon we had deployments with large 
numbers of flow tables (10+), each with many rules, 
reducing performance as packets had to traverse each 
table. At the same time, VM density on hosts was 
increasing, pushing us from 1G to 10G to 40G and even 
faster NICs. We needed to find a way to scale to more 
policy without impacting performance, and concluded 
we needed to perform compilation of flow actions 



across tables, and use extensive flow caching, such that 
packets on existing flows would match precompiled 
actions without having to traverse tables. Provide a fast 
packet classification algorithm for cases with large 
numbers of rules and tables. 

While solving Goal #5 dramatically improved 
performance for existing flows (e.g. all TCP packets 
following a SYN), we found a few applications pushing 
many thousands of rules into their flow tables (for 
example, a distributed router BGP peering with 
customers, using VFP as its FIB), which slowed down 
our flow compiler. We needed to design an efficient 
packet classifier to handle performance for these cases. 

6. Implement an efficient mechanism to offload flow 
policy to programmable NICs, without assuming 
complex rule processing. 

As we scaled to 40G+ NICs, we wanted to offload 
policy to NICs themselves to support SR-IOV [22, 23] 
and let NICs indicate packets directly to VMs while 
applying relevant VFP policy. However, as controllers 
created more flow tables with more rules, we concluded 
that directly offloading those tables would require 
prohibitively expensive hardware resources (e.g. large 
TCAMs, matching in series) for server-class NICs. So 
instead of trying to offload classification operations, we 
wanted an offload model that would work well with our 
precompiled exact-match flows, requiring hardware to 
only support accessing a large table of cached flows in 
DRAM, and support for our associated action language. 

2.3 Non-Goals 

The following are goals we’ve seen in other projects, 
which based on our experiences we chose not to pursue: 

1. Providing cross-platform portability. 

Portability is difficult to achieve with a high 
performance datapath in the kernel. Projects such as 
OVS have done this by splitting into a kernel fastpath 
and a portable userspace slowpath with policy – but this 
comes at a cost of over an order of magnitude 
slowdown when packets take the slowpath [16]. We run 
entirely on one host OS, so this wasn’t a goal for us. 

2. Supporting a network / remote configuration 
protocol bundled with VFP itself. 

OpenFlow contains both a network programming 
model, as well as a wire protocol for configuring rules 
over the network. The same is true of OVS and the 
OVSDB protocol. In order to enable different controller 
models of managing policy (e.g. a rule push model, or 
the VL2 Directory System pull model), we instead 
decoupled VFP as a vswitch from the agents that 
implement network configuration protocols, and 
focused on providing a high performance host API.  

3. Providing a mechanism to detect or prevent 

controllers from programming conflicting policy 

Much literature [17-21] describes attempts to detect or 
prevent conflicts or incorrect policy in flow table or rule 
matching systems. Despite our first goal of supporting 
multiple controllers programming VFP in parallel 
without interfering with each other, we concluded early 
on that explicit conflict management was neither a 
feasible nor necessary goal, for several reasons. 
Programming VFP on behalf of a VM is a protected 
operation that only our controllers can perform, so we 
are not worried about malicious controllers. In addition, 
we concluded it was impossible to tell the difference 
between a misprogrammed flow table overwriting 
another flow table’s actions by accident, and a flow 
table designed to filter the output of another table. 
Instead we focused on tooling to help developers 
validate their policy and interactions with other policies. 

3. Overview and Comparison 
As a motivating example throughout the paper, we 
consider a simple scenario requiring 4 host policies 
used for O(1M) VMs in a cloud. Each policy is 
programmed by its own SDN controller and requires 
both high performance and SR-IOV offload support: A 
VL2-style VNET, an Ananta-style load balancer, a 
stateful firewall, and per-destination traffic metering for 
billing purposes. We begin by evaluating this against 
existing solutions to demonstrate the need for a different 
approach, which we describe. Sections 4-7 then detail 
VFP’s core design. 

3.1 Existing solutions: Open vSwitch 
While Linux and Windows support bridging [26-28] 
between multiple interfaces, which can be used as a 
vswitch, these bridges don’t apply SDN policy. Other 
public clouds such as Google have described [25] using 
host SDN policy, but details are not public. OVS is the 
primary solution today to provide vswitch-based SDN, 
and so (as of version 2.5) is our main comparison point. 

We believe OVS has had a great positive impact in 
making programmable host networking widely 
available. Many OVS design choices were driven by 
OVS-specific goals such as cross-platform support and 
the requirements of shipping in the Linux kernel1 [1]. 
Combined with OVS’s use of OpenFlow, these designs 
enable deployments with controllers managing virtual 
switches and physical switches via the same protocols, 
which was a non-goal for our host-based networking 
model. OVS also supports many protocols useful for 
physical switches such as STP,  SPBM, BFD, and 

                                                                                                                                                                                                                                                                                                             

1 Windows is always backwards compatible with drivers, so 
we can ship a single driver compatible with all recent 
Windows versions without needing kernel integration. 



IGMP Snooping [3], that we don’t use. 

