SERF: Efficient Scheduling for Fast Deep Neural
Network Serving via Judicious Parallelism

Feng Yan
University of Nevada, Reno,
Reno, NV, USA, fyan@unr.edu

Olatunji Ruwase
Microsoft Research,
Redmond, WA, USA, olruwase @microsoft.com

Abstract—Deep neural networks (DNNs) has enabled a variety
of artificial intelligence applications. These applications are
backed by large DNN models running in serving mode on a cloud
computing infrastructure. Given the compute-intensive nature of
large DNN models, a key challenge for DNN serving systems is to
minimize the request response latencies. This paper characterizes
the behavior of different parallelism techniques for supporting
scalable and responsive serving systems for large DNNs. We
identify and model two important properties of DNN workloads:
homogeneous request service demand, and interference among
requests running concurrently due to cache/memory contention.
These properties motivate the design of SERF, a dynamic
scheduling framework that is powered by an interference-aware
queueing-based analytical model. We evaluate SERF in the
context of an image classification service using several well
known benchmarks. The results demonstrate its accurate latency
prediction and its ability to adapt to changing load conditions.

I. INTRODUCTION

Deep Neural Network (DNN) models have recently demon-
strated state-of-the-art accuracy on important yet challenging
artificial intelligence tasks, such as image recognition [1], [2],
[3] and captioning [4], [5], video classification [6], [7] and
captioning [8], speech recognition [9], [10], and text process-
ing [11]. These advancements by DNNs have enabled a variety
of new applications, including personal digital assistants [12],
real-time natural language processing and translation [13],
photo search [14] and captioning [15], drug discovery [16],
and self-driving cars [17].

Many cloud service providers offer DNN services as part of
their machine learning platform such as Microsoft AzureML
[18] and Amazon machine learning systems [19], which pro-
vide library and runtime tools for application owners to de-
velop and deploy their DNN applications conveniently. These
platforms support the training and serving of various DNN
applications. Figure 1 shows the user interface of Microsoft
AzureML and click to deploy model. “Experiments” session
in Figure 1 is corresponding to the training phase, where
application owners specify the neural network structure, algo-
rithms, and data to train their DNN models. Once trained, these
models can be deployed instantly on the cloud in a serving

SC16; Salt Lake City, Utah, USA; November 2016
978-1-4673-8815-3/16/$31.00 (©2016 IEEE

Yuxiong He
Microsoft Research,
Redmond, WA, USA, yuxhe @microsoft.com

Evgenia Smirni
College of William and Mary,
Williamsburg, VA, USA, esmirni@cs.wm.edu

Microsoft Azure Mac

wepD Services
NAME

Image Classification Service

@ WEB SERVICES

Web-search Ranking Service

St T 11T
] uuuue

Trained DNN Serving System

Fig. 1. Microsoft AzureML interface.

mode to process application inputs, such as images, voice
commands, speech segments, handwritten text, see the “Web
Services” session in Figure 1. Our paper focuses on DNN
serving systems, revealing the challenges and opportunities
to support fast deployment of responsive and scalable DNN
applications.

DNN serving platforms must satisfy the following two
requirements. First, DNNs should offer short response time
to user requests. Since DNN applications process a stream
of user requests, a serving system must consistently offer
fast responses to attract and retain application users. Slow
responses directly degrade user experience. For example, im-
age recognition applications [1], [2], [3] take photos or even
real-time camera streams as input requests and send back
classification results. Since it is very similar to traditional
query service, users usually expect low latency responses
and may switch to another service provider if the perceived
latency is high [20], [21]. Second, DNNs should support fast
deployment of applications. Once DNN models are trained
and ready for deployment, the serving system should make
the application available to accept online user requests within
a few minutes [22]. No one would use a platform that takes
hours or even days to deploy or update their applications.

DNN models that achieve the best accuracy on the most
challenging tasks (e.g., image, speech, etc.) are often very

Latency of Different Configurations Latency of Different Configurations

= 8 240-250(ms) o £ 8 800-900(ms) o
87 250-300(ms) 8 7 900-1500(ms) o
3 4 300-500(ms) e T 4 1500-5000(ms) @
© 500-800(ms) @ © 5000+(ms) @
g5 800-2000(ms) @]
% 4 ° 2000+(ms) @ g 4
€ 3 £ 3
o s
22 o0 g 2

1 1

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Service Parallelism Service Parallelism

Fig. 2. Latency under low load (left plot) and high load (right plot) using
different configurations (inter-node parallelism is set to 1) for ImageNet-22K.

large (containing billions of neural connections) and require
significant compute cycles and memory bandwidth to serve
each request [1], [3], [16]. Such large models may take seconds
or even minutes to process each user request if executed in a
sequential fashion on a single server. Parallel computation is
a promising approach to improve the response time of DNN
serving applications. In this paper, we consider three ways of
exploiting hardware parallelism within and across machines
for DNN serving systems. First, parallel hardware threads
on a machine (e.g., chip-multiprocessor (CMP) cores) can be
used for parallel processing each request to reduce response
time (intra-node parallelism). Second, the parallel hardware
threads on a machine could alternatively be used for concurrent
processing of different requests to reduce waiting time (service
parallelism). Third, the model could be partitioned across
multiple machines to leverage the aggregate compute cycles
and memory bandwidth for faster processing of each request
(inter-node parallelism).