Partially as a result of OpenFlow in particular, however, 
aspects of OVS make it unsuitable for our workload: 

 OVS doesn’t natively support true independent multi-
controller models, as is required when our VL2 and 
Ananta applications are controlled separately. The 
underlying OpenFlow table model is unsuitable for 
multi-controller use cases – table rules specify explicit 
GOTOs to next tables, causing controllers to tie their 
policy together. Also, tables can only be traversed in 
the forward direction, whereas multi-controller 
scenarios require packets to traverse tables in the 
reverse direction for outbound packets as for inbound, 
so that packets will be in a consistent state when 
matching that controller’s policy in either direction. 
VFP solves this with explicit table layering (§5.2). 

 OVS doesn’t natively support stateful actions like 
NAT in its MAT model, required by our Ananta 
example (our firewall is stateful too) – in both cases 
controllers need to operate on connections as a base 
primitive rather than packets. OpenFlow provides 
only for a packet model, however. OVS recently 
added support for sending packets to the Linux 
connection tracker to enable stateful firewall, but it’s 
not exposed as a MAT and doesn’t easily support a 
NAT, which requires explicit bidirectional stateful 
tables so that the NAT is reversed on a flow’s return 
path. VFP solves this with stateful layers (§5.2). 

 OVS’s VTEP Schema requires explicit tunnel 
interfaces to implement VL2-style VNETs rather than 
allowing the controller to specify its own encap / 
decap actions, which aren’t natively supported in 
OpenFlow2. This hardcodes a model of a VNET in the 
dataplane rather than allowing the controller to define 
how the VNET works (Goal 3). Adding complex 
VNET logic like ECMP routing can be difficult in this 
schema and requires vswitch changes, rather than 
policy changes. VFP supports all of these directly in 
its MAT (§5.3) by modeling encap/decap as actions. 

 OVS doesn’t support a VL2-style Directory System, 
required to dynamically look up Customer Address to 
Physical Address mappings. OpenFlow’s design lacks 
the scalability to support large VNETs this way – 
OpenFlow exception packets must all go back to the 
central controller, and in OVS, VTEPs on all hosts are 
expected to be updated any time a mapping changes. 
This is OK for NSX/vSphere, which support up to 
1000 hosts [30], but we found this unusable at our 
scale. VFP solves this by combining the schema-free 

                                                                                                                                                                                                                                                                                                             

2 While OpenFlow can support header pushes like MPLS tags 
as an action, it doesn’t work for VNETs, e.g. VXLAN. 

MAT model with efficient asynchronous I/O 
exception requests (§5.5.1) that an agent can redirect 
to services separate from the controller. 

 OVS doesn’t have a generic offload action language 
or API that can support combinations of policy such 
as an Ananta NAT plus a VL2 encap. While SR-IOV 
offloads have been implemented on top of OVS builds 
by NIC vendors for specific workloads (such as VTEP 
schema) [31], doing general purpose offloads requires 
hardware to support the complex multi-table lookups 
of the original policy (e.g. [32]) that we’ve found 
quite costly in practice. VFP’s Header Transposition 
language (§6.1.2, 9.3) enables SR-IOV support for all 
policy with only a single table lookup in hardware. 

Thus we need a different design for our policy. 

3.2 VFP Design 

 

Figure 1.  Overview of VFP Design 

Figure 1 shows a model of the VFP design, which is 
described in subsequent sections. VFP operates on top 
of Hyper-V’s extensible switch, as described in Section 
4’s filtering model. VFP implements MATs as layers 
that support a multi-controller model, with a 
programming model presented in Section 5. Section 6 
describes VFP’s packet processor, including a fastpath 
through unified flow tables and a classifier used to 
match rules in the MAT layers. Section 7 presents the 
switching model of VFP’s bridge. 

4. Filtering Model 
VFP filters packets in the OS through MAT flow table 
policy. The filtering model is described below. 

4.1 Ports and NICs 

The core VFP model assumes a switch with multiple 
ports which are connected to virtual NICs (VNICs). 
VFP filters traffic from a VNIC to the switch, and from 
the switch to a VNIC. All VFP policy is attached to a 
specific port. From the perspective of a VM with a 
VNIC attached to a port, ingress traffic to the switch is 



considered to be “outbound” traffic from the VM, and 
egress traffic from the switch is considered to be 
“inbound” traffic to the VM. VFPAPI and its policies 
are based on the inbound/outbound model. 

 
Figure 2. Hyper-V Switch Extensibility vs NIC Filtering 

VFP implements a switch abstraction interface to 
abstract out different environments, instantiations of 
which provide logic for management (e.g. create / delete 
/ connect / disconnect) of ports, VNICs, and associated 
objects. This interface supports both a Hyper-V switch 
and a filter for native hosts, shown in Figure 2. 

4.2 Hyper-V Switch Extensibility 

Hyper-V includes a basic vswitch [28] to bridge VNICs 
to a physical NIC. The switch is extensible, allowing 
filters to plug in and filter traffic to and from VNICs. 

VFP acts as a Forwarding Extension to Hyper-V’s 
vswitch – it simply replaces the entire switch logic with 
itself. Using this model allows us to keep our policy 
module and virtual switching logic (VFP) separate from 
the Hyper-V infrastructure to deliver packets to and 
from VMs, improving modularity and serviceability. 

VFP in this mode supports PacketDirect [11], which 
allows a client to poll a NIC with very low overhead. 

5. Programming Model 
VFP’s core programming model is based on a hierarchy 
of VFP objects that controllers can create and program 
to specify their SDN policy. The objects are: 

 Ports, the basic unit that VFP policy filters on. 

 Layers, the stateful flow tables that hold MAT policy. 

 Groups, entities to manage and control related groups 
of rules within a layer. 

 Rules, the match action table entries themselves. 

 
Figure 3. VFP Objects: Layers, Groups, and Rules 

5.1 Ports 
VFP’s policy is implemented on a per-port basis – each 
port has match action tables which can sit on the 
inbound or outbound path of the port, acting as filters. 
Since our controllers generally want to program policy 
on behalf of a VM or VNIC, this clean separation of 
ports allows controllers to independently manage policy 
on different VMs, and instantiate and manage flow 
tables only on ports where they are needed – for 
example a VM in a virtual network may have tables to 
encapsulate and decapsulate traffic into tunnels, which 
another VM not in a virtual network wouldn’t need (the 
VNET controller may not even be aware of the other 
VM, which it doesn’t need to manage). 

Policy objects on VFP are arranged in fixed object 
hierarchies, used to specify which object a given API 
call is referencing, such as Layer/Group/Rule. All 
objects are be programmed with a priority value, in 
which order they will be processed by rule matching. 

5.2 Layers 

VFP divides a port’s policy into layers. Layers are the 
basic Match Action Tables that controllers use to 
specify their policy. They can be created and managed 
separately by different controllers, or one controller can 
create several layers. Each layer contains inbound and 
outbound rules and policies that can filter and modify 
packets. Logically, packets go through each layer one 
by one, matching rules in each based on the state of the 
packet after the action performed in the previous layer. 
Controllers can specify the ordering of their layers in a 
port’s pipeline with respect to other layers, and create 
and destroy layers dynamically during operation. 

 
Figure 4. Example VFP Layers with Boundaries 

Critically, packets traverse layers in the opposite order 
when inbound than when outbound. This gives them a 
“layering” effect when controllers implement opposite 
policy on either side of a layer. Take for example a load 
balancing layer implementing the Ananta NAT design. 



On the inbound direction, the layer NATs connections 
destined to a Virtual IP (a VIP) to a Direct IP (DIP) 
behind the VIP – in this case the IP of the VM. On the 
outbound direction, it NATs packets back from DIP to 
VIP. The layer thus implements an address space 
boundary – all packets above it are in “DIP Space”, and 
all packets below it are in “VIP Space”. Other 
controllers can choose to create layers above or below 
this NAT layer, and can plumb rules to match VIPs or 
DIPs respectively – all without coordination with or 
involvement of the NAT controller. 

Figure 4 shows layers for our SDN deployment 
example. VL2 is implemented by a VNET layer 
programmed by a virtual network controller, using 
tunneling for Customer Addresses (CAs) so that packets 
can traverse a physical network in Physical Address 
(PA) space recognized by physical switches in the path 
between VMs. This layer creates a CA / PA boundary 
by having encapsulation rules on the outbound path and 
decapsulation rules in the inbound path. In addition, an 
ACL layer for a stateful firewall sits above our Ananta 
NAT layer. The security controller, having placed it 
here with respect to those boundaries, knows that it can 
program policies matching DIPs of VMs, in CA space. 
Finally a metering layer used for billing sits at the top 
next to the VM, where it can meter traffic exactly as the 
customer in the VM sees it – all traffic that made it in 
and all traffic that was sent out from the VM. 

 
Figure 5. A Layer with a stateful flow 

Layering also gives us a good model on which to 
implement stateful policy. Since packets on a given 
connection should be in the same IP/Port state on both 
the inbound and outbound path, we can keep flow state 
on a layer by assuming that a TCP or UDP 5-tuple 
(SrcIP, DstIP, IP Protocol, SrcPort, DstPort) will be the 
opposite on each side of the layer, and encoding that in 
a hash table of all connections in either direction. When 
a stateful rule is matched, it creates both an inbound and 
outbound flow in the layer flow tables, with the flow in 
the direction of the rule having the action of the rule, 
and the opposite direction taking the opposite action, to 
maintain layering. These inbound and outbound flows 
are considered paired – their actions simply change the 
packet to the state of the opposite flow in the pair rather 
than carrying their own action context. 

When processing packets, VFP searches for a single 
rule in each layer to match by searching the groups of 

rules inside a layer for a matching rule. That rule’s 
action is then performed on the packet – only one rule 
can match a given packet in a given layer (other 
matching rules of lower priority are ignored). 

5.3 Rules 

Rules are the entities that perform actions on matching 
packets in the MAT model. Per Goal #3, rules allow the 
controller to be as expressive as possible while 
minimizing fixed policy in the dataplane. Rules are 
made up of two parts: a condition list, specified via a 
list of conditions, and an action, both described below. 