Finding good parallelism configurations to minimize DNN
serving latency is important but challenging. Applying paral-
lelism degrees blindly could harm performance. For example,
service parallelism may increase memory system contention
to the point of prolonging request processing time; inter-
node parallelism may prolong request processing if the cross-
machine communication overhead exceeds the computation
speedup. Figure 2 shows the latency of serving the ImageNet-
22K workload [23] under different combinations of service
and intra-node parallelisms on an 8-core machine (refer to
Section V-A for detailed experimental setup). The left and
right scatter plots represent low and high load conditions
(request arrival rate) respectively. Each point represents one
parallel configuration, and the size of the point indicates its
latency value. The figure demonstrates that: (1) Many parallel
configurations are possible, even with only 8 cores and without
considering inter-node parallelism. (2) The latency difference
between the best parallel configuration and the worst parallel
configuration can be significant, i.e., by orders of magnitudes.
This gap grows further under higher loads. (3) The latency
values and the best parallel configuration changes as a function
of the load.

In order to find best parallelism configurations among many
candidates, we need to quantify and compare their latency
impact. One could conduct exhaustive profiling of the perfor-
mance of all combinations of parallelism configurations and

expected load levels. This can be very expensive and may
take hours or even days. Moreover, this profiling cost repeats
when models are updated. Such a method is impractical as
the online services require fast deployment within a few
minutes. An alternative solution is to use analytical modeling
to predict request latencies under different configurations
and load levels. However, the effectiveness of a parallelism
technique for a DNN depends on many factors such as neural
network characteristics, hardware, and the combined impact
of memory contention and communication overhead, which
make accurate latency prediction difficult. Therefore, neither
exhaustive profiling nor analytical modeling offer a practical
solution to find the best parallel configuration in a timely
manner.

We present SERF (serving deep learning systems fast), a
scheduling framework that employs a hybrid approach by
combining lightweight profiling with queueing-based analyti-
cal modelling to quickly identify best parallel configurations
for any given load. SERF needs to answer two important
questions: (i) what should be profiled for accuracy but can be
also profiled quickly, and (ii) how to model and predict request
latency? To answer these questions, we characterize and iden-
tify two distinctive properties of DNNs: (1) The DNN service
time is difficult to model accurately, but can be measured
efficiently. In particular, DNN requests are homogeneous, i.e.,
when running under the same degree of parallelism, the service
time is deterministic. This property empowers lightweight
profiling, i.e., only the average service time information needs
to be collected rather than more complex information such
as distributions. (2) There is interference among concurrent
running requests due to cache/memory contention: a request
may take longer to execute in the presence of other concurrent
requests even when these requests are using different cores.
In this paper, we develop an interference-aware queuing-
based analytical model that takes as input the service time
profiling information and accurately predicts request latency
under different loads. SERF adopts this hybrid approach to
identify the best configuration for any given load and deploys
a dynamic scheduler that adapts to load changes online nearly
instantly, achieving the benefits of both empirical and analyt-
ical methods.

We implement SERF in the context of an image classifi-
cation service based on the image classification module of
the Adam distributed deep learning framework [3]. We stress
that SERF is not limited to the Adam architecture, but also
applicable to serving systems based on other DNN frameworks
(e.g., Caffe [24], Theano [25], and Torch7 [26]) as similar par-
allelism decisions and configuration knobs are also available
there. We conduct vast experiments by running several state-
of-the-art classification benchmarks, including ImageNet [23]
and CIFAR [2]. We show that our prediction model achieves
high accuracy: the average error is less than 4% comparing
to measurement results. SERF always correctly identifies best
parallel configurations under a variety of benchmarks and
system loads. Moreover, compared to using static parallel
configurations, SERF swiftly identifies and switches to the

best configuration, reducing request latency under various
loads. Compared to exhaustive profiling, SERF adapts three
orders of magnitude faster under dynamic and ever-changing
environments, significantly reducing application deployment
time.

II. BACKGROUND

DNNs consist of large numbers of neurons with multiple
inputs and a single output called an activation. Neurons are
connected hierarchically, layer by layer, with the activations
of neurons in layer / — 1 serving as inputs to neurons in
layer /. This deep hierarchical structure enables DNNSs to learn
complex tasks, such as image recognition, speech recognition,
and text processing.

A DNN service platform supports training and serving.
DNN training is offline batch processing that uses learning
algorithms, such as stochastic gradient descent (SGD) [27] and
labeled training data to tune the neural network parameters for
a specific task. DNN serving is instead interactive processing
requiring fast response per request, e.g., within 200 - 300
milliseconds, even for challenging large-scale models like
ImageNet-22K. It deploys the trained DNN models in serving
mode to answer user requests, e.g., for a dog recognition
application, a user request provides a dog image as input and
receives the type of the dog as output. The response time
of a request is the sum of its service time (execution time)
and waiting time. An important common performance metric
for interactive workloads is the average request response time

(average latency), which we adopt in our work.

In DNN serving, each user input, which we refer to as a
request, is evaluated layer by layer in a feed-forward manner
where the output of a layer / — 1 becomes the input of layer /.
More specifically, define a; as the activation (output) of neuron
i in layer [. The value of a; is computed as a function of its
J inputs from neurons in the preceding layer / — 1 as follows:

J
ai:f<<2wijxaj> +bi>, €h)
=1

where w;; is the weight associated with the connection
between neuron i at layer / and neuron j at layer / — 1, and b; is
the bias term associated with neuron i. The activation function
f, associated with all neurons in the network, is a pre-defined
non-linear function, typically a sigmoid or hyperbolic tangent.
Therefore, for a given request, its main computation at each
layer / is a matrix-vector multiplication of the weight of the
layer with the activation vector from layer / — 1 (or the input
vector if [= 0).

Inter-node, intra-node, and service-level parallelisms are
well-supported among various DNN models and applications
[1], [3], [28]. Inter-node parallelism partitions the neural
network across multiple node/machines, with activations of
neural connections that cross node/machine boundaries being
exchanged as network messages. Intra-node parallelism uses
multi-threading to parallelize the feed-forward evaluation of
each input image using multiple cores. As the computation
at each DNN layer is simply a matrix-vector multiplication,
it can be easily parallelized using parallel libraries such as

OpenMP [29] or TBB [30] by employing a parallel for loop.
Service-level parallelism is essentially admission control that
limits the maximum number of concurrent running requests.
We define a parallelism configuration as a combination of the
intra-node parallelism degree, inter-node parallelism degree,
and maximum allowed service parallelism degree. Note the
service parallelism is defined as a maximum value instead of
the exact value due to the random request arrival process, e.g.,
at certain moments, the system may have less requests than
the defined service parallelism degree.

III. WORKLOAD CHARACTERIZATION

In this section, we present comprehensive workload char-
acterization that shows the opportunities and challenges of
using the various parallelism techniques to reduce DNN serv-
ing latency, as well as their implications on the design of
SERF. We make four key observations: (1) Parallelism impacts
service time in complex ways, making it difficult to model
service times without workload profiling. (2) DNN workloads
have homogeneous requests, i.e., service times under the same
parallelism degree exhibit little variance, which allows SERF
to measure request service time with affordable profiling cost.
(3) DNN workloads exhibit interference among concurrent
running requests, which motivates a new model and solution
of SERF. (4) DNN workloads show load-dependent behavior,
which indicates the importance of accurate latency estimation
and parallel configuration adaptation according to system load.

We present workload characterization results of two well-
known image classification benchmarks, CIFAR-10 [2] and
ImageNet-22K [23], on servers using Intel Xeon E5-2450
processors. Each processor has 8 cores, with private 32KB
L1 and 256KB L2 cache, and shared 20MB L3 cache. The
detailed experimental set up for both workloads and hardware
is provided in Section V.

A. Impact of parallelism on service time

Modeling the impact of parallelism on DNN serving without
workload profiling is challenging because parallelism has
complex effects on the computation and communication com-
ponents of request service time, as shown in Figures 3 and
4.

Figure 3 shows the DNN request service speedup for differ-
ent degrees of intra-node, inter-node, and service parallelism.
For intra-node parallelism, the speedup is close to linear up to
3 cores, but slows down beyond 4 cores. This effect is due to
the limited memory bandwidth. When the total memory band-
width demands are close to or exceed the available bandwidth,
the bandwidth per core reduces, decreasing speedup. For inter-
node parallelism, increasing the parallelism degree from 1 to
2 yields a 2X service time speedup because the computation
time, which is dominant, is halved, while communication time
grows marginally; increasing from 2 to 4 results in super-linear
speedup due to caching effects, as the working set fits in the
L3 cache; increasing from 4 to 8 results in smaller speedup
increase as communication starts to dominate service time. For
service parallelism, parallelism degrees > 2 result in increased

Intra-node Parallelism

Inter-node Parallelism

Service Parallelism

= N
(S N e}

o = N W B~ U
wu

o

Service Time Speedup
Service Time Speedup
=
o

0123456738

Parallelism Degree

012345678

Parallelism Degree

Service Time Speedup
©ooo000000
—RhNwbPUONLOF

0123456738

Parallelism Degree

Fig. 3. Service time comparison under different parallelism techniques using ImageNet-22K. Each plot reports the speedup when increase the degree at only

one parallelism (fix the other two parallelisms).

service time due to memory interference among concurrently
serviced requests. These results are indicative of the impact
of different parallelism on service time. Speedups can vary
a lot, depending on many factors, including DNN size, the
ratio of computation and communication, cache size, memory
bandwidth.

o B N W A~ v

Service Time Speedup

0o 1 2 3 4 5 6 7 8
Intra-node Parallelism

Inter-node 4 —a—
Inter-node 8 —+—

Inter-node 1 —e—
Inter-node 2 —a—

Fig. 4. Relationship between inter-node and intra-node parallelism using
ImageNet-22K.

Figure 4 demonstrates the relationship between inter-node
and intra-node parallelism: the results indicate that the degree
of one parallelism technique can affect the behavior of another.
More precisely, intra-node parallelism speedup depends on the
degree of inter-node parallelism: speedup reduces with larger
inter-node parallelism. This is because communication time is
increasingly the dominant portion of service time with larger
degrees of inter-node parallelism, therefore the computation
time improvements of intra-node parallelism become less
important to overall service time.