5.3.1 Conditions 

When a VFPAPI client programs a rule, it provides a 
descriptor with a list of conditions. Conditions have a 
type (such as source IP address), and a list of matching 
values (each value may be a singleton, range, or prefix). 
For a condition to match a packet, any of the matching 
values can match (an OR clause). For a rule to match, 
all conditions in the rule much match (an AND clause). 

5.3.2 Actions 
A rule descriptor also has an action. The action contains 
a type and a data structure specific to that type with data 
needed to perform the rule (for example, an 
encapsulation rule takes as input data the source / 
destination IP addresses, source / destination MACs, 
encapsulation format and key to use in encapsulating 
the packet). The action interface is extensible - example 
conditions and actions are listed in Figure 6.  

Rules are implemented via a simple callback interface 
(Initialize, Process Packet, Deinitialize) so as to make 
the base VFP platform easily extensible. If a rule type 
supports stateful instantiation, the process handler will 
create a pair of flows in the layer as well – flows are 
also typed and have a similar callback interface to rules. 
A stateful rule includes a flow time to live, which is the 
time that flows it creates will remain in the flow table 
after the last packet matches (unless expired explicitly 
by the TCP state machine described in §6.4.2). 

 

5.3.3 User Defined Actions 

In addition to a large set of actions we’d created over 

Figure 6. Example Conditions and Actions 



time, in VFPv2 we added user-defined actions to further 
Goal #3 – allowing the controllers to create their own 
rule types using a language for header field 
manipulations (Header Transpositions, see §6.1.2). This 
allows extending the base VFP action set without 
writing code to implement an action in the datapath. 

5.4 Groups 

Rules on a layer are organized into logical groups for 
management purposes. Groups are the atomic unit of 
policy in VFP – clients can transactionally update them. 
When classifying packets, VFP iterates through groups 
in a layer to find the highest priority rule in each group 
that matches the packet. By default, VFP will select the 
rule matched by the last group in the list. A rule can be 
marked “terminating,” meaning that if it ever matches it 
will be applied immediately without traversing further 
groups. Groups can have conditions just like rules – if a 
group’s condition doesn’t match, VFP will skip it. 

Below are two examples of how we’ve seen groups 
used for management of different policies in one layer: 

 For VMs with Docker-style containers [35], each with 
its own IP, groups can be created and managed on a 
per-container basis by setting an IP condition on them. 

 For our stateful firewall, infrastructure ACLs and 
customer ACLs can be expressed as two groups in a 
layer. Block rules would be marked terminating – if 
either group blocks it, a packet is dropped. Only if 
both sets of rules allowed a packet does it go through. 

In addition to priority-based matching, individual 
groups can be Longest Prefix Matching on a condition 
type (for example, destination IP) to support routing 
scenarios. This is implemented as a compressed trie. 

5.5 Resources 

MATs are a good model for programming general 
network policy, but on their own aren’t optimal for 
every scenario, especially ones with exception events. 
VNET requires a CA->PA lookup on outbound traffic 
(using a Directory System). Rules alone aren’t optimal 
for such large mapping tables. So we support an 
extensible model of generic resources – in this case, a 
hash table of mappings. A resource is a port-wide 
structure that any rule on a port can reference. Another 
example is a range list, which can implement a dynamic 
source NAT rule of the form described in Ananta. 

5.5.1 Event Handling / Lookups 

Fast eventing APIs are required for many SDN 
applications where there is a lookup miss. We generally 
handle events in the context of resources – e.g. if an 
encap rule looks up a PA/CA mapping resource and 
misses, a VFPAPI client can register an efficient 
callback mechanism using async I/O and events. We use 
the same mechanism for Ananta NAT port exhaustion. 

6. Packet Processor and Flow Compiler 
As we scaled production deployments of VFP, and SDN 
became more widely used, it became necessary to write 
a new VFP datapath for improved performance and 
scalability across many rules and layers. Our work to 
improve performance, without losing the flexibility and 
programmability of VFPAPI, is described below. 

6.1 Metadata Pipeline Model 

VFP’s original 2012 release, while performant under 
the workloads it was designed for, didn’t scale well 
when the host SDN model took off even faster than we 
expected and many new layers were created by 
controllers. VFP rules and flows were implemented as 
callbacks which took a packet as input and modified its 
buffer - the next layer would have to reparse it. The 
original rule classification logic was linear match (with 
stateful flows accelerating this). At 10+ layers with 
thousands of rules, we needed something better. 

A primary innovation in VFPv2 was the introduction of 
a central packet processor. We took inspiration from a 
common design in network ASIC pipelines e.g. [34] – 
parse the relevant metadata from the packet and act on 
the metadata rather than on the packet, only touching 
the packet at the end of the pipeline once all decisions 
have been made. We compile and store flows as we see 
packets. Our just-in-time flow compiler includes a 
parser, an action language, an engine for manipulating 
parsed metadata and actions, and a flow cache. 