In summary, since parallelism efficiency depends on various
factors relating to workload and hardware properties and since
one parallelism technique can affect the behavior of others, it
is difficult to accurately model service time. SERF circumvents
this by incorporating workload profiling to predict request
service time.

B. Homogenous requests

We observe that for a given parallelism degree tuple',
defined as (service parallelism degree, inter-node parallelism
degree, intra-node parallelism degree), the service times of

'Note that parallelism degree tuple is different from parallelism config-
uration. In parallelism degree tuple, each parallelism is set exactly to the
degree value while in parallelism configuration, max service parallelism is
an admission policy that defines the maximum allowed degree of service
parallelism.

DNN requests exhibit very little variance because the same
amount of computation and communication is performed for
each request. Thus, we refer to DNN requests as being ho-
mogenous. Figure 5 shows two examples corresponding to two
representative cases of parallelism degrees. The first example
as shown in the left plot of Figure 5 is with parallelism degree
tuple of (2, 1, 4), where the majority of requests are in the
range of 330ms to 340ms and the SCV (squared coefficient
of variation) is only 0.03. The second example as shown
in the right plot of Figure 5 is under parallelism (4, 4, 2),
where most requests are in the range of 130ms to 160ms
with the SCV of 0.09. The slightly larger variance can be
attributed to variations in the cross-machine communication
delays caused by inter-node parallelism. The magnitude of
these variations is consistent with what is normally expected
in computer communication systems while running a request
multiple times [31].

This unique property of homogeneous requests for DNN
workloads empowers lightweight profiling: the cost of mea-
suring the service time is low, i.e., for a given parallelism
degree tuple, running one or a few input requests is sufficient.
In comparison, many other online services have requests with
heterogeneous demands [32], [33] and require to execute many
more input samples to collect service time distributions.

Histogram of Service Times
Average: 336.91 ms, SCV: 0.03

1

Histogram of Service Times
Average: 148.34 ms, SCV: 0.09

1

CDH —— CDH ——

> 08 > 08

= =

el 0.6 s 06

3 0.4 3 04

2 ’ Q ’

o 0.2 a 02

0

Dy P 7y TaSy S'a 6§y Oy =
BB 5% %%

eI 0T Ta$y S0 6
5 BB BB %% %

00

Service Time (ms) Service Time (ms)

Fig. 5. CDH (Cumulative Data Histogram) of service times. The left plot is
with parallelism degree tuple (2, 1, 4) and the right plot is with (4, 4, 2).

C. Interference among concurrent requests

For small DNNs like CIFAR-10 (the left plot of Figure 6),
request service time remains almost constant when running
requests concurrently under different service parallelism de-
grees, because there is little interference among requests due
to cache/memory contention. The interference becomes more
obvious for large DNNs. The right plot in Figure 6 shows the
request service time of ImageNet-22K when running different
number of requests. It is clear that when running more than

2 requests concurrently, the interference becomes severe. To
explain performance interference, it is important to understand
the working set of DNN serving that comprises activations
and weights of the neural connections (the core operation is
a matrix-vector multiplication of the weight matrix and the
activation vector, see Eq. 1). Activations are derived from
request input, while weights represent the model parameters
and are shared by all requests. When there are no more than
2 concurrent requests, the working sets of both fit into the L3
cache. If more than three requests run concurrently, then the
footprint of activations increases and the aggregate working
set no longer fits in the L3 cache, resulting in more L3 cache
misses, thus prolonging the request service time. This is also
why large DNNs like ImageNet-22K are more likely to have
interference than small ones, such as CIFAR-10.

Interference makes modeling average service time and wait-
ing time for a given parallelism configuration much more
challenging. In particular, under the same parallelism con-
figuration, the number of running requests can vary from
0 to the maximum service parallelism of the configuration.
Therefore, the service time of a particular request depends
on the number of concurrent running requests at the moment
of its execution, and the average service time depends on
the probability distribution of the concurrency levels. The
waiting time estimation is even more complex. The existing
queueing and scheduling models [34] are no longer applicable
as they assume independence among requests: request service
time remains constant regardless of the number of concurrent
requests. This property of DNN motivates us to develop new
model and solution of SERF to accurately model the waiting
time and latency impact of interference.

CIFAR-10 ImageNet-22K

50
40
30
20 | e—gp—t—a—r—t—t
10
0

5000
4000
3000
2000
1000

0

Service Time (ms)
Service Time (ms)

012345678

Service Parallelism

012345678

Service Parallelism

Fig. 6. Service time comparison with different number of concurrent requests.

D. Load-dependent Behavior

In serving systems, load (request arrival rate) changes
dynamically over time. For a given parallel configuration, both
request service time and waiting time could change under
different loads. To illustrate the load-dependent behavior of
different parallelism approaches, we use 6 distinctive config-
urations and conduct experiments under different load levels,
see Table L.

The left plot in Figure 7 shows the service time of using
the 6 configurations under different loads, the middle plot in
Figure 7 shows their waiting time, and the right plot in Figure 7
shows their latency. The results demonstrate that for the same
configuration, service time, waiting time, and latency can vary

Config. | Service | Inter-node | Intra-node
Configl 1 1 8
Config2 2 1 4
Config3 4 1 2
Config4 1 4 8
Config5 2 4 4
Config6 4 4 2
TABLE I

PARALLEL CONFIGURATIONS.

under different loads. Therefore, the ability to estimate the
latency impact according to the load and a scheduler that
can change the parallel configurations based on load are two
necessary and important features.

IV. SERF: A FRAMEWORK FOR DNN SERVING

In this section, we present the scheduling framework SERF.
SERF applies a hybrid approach that integrates lightweight
profiling and a queueing-based prediction model to find best
parallel configurations for any given load (request arrival rate)
effectively and efficiently, achieving the benefits of both em-
pirical and analytical methods. We first discuss the scheduling
objective and give an overview of SERF (Section IV-A).
Then we answer the two important questions raised in the
Introduction: (1) What should be profiled for accuracy yet can
be profiled quickly (Section IV-B)? (2) How to model the rest
and predict request latency (Section IV-C)? Finally, we discuss
how to use the prediction results to dynamically change the
parallelism configurations online with varying loads (Section
IV-D).

A. Overview

Scheduling Objective. Common objectives for scheduling
interactive serving systems are (1) to minimize response
latency using a given amount of resources [33], [32] or
(2) to minimize resource consumption while meeting latency
SLO [35], [36]. Our scheduling framework supports both. Due
to the interest of space, we focus on the first objective of
minimizing response latency. We choose to optimize average
latency because DNN requests are homogenous and have
similar service time, reducing average latency also reduces
the tail latency.

Framework Overview. Figure 8 presents an overview
of SERF, which consists of three main modules: prediction
model, profiler, and scheduler. The modules are connected by
the configuration reference table, which maps different load
levels (represented by request arrival rate) to their correspond-
ing best parallel configurations. For example, at arrival rate of
2 requests/second, the best configuration is with a max service
parallelism 4, inter-node parallelism of 2, and intra-node
parallelism of 4. The profiler takes the system information
(e.g., the number of machines and cores, and workload) as
input and conducts lightweight profiling and feeds the profiling
results to the prediction model. The prediction model is the key
component of the framework. It utilizes the profiling results
to predict the latency of all combinations of parallelism under
different load levels and populates the configuration reference
table. This table only needs to be built once, provided that

m ’g le+06 le+06
E 100000 N
£ 1000 £ w

100000
P EEE/E/E 2 10000 E Configl —e—
E AbA——A————A = 1000 > 10000 Config2 —a—
Q = 100 < Config3 —8—
[[= == = | g 9 1000 Configd —+—
H 100 P ; B 10 . - Configs
a 2 1 100 ok Configh —»—

0 1 2 3 4 5 6 0 1 2 3 5 6 0o 1 2 3 4 5 6

Load (requests/sec/node)

Load (requests/sec/node)

Load (requests/sec/node)

Fig. 7. Service time, waiting time, and latency under different loads using different configurations for ImageNet-22K.

DNN workload characteristics and system hardware remain
the same. The scheduler uses the current system load as index
to search the configuration reference table, find and adapt to
the best parallel configurations.

System
Load

Prediction
Model

Scheduling

Scheduler -
Decisions

Load Optimal Configuration
(request/
second)

1 4 1 8
2 4 2 a4

System .
Information Profiler Service | Inter-node | Intra-node

Workload

Fig. 8. Overview of SERF.
B. Profiler

An easy but inefficient way to achieve the scheduling
objective is via exhaustive profiling: execute all possible
parallelism configurations for all possible loads and find the
best parallel configuration for each load. The shortcoming of
such exhaustive profiling is its high cost. Assuming that there
are P different configurations and there are L load levels,
one needs to conduct P x L profiling experiments. In addition,
measuring average latency requires a relatively long time span
(to measure enough samples) to achieve statistical stability
due to the stochastic queuing behaviors. Experimenting with
lighter load levels requires even longer time for profiling
because the large idle intervals between requests increase
the duration of the experiment. Let T be the average cost
to achieve statistical stability in profiling, which makes the
overall cost of exhaustive profiling P x L x T.

SERF conducts lightweight profiling by measuring the re-
quest service time for each parallelism degree tuple of (service
parallelism degree, inter-node parallelism degree, intra-node
parallelism degree). For example, with the tuple (2, 4, 3),
we measure the request service time by running two requests
concurrently, each request across 4 server nodes and with 3
cores on each server node. Let E denote the cost of profiling
request service time for a given parallelism degree tuple,
the total profiling cost of SERF is P x E, where P is the
total number of parallelism degree combinations. The profiling
of SERF has two key differences compared to exhaustive
profiling, resulting in significantly lower profiling cost: (1)
SERF measures the request service time instead of latency, and
(2) SERF measures each parallelism degree tuple instead of
each parallel configuration. Benefit of these profiling choices
is two-fold: (1) the service time under a given parallelism
degree tuple is independent of load, saving a multiplicative

cost factor along the load dimension L. (2) As requests have
deterministic service time under the same parallelism degree
tuple and profiling the service time is independent of the
queueing delays, a few profiling samples are sufficient, i.e., the
value of E is small. In contrast, exhaustive profiling measures
latency for each parallelism configuration, which requires run-
ning many samples to achieve statistical stability for queuing
delays, i.e., T is much more costly than E, by up to 3
orders of magnitude. Therefore, SERF profiling is much more
efficient than exhaustive profiling, and PXE < Px LxT. We
feed these profiling results to the prediction model of SERF
to estimate the latency under different load levels, which is
introduced next.