6.1.1 Unified FlowIDs 

VFP’s packet processor begins with parsing. The 
relevant fields to parse are all those which can be 
matched in conditions (from §5.3.1). One each of an 
L2/L3/L4 header (as defined in table 1) form a header 
group, and the relevant fields of a header group form a 
single FlowID. The tuple of all FlowIDs in a packet is a 
Unified FlowID (UFID) – the output of the parser. 

6.1.2 Header Transpositions 

Our action primitives, Header Transpositions (HTs), so 
called because they change or shift fields throughout  a 
packet, are a list of paramaterizable header actions, one 
for each header. Actions (defined in table 2) are to Push 
a header (add it to the header stack), Modify a header 
(change fields within a given header), Pop a header 
(remove it from the header stack), or Ignore a header 
(pass over it). HTs are parameterized with all fields in a 
given header that can be matched (so as to create a 
complete language – any valid VFP flow can be 
transformed into any other valid VFP flow via exactly 
one HT). Actions in a HT are grouped into header 
groups. Table 3 shows examples of a NAT HT used by 
Ananta, and encap/decap HTs used by VL2. 

As part of VFPv2, all rule processing handlers were 



updated to take as input a FlowID and output a 
transposition. This has made it easy to extend VFP with 
new rules, since implementing a rule doesn’t require 
touching packets – it’s a pure metadata operation. 

Table 1. Valid Parameters for Each Header Type 

 
Table 2. Header Transposition Actions 

 
Table 3. Example Header Transpositions 

 
6.1.3 Transposition Engine 

VFP creates an action for a UFID match by composing 
HTs from matched rules in each layer, as in Pseudocode 
1. For example, a packet passing the example Ananta 
NAT layer and the VL2 VNET encap layer may end up 
with the composite Encap+NAT transposition in Table 
3. This transposition engine also contains logic to apply 
a transposition to an actual packet, by breaking the final 
transposition down into a series of steps (NAT, encap, 
decap) that can be applied by a packet modifier. 

6.1.4 Unified Flow Tables and Caching 

The intuition behind our flow compiler is that the action 
for a UFID is relatively stable over the lifetime of a 
flow – so we can cache the UFID with the resulting HT 
from the engine. Applications like Ananta create per-
connection state already, so it’s not expensive to cache 
this whole unified flow (UF) per TCP/UDP flow. The 
resulting flow table where the compiler caches UFs is 

called the Unified Flow Table (UFT).  

With the UFT, we segment our datapath into a fastpath 
and a slowpath. On the first packet of a TCP flow, we 
take a slowpath, running the transposition engine and 
matching at each layer against rules. On subsequent 
packets, VFP takes a fastpath, matching a unified flow 
via UFID, and applying a transposition directly. This 
operation is independent of the layers or rules in VFP. 

The UFT is used similarly to the OVS microflow cache 
to skip tables, and scales well across CPUs because it 
requires no write lock to match. However, a key 
difference for our workload is the HT, which combines 
encap/decap with header modification. This allows us to 
have a single flow for all actions rather than one before 
and after a tunnel interface, and is critical for offloading 
flows with only a single hardware table (§9.3). 

 
Figure 7. VFP Unified Flow Table 

6.2 Action Contexts 

Some rule actions have side effects beyond header 
modification, or take action on packet payloads. 
Examples include metering to a global counter 
(supporting our example metering layer), or encrypting 
packet payloads. For these actions, HTs can be 
extended with Action Contexts which can implement 
arbitrary logic via callback. An Action Context can be 
added to an HT (and the resulting UF) by a rule. This 
allows rules to extend the packet actions themselves 
even though they are not matched for every packet. 

6.3 Flow Reconciliation 

A requirement of the VFP flow compiler is transparency 
to VFPAPI clients. This means that if a controller 
changes the rules in a layer, the new rules should be 

Process(UFID input, Port port): 
    Transposition action = {0}; 
    For each layer in port.layers: 
        UFID localId = Transpose(input, action); 
        Rule rule = Classify(layer, localId); 
        action = action.compose(rule.process(localId)); 
    return composite; 

Pseudocode 1. Transposition Engine 



applied to subsequent packets even if a UF exists. This 
is supported by a reconciliation engine in VFP. 

The reconciliation engine maintains a global generation 
number on each port. When a UF is created, it’s tagged 
with the current generation number at creation time. 
Upon policy update, the port generation is incremented. 

VFP implements lazy reconciliation, reconciling a UF 
only when matching a UF whose generation number is 
less than the port’s current generation number. The UF 
is then simulated against the current rules on the port, 
by running its UFID through the transposition engine, 
and determining if the resulting HT has changed. 

6.4 Flow State Tracking 

By default, the expiration policy for UFs is to expire 
them after some configurable period of time. However, 
this is not efficient for short flows and leads to large 
numbers of UFs idling in the UFT. Instead, for TCP 
flows we can expire them by tracking the state of the 
underlying connections. This requires determining 
which UF should pair with a UF in the opposite 
direction to form a bidirectional connection.  

6.4.1 Flow Pairing 

Unlike layer flows, we cannot pair UFs just by 
reversing the FlowID – UF pairs can be asymmetric, for 
example if a connection is tunneled to the VM on 
inbound but returned directly without tunneling on the 
outbound side (e.g. the Direct Server Return feature in 
Ananta). The key idea in our solution is pairing 
connections on the VM-side of the VFP pipeline rather 
than the network side (e.g. the UFID of a connection on 
the inbound path after processing should be the opposite 
of the UFID on the outbound path before processing). 