C. Queueing-based Prediction Model

We develop a queueing model that takes profiling results
as input and predicts request latency under different load and
parallelism configurations. The key challenge and novelty of
the model is its interference-awareness, effectively quantifying
the latency impact of request interference due to cache and
memory contention.

1) Problem Formulation: We define the problem as predict-
ing DNN request latency for any given parallel configuration
under any given load. We denote parallelism configuration
with (maximum service parallelism Csepyice, inter-node paral-
lelism Ciyer, and intra-node parallelism Ciyrq). The inputs of
the model are:

e Load in terms of inter-arrival rate: A, here we assume
Poisson arrivals for a short period, i.e., exponential inter-
arrival times with mean rate A, which is typical for online
services [37], [38]. Such assumption does not contradict
the bursty and long-range dependence characteristics in
the literature [39]. SERF continuously monitors the in-
coming workload and periodically updates its observed
load (arrival rate).

o Profiling results: u; (i = l...c) represents the average
service rate when i requests are running concurrently, i.e.,
the average service rate of the parallelism degree tuple
(i, Cintera Cintra) .

The output of the model is the average latency for the
parallelism configuration under any given load.

We model DNN serving as an interference-aware deter-
ministic service process and formulate the problem as a
M /D,-nterf/c queue. Here, M represents exponential inter-
arrival times. Djyrs represents two distinctive properties of
DNN workload: (1) Deterministic service times, modeling
homogeneous requests that exhibit little service time variance

for any given parallelism degree tuple (as shown in Section
III-B). (2) Interference-awareness, modeling the interference
among requests due to cache and memory contention (as
shown in Section III-C). ¢ stands for the maximum service
parallelism, equal to Cseppice-

2) Technical Challenges and Key Ideas: The M /Diyerf/c
queue does not have a closed-form solution. In fact, even for
the simpler problems: the interference-oblivious M/D/c queue
that assumes deterministic service time without any interfer-
ence among concurrent running requests, or interference-aware
M /Myserr/c queue that assume exponential distributed service
times with interference among concurrent running requests,
there is no closed-form solution. Intuitively, one may want to
use M/Minerf/c queue, M/D/c queue, or M/M/c queue to
approximate the M/Djyerf/c queue, but such approximation
has the potential of achieving bad accuracy. To illustrate why
these simpler approaches can not model DNN workload, we
implement these approximation methods and conduct experi-
ments using ImageNet-22K. We compare the latency results
of best configurations under different loads between testbed
measurements and prediction results from M /M,-me,f /c queue,
M/D/c queue, and M/M/c queue in Figure 9. The results
clearly shows that the prediction from these approaches is
poor. This large discrepancy shows the importance of incorpo-
rating interference and deterministic service times into SERF
prediction model and solution.

Our solution is inspired by Cosmetatos’ approximation [40]
that estimates M/D/c model using the M/M/c model with
adjustment and correction, where M /M /c model is a standard
multi-server queue model with Poisson arrival and exponential
service time. We extend the approximation approach to the
interference-aware case and solve M/Djyerf/c queue in two
steps. (1) Solve M /Minserf/c queue that has interference-aware
exponential service time. (2) Utilize the approximation method
proposed in Cosmetatos’ approximation to adjust the results of
M /Minsery /¢ queue to approximate the M/Dijyserr/c queue. We
estimate the waiting time and service time separately. Latency
is estimated as the sum of these two measures.

1500
1000
500
04
0.18 0.23 045 0.72 090 092 095 1
Normalized load (arrival intensity)

5500
5000 Measurement —e— \
4500 M/M;terf/C-Prediction —a—

% 4000 M/D/c-Prediction —=—

£ 3500 M/M/c-Prediction —+—

> 3000

2 2500

3 2000

]

]

Fig. 9. Latency comparison of best configurations between measurement and
standard prediction under different load.

3) Solving M /Djerr/c queue: Waiting time estimation.
We follow the two steps described in Section IV-C2 to solve
for the waiting time.

(1) Solving M /Miyerr/c queue. Recall that u; (i =1...c) is
provided by profiling and represents the average service rate

when i requests are concurrently running, p; is the probability
of i requests in the system. Let p; = % and p = p” = o
Based on the state transition diagram shown in Flgure 10 and

global balance equations, we obtain:

H pi 0)
<n<c-—
Pn = PO (==))

71 ([Ilp[
%-po (n>c),

where p, is the steady-state probability of state n, which
represents n requests in the system (sum of requests in the
queue and in service). po represents the probability that the
system is idle, i.e., no request is in the system. Since all
probabilities sum to 1:

1HPz HPz o0
Zl’k*PO 1+Z xR
. k=c 3)
(—all le
17):1.
-(1-p)

@C@C@C CC@C

M1 212 3us (c-1)per e CHec

Fig. 10. State transition diagram for the M/Mjyers/c queue. Each state
represents the number of requests in the node.