When an inbound UF is created by an inbound packet, 
we create an outbound UF to pair it to by reversing the 
UFID of the packet after the inbound action, and 
simulating it through the outbound path of that port, 
generating a full UF pair for the connection. For a new 
outbound UF, we wait for an inbound packet to try to 
create an inbound UF – when the new UF looks up the 
reverse UFID it will find an existing flow and pair itself. 

6.4.2 TCP State Tracking 

Once we have established a pairing of UFs, we use a 
simple TCP state machine in VFP to track them as 
connections. For example, new flows are created in a 
probationary half-open state – only when a three-way 
handshake is verified with proper sequence numbers 
does it become a full flow (this helps protect against 
SYN floods). We can also use this state machine to 
track FIN handshakes and RSTs, to expire flows early. 
We also track connections in TIME_WAIT, allowing 
NAT rules to determine when they can reuse ports 
safely. VFP tracks port-wide statistics such as average 

RTT, retransmits, and ECN marks, which can be useful 
in diagnosing VMs with networking issues [37]. 

6.5 Packet Classification 
In practice, VFPv2’s UFT datapath solved performance 
and scalability issues for most packets (even short lived 
flows are usually at least 10 packets). However, rule 
matching is still a factor for scenarios with thousands of 
rules, such as complex ACLs or routes. We implement a 
better classification algorithm for these cases. 

We support 4 classifier types: a compressed trie, an 
interval tree, a hash table, and a list. Each classifier can 
be instantiated on each condition type from §5.3.1. We 
assign each rule to a classifier based on a heuristic 
described in detail in [40] to optimize total matching 
time in a VFP group. In practice we have found this to 
be successful at handling a wide range of rule types that 
users plumb, such as 5-tuple ACLs with IP ranges, and 
large routing tables. 

7. Switching Model 
In addition to SDN filtering, VFP also forwards traffic 
to ports. VFP’s forwarding plane is described below. 

7.1 Packet Forwarding 

VFP implements a simple bridge, forwarding packets by 
destination MAC address to the port attached to the 
VNIC created with that MAC. This can be an outer 
MAC, or an inner MAC inside a VXLAN/NVGRE 
encaped packet for VMs running in a virtualized mode. 
Efficient spreading based on this policy is widely 
supported by NICs as Virtual Machine Queue [33]. 

7.2 Hairpinning and Mirroring 

Gateway VMs are often used to bridge different tunnels 
or address spaces in different routing domains. To 
accelerate these workloads, we support hairpin rules in 
VFP layers, which can redirect packets to a VNIC back 
out through VFP ingress processing, either on the same 
or a different VNIC. This enables high speed gateways 
without the overhead of sending packets to a VM. This 
policy also supports programmable port mirroring. 

7.3 QoS 

VFP supports applying max cap policies on transmit 
and receive to ports or groups of ports on a switch. This 
is implemented using atomic operations to update token 
bucket counters and interlocked packet queues for high 
performance. Bandwidth reservations across ports are 
also supported. Our algorithm for measurement-based 
weighted fair sharing is described in [39]. 

8. Operational Considerations 
As a production cloud service, VFP’s design must take 
into account serviceability, monitoring and diagnostics. 

8.1 Rebootless Updates 

In an update, we first pause the datapath, then detach 



VFP from the stack, uninstall VFP (which acts as a 
loadable kernel driver), install a new VFP, attach it to 
the stack, and restart the datapath. This operation 
typically completes in <1s, and looks like a brief 
connectivity blip to VMs, while the NIC stays up. 

8.2 State Save/Restore 

Because we support stateful policy such as ACLs and 
NAT, a rebootless VFP update by default forces VMs 
to reset all TCP connections, since flow state is lost. As 
we saw more and more frequent updates, we concluded 
we needed to build State Save/Restore (SSR) functions 
to eliminate impact of VFP updates to VMs. 

We support serialization and deserialization for all 
policy and state in VFP on a port. Every VFP object has 
a serialization and deserialization handler, including  
layers/groups/rules/flows, rule contexts, action contexts, 
UFs, HTs, resources and resource entries, and more. All 
objects are versioned, so if structures are updated, SSR 
can support multiple source object versions. 

8.2.1 VM Live Migration 

VFP also supports live migration of VMs. In this case, 
the port state is serialized out of the original host and 
deserialized on the new host during the VM blackout 
time of the migration. VFP policies/rules are updated on 
the new host by all VFPAPI clients based on policy that 
may have changed in migration, such as the VM 
physical address. VFP flow reconciliation (§6.3) then 
handles updating flows, keeping TCP connections alive. 

8.3 Monitoring 

VFP implements over 300 performance counters and 
flow statistics, on per port, per layer, and per rule bases, 
as well as extensive flow statistics. This information is 
continuously uploaded to a central monitoring service, 
providing dashboards on which we can monitor flow 
utilization, drops, connection resets, and more, on a VM 
or aggregated on a cluster/node/VNET basis. Figure 8 
shows distributions measured in production for the 
number of active flows and rate of new connections per 
VM, and SSR time for a recent VFP update. 

8.4 Diagnostics 
VFP provides diagnostics for production debugging, 

both of VFP itself and for VFPAPI clients. The 
transposition engine’s simulation path can be queried on 
arbitrary UFIDs to provide a trace of how that UFID 
would behave across all rules/flows in VFP. This 
enables remotely debugging incorrect rules and policies. 

VFP tracing, when enabled, provides detailed logs of 
actions performed on the data path and control path. 

If we need to track a bug in VFP’s logic, SSR can 
snapshot a port’s state in production, and restore it on a 
local test machine, where packets can then be simulated 
using the above diagnostic under a kernel debugger. 

9. Hardware Offloads and Performance 
As we continue to scale up our cloud servers, we are 
very performance and cost sensitive. VFP implements 
several hardware offloads, described below. 

9.1 Stateless Tunneling Offloads 

Commercial NICs have been available since 2013 with 
the ability to parse NVGRE/VXLAN, and support 
stateless checksum, segmentation, and receive scaling 
offloads with them. VFP programs NICs with these 
offloads for tunneling, which are widely deployed in our 
datacenter. This has largely eliminated the performance 
overhead of encap/decap to our platform – with offloads 
we can support encap at 40Gbps line rate on our NICs. 

9.2 QoS Offloads 

Many commercial NICs support transmit max caps, and 
bandwdith reservations, across transmit queues. We 
have implemented and deployed an interface to offload 
port-level QoS policy from §7.3. This removes the 
overhead of applying QoS through software. 

9.3 Offloading VFP Policy 

Many attempts to offload SDN policy and accomplish 
Goal #7 of SR-IOV support focus on offloading packet 
classification, such that no packets traverse the host. 
We’ve found this impractical on server NICs, as it often 
requires large TCAMs, CPU cores or other specialized 
hardware when doing lookups on 10+ tables in series. 

However, offloading Unified Flows as defined in §6 
turns out to be much more tractable. These are exact 
match flows representing each connection on the 
system, and so they can be implemented via a large hash 

Figure 8. Example VFP Production Monitoring Statistics 



table, typically in inexpensive DRAM. In this model, 
the first packet of a new flow goes through software 
classification to determine the UF, which is then 
offloaded so that packets take a hardware path. 

We’ve used this mechanism to enable SR-IOV in our 
datacenters with VFP policy offload on custom 
hardware we’ve deployed on all new Azure servers. Our 
VMs reach 25Gbps+ VNICs at line rate with near-zero 
host CPU and <25μs e2e TCP latencies inside a VNET. 

 
Figure 10. VFP Offloading Flow Tables per Port 

9.4 Performance 

In Figure 9, we first see that under a TCP SYN load the 
classification algorithm in §6.5 improves by 1-2 orders 
of magnitude over linear match a distribution of random 
rules. Measuring VFP’s fastpath against long lived 
flows, we next see that on layers of 200 rules each, UFT 
caching improves performance even at one layer, but 
more dramatically as more layers are added. We then 
see that due to locking, in VFPv1 performance doesn’t 
improve as we scale to 8 CPUs, while UFT scales well. 
Finally, we see that received packets per second 
improves by over 60% with PacketDirect. 

10. Experiences 
We have deployed 21 major releases of VFP since 
2012. VFP runs on all Azure servers, powering millions 
of VMs, petabits per second of traffic, and providing 
load balancing for exabytes of storage, in hundreds of 
datacenters in over 30 regions across the world. In 
addition, we are releasing VFP publicly as part of 
Windows Server 2016 for on-premises workloads. 

10.1 Results 

We believe we accomplished all of our goals from §2: 

1.We have had multiple independent controllers 
successfully program VFP for several years. New 
controllers have deployed SDN applications by 
inserting layers without changes in other controllers. 

2.Every single connection in our datacenters is treated 
statefully by VFP – all pass through stateful ACLs, 
and many pass through a stateful NAT. 

3.The definition of a VNET, a load balancer, and other 
policies have changed over time as newer, richer 
semantics were implemented. Most of these were 
policy changes without any change to VFP. 

4.We’ve pushed dozens of rebootless updates to VFP. 

5.The introduction of UFT dramatically improved VFP 
performance, especially for scenarios with large 
numbers of layers. This has helped us scale our 
servers to 40G+ NICs, with many more VMs. 

6.The VFP packet classification algorithm has sped up 
classification on real production workloads by 1-2 
orders of magnitude over linear search. 

7.We have successfully offloaded VFP flows to flow-
programmable hardware and deployed SR-IOV. 

10.2 Lessons Learned 
Over 5 years of developing and supporting VFP, we 
learned a number of other lessons of value: 

 L4 flow caching is sufficient. We didn’t find a use 
for multi-tiered flow caching such as OVS megaflows. 
The two main reasons: being entirely in the kernel 
allowed us to have a faster slowpath, and our use of a 
stateful NAT created an action for every L4 flow and 
so reduced the usefulness of ternary flow caching. 