HP;
C,()then

k
c=1 Il pi
Let H=1+ Y S+
k=1

po=H". “)

Assume that L,(A) is the average number of requests
waiting in the queue, by definition we have:

Ly(A) =} (k—c)-p ®)

k=c

together with Eq. 2, we have:

po- l:[1 Pi o
L2) = — Y (k—c)-p*
L (6)
_ Po-ig1 pi o
k. (1-p)*

Using Little’s law [41], the waiting time in the queue can be
computed as:

Ly(A) _ po- I P o
P Lol (—py’

W‘;W/Mimerf/c(l) —

(2). Approximating M /Diysers/c using M /Miyserf/c. Cos-
metatos’ approximation proposed in [40] states that the waiting
time in the queue can be approximated as:

c 1 c
WPl s (14 £(5) () -y M ®)
where . e
= TV TR, o
1-p
- , 10
g(p) o (10)

p= %, A is the average arrival rate, and u is the average

service rate. This approximation can be adjusted for the
interference-aware case: we use the M /Mimerf /¢ queue with
the same correction terms as f(s) and g(p) as above to
approximate the M/Djyers/c queue as follows (using Eq. 7
and Eq. 8):

C
Po- AIJ] pi

. C 1 :
W Pwes 1€ (2 SU+5(s)-8(0) — (1=p)?

1)

Service time estimation. Although service time under the
same parallelism degree tuple is deterministic and can be
profiled, the service time under a given parallel configuration
could change with load and needs to be predicted. This is
because of the random requests arrival process and interfer-
ence, e.g., at different moments, the system may have different
number of concurrent running requests (ranging from O to
the defined maximum service parallelism), which results in
different interference and therefore different service times. We
use the PASTA (Poisson Arrivals See Time Averages) prop-
erty [42] to compute the average service time SM/Piners/¢())
under arrival rate A as follows:

1 1 1
SM/Dinerf /()Y = — . po+ — - p 4+ — - pr ...
(4) IR

1 1 &
+—pet+—- Y pi

He He = (12)
Pi-1 'Hlpi
— Lo +l:4.
,-; Wi He-c!-(1—p)

Latency estimation. The average latency WM/Piners/
equals to the average time spent in waiting in queue

Wéw /Pinters /¢ plus the average time spent in execution
SM/Dim‘erf/C:
/it o Pit ="
WM /Dinters C(l)%ZL+F7
L el (1=
S et (1=p) (13)
s ston = e
2 A-ct (1-p)?

In the above formula, recall that u; is an input from
profiling, A is affected by inter-node parallelism Cjyr as it
defines how many machines to serve each request, ¢ equals
to the maximum allowed service parallelism Cgepyice, and the
intra-node parallelism is restricted by F/c, where F is the

number of cores in a node. Therefore, for a given system and
workload, latency can be computed under different combina-
tions of service parallelism, inter-node parallelism, and intra-
node parallelism. Eq. 13 is used to populate the configuration
reference table that is the core of SERF.

The above solution is derived for a single serving unit (with
Cinter number of machines). For a cluster, the cluster can be
divided into serving units based on the inter-node parallelism
Cinter» €-8., for a cluster with N machines, there are N/Ciyer
units and each unit has an arrival rate of A = N/}”gl_’im, where
Aair is the request arrival rate at the cluster.

D. Scheduler

The scheduler takes the current system load as input,
searches the configuration reference table, finds and adapts to
the best parallelism configuration. To enable quick configura-
tion switching, the entire DNN model is pre-installed on each
server, and each input is sent to the server with a mapping of
servers to input partitions. This informs the server of which
partition of the DNN model to use to process the input, and
which servers to communicate with for cross-machine neural
connections.

To sum up, we explore two distinctive properties of DNN
workload — homogeneous requests with interference — to
develop SERF. SERF combines lightweight profiling with an
interference-aware queueing model to predict DNN serving
latency. It finds the best parallel configuration for any given
load and then deploys a dynamic scheduler to adapt to varying
loads online nearly instantly.

V. EXPERIMENTAL EVALUATION

We present experimental results demonstrating how SERF
improves DNN serving performance with respect to minimiz-
ing response latency. Specifically, we evaluate the following
properties of SERF: (i) accuracy of the latency prediction
model, (ii) correct identification of best parallel configuration
under different loads, (iii) adaptability to load dynamism
compared to a static configuration, and (iv) efficient best
configuration search compared to exhaustive profiling.

A. Experimental Setup

System Overview: We prototyped SERF based on the
Adam distributed DNN system [3], which supports service
parallelism through admission control, intra-node parallelism
using OpenMP [29], and inter-node parallelism by partitioning
the model across different machines. In order to quickly
switch the configurations, the entire model parameter is pre-
installed on each server, and each input is augmented to the
server with a mapping of servers to input partitions. As most
distributed DNN serving platforms support part or all of these
parallelisms, SERF can be used in other systems as well.