 Design for statefulness from day 1. The above point 
is an example of a larger lesson: support for stateful 
connections as a first class primitive in a MAT is 
fundamental and must be considered in every aspect 
of a MAT design. It should not be bolted on later. 

 Layering is critical. Some of our policy could be 
implemented as a special case of OpenFlow tables 
with custom GOTOs chaining them together, with 
separate inbound and outbound tables. We found, 

Figure 9. Selected VFP Performance Data, 2.9Ghz Xeon Sandy Bridge CPU 



however, that our controllers needed clear layering 
semantics or else they couldn’t reverse their policy 
correctly with respect to other controllers. 

 GOTO considered harmful. Controller developers 
will implement policy in the simplest way needed to 
solve a problem, but that may not be compatible with 
future controllers adding policy. We needed to be 
vigilant in not only providing layering, but enforcing 
it to prevent this. We see this layering enforcement 
not as a limitation compared to OpenFlow’s GOTO 
table model, but instead as the key feature that made 
multi-controller designs work for 4 years running. 

 IaaS cannot handle downtime. We found that 
customer IaaS workloads cared deeply about uptime 
for each VM, not just their service as a whole. We 
needed to design all updates to minimize downtime, 
and provide guarantees for low blackout times. 

 Design for serviceability. SSR (§8.2) is another 
design point that turned out to pervade all of our logic 
– in order to regularly update VFP without impact to 
VMs, we needed to consider serviceability in any new 
VFP feature or action type. 

 Decouple the wire protocol from the data plane. 
We’ve seen enough controllers/agents implement wire 
protocols with different distributed systems models to 
support O(1M) scale that we believe our decision to 
separate VFPAPI from any wire protocol was a 
critical choice for VFP’s success. For example, 
bandwidth metering rules are pushed by a controller, 
but VNET required a VL2-style directory system (and 
an agent that understands that policy comes from a 
different controller than pulled mappings) to scale. 

Architecturally, we believe it helps to view the 
resulting “Smart Agents” as part of a distributed 
controller application, rather than part of the 
dataplane, and we consider VFP’s OS level API the 
real common Southbound API [36] in our SDN stack, 
where different applications meet. 

 Conflict resolution was not needed. We believe our 
choice in §2.3 to not focus on automated conflict 
resolution between controllers was correct, as this was 
never really an issue when we enforced clean layering 
between the controllers. Good diagnostics to help 
controller developers understand their policy’s impact 
were more important. 

 Everything is an action. Modeling VL2-style 
encap/decap as actions rather than tunnel interfaces 
was a good choice. It enabled a single table lookup  
for all packets – no traversing a tunnel interface with 
tables before and after. The resulting HT language 
combining encap/decap with header modification 

enabled single-table hardware offload. 

 MTU is not a major issue. There were initial 
concerns that using actions instead of tunnel interfaces 
would cause issues with MTU. We found this not to 
be a real issue – we support either making use of 
larger MTU on the physical network to support 
encapsulation (this was our choice for Azure), or 
using a combination of TCP Maximum Segment Size 
clamping and fragmentation of large non-TCP frames 
(for deployments without large MTU). 

 MAT Scale. In our deployments, we typically see up 
to 10-20 layers, with up to hundreds of groups within 
a layer. We’ve seen up to O(50k) rules per group, 
(when supporting customers’ distributed BGP 
routers). We support up to 500k simultaneous TCP 
connections per port (after which state tracking 
becomes prohibitively expensive). 

 Keep forwarding simple. §7.1 describes our MAC-
filter based forwarding plane. We considered a 
programmable forwarding plane based on the MAT 
model, however, we found no scenario for complex 
forwarding policy or learning. We’ve concluded that a 
programmable forwarding plane is not useful for our 
cloud workload, because VMs want a declarative 
model for creating NICs with known MAC addresses. 

 Design for E2E monitoring. Determining network 
health of VMs despite not having direct access to 
them is a challenge. We found many uses for in-band 
monitoring with packet injectors and auto-responders 
implemented as VFP rule actions. We used these to 
build monitoring that traces the E2E path from the 
VM-host boundary. For example, we implemented 
Pingmesh-like [24] monitoring for VL2 VNETs. 

 Commercial NIC hardware isn’t ideal for SDN. 
Despite years of interest from NIC vendors about 
offloading SDN policy with SR-IOV, we have seen no 
success cases of NIC ASIC vendors supporting our 
policy as a traditional direct offload. Instead, large 
multi-core NPUs [32] are often used. We used custom 
FPGA-based hardware to ship SR-IOV in Azure, 
which we found was lower latency and more efficient. 

11. Conclusions and Future Work 
We introduced the Virtual Filtering Platform (VFP), our 
cloud scale vswitch for host SDN policy in Microsoft 
Azure. We discussed how our design achieved our dual 
goals of programmability and scalability. We discussed 
concerns around serviceability, monitoring, and 
diagnostics in production environments, and provided 
performance results, data, and lessons from real use. 

Future areas of investigation include new hardware 
models of SDN, and extending VFP’s offload language. 
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