Workload: We evaluate SERF using 3 popular image
recognition tasks of varying complexity with Poisson request
arrivals:

o CIFAR-10 [2]: classifies 32x32 color images into 10 cat-

egories. The DNN is moderately-sized, containing about

Prediction Error Distribution - CIFAR-10
Average Prediction Error: 3.16%

Prediction Error Distribution - ImageNet-1K
Average Prediction Error: 2.86%

Prediction Error Distribution - ImageNet-22K
Average Prediction Error: 2.39%

Probablity
00000000
OFRNWAUION00 WO
Probablity
000000000
ORrNWRAUIONO WO

CDF ——

DDH —s—

Probablity
00000000
OFRNWRUIOONO WO

0 2 4 6 8 10 12 14 16 18 20
Prediction Error (%)

0 2 4 6 8 10 12 14 16 18 20
Prediction Error (%)

o

2 4 6 8 10 12 14 16 18
Prediction Error (%)

Fig. 11. CDF (Cumulative Distribution Function) and DDH (Data Density Histogram) of prediction errors for different workloads.

28.5 million connections in 5 layers: 2 convolutional
layers with pooling, 2 fully connected layers, and a 10-
way output layer.

o ImageNet-1K [23]: classifies 256x256 color images into
1,000 categories. The DNN is moderately large, contain-
ing about 60 million connections in 8 layers: 5 convolu-
tional layers with pooling, 3 fully connected layers, and
a 1,000-way output layer [2].

o ImageNet-22K [23]: the largest ImageNet task, which is
to classify 256x256 color images into 22,000 categories.
This DNN is extremely large, containing over 2 billion
connections in 8 layers: 5 convolutional layers with
pooling, 3 fully connected layers, and a 22,000-way
output layer [3].

Hardware Environment: Experiments are run on a com-
puting cluster of 20 identically configured commodity ma-
chines, communicating over Ethernet through a single 10Gbps
(bidirectional) NIC. Each machine is dual-socket, with an Intel
Xeon E5-2450 processor of 8 cores running at 2.1GHz on each
socket. Each machine has 64 GB of memory and a 268.8
GFLOP/s SIMD FPU.

B. Accuracy of Latency Prediction Model

This section evaluates the accuracy of the latency prediction
model, based on Eq. 13, by comparing predicted values to
measured values. Figure 11 shows for each workload the
average and distribution of prediction errors for all relevant
prediction cases. A relevant prediction case is a combination
of a parallel configuration that has performance impact for a
workload and a load level. For example, CIFAR-10 has 20
parallel configurations because inter-node parallelism degrees
> 1 do not make sense for its small size. The larger ImageNet-
1K and ImageNet-22K have 40 and 80 parallel configurations
because inter-node parallelism degrees of up to 2 and 4 are
relevant, respectively. For each benchmark we consider 10
load levels evenly spread across low load to high load, so
that there are 200, 400, and 800 relevant prediction cases
for CIFAR-10, ImageNet-1K, and ImageNet-22K, respectively.
The results show that the prediction is accurate and the errors
are insignificant: the average error is 2-4%, the 90th percentile
is < 10%, and the 95th percentile is < 12%.

C. Identifying Best Configurations

We use our prediction model to identify the best configu-
ration under different load levels and then compare with the

CIFAR-10, inter-node parallelism 1
35 e
30
25
20

15 2.4)
(18) (24) .
(18)
10 N

42 42

Latency (ms)

5
0.07 0.15 025 0.38 050 0.60 0.75 1

Normalized load (arrival intensity)
Measurement —e— Prediction ——

ImageNet-22K, inter-node parallelism 1

3500
3000
2500
2000
1500 e
1000 ,
500y (e (o) %2
u

Latency (ms)

0.18 0.23 045 0.72 090 0.92 0.95 1
Normalized load (arrival intensity)

Measurement —e— Prediction —s—

Fig. 12. Best configurations and according latency under different loads.

testbed measurement ground truth. The experimental results
show that SERF always correctly identifies the best configu-
ration. The top plot in Figure 12 depicts the best configuration
and according latency of serving CIFAR-10 workload under
different load levels. It is clear when the load increases, the
latency of best configuration also increases due to queuing
effects. Moreover, we observe the following:

o When load is low, intra-node parallelism is useful since
the service time is the dominant factor in latency. Intra-
node parallelism helps reduce service times and therefore
achieves better overall latency.

e When load is high, since the interference caused by
service parallelism is low, service parallelism is required
because the waiting time becomes the dominant factor
and it reduces waiting time more efficiently by allowing
more requests to run in parallel.

For large DNNs like ImageNet-22K, the observation is inter-
esting and counter-intuitive, see the bottom plot in Figure 12.
Different from CIFAR-10, even under high loads, the best
parallel configuration is still with service parallelism of only
2. Intuitively, when the load is high, admitting more requests
into the system could yield better performance and the maxi-

Benchmark Method # of configs | # of load levels | # of profile exp to run | Each profile time (min) | Total time (min)
ImageNet-22K | Exhaustive 80 10 800 34.50 27600
SERF 80 0 80 0.07 5.52
ImageNet-1K | Exhaustive 40 10 400 10.83 4332
SERF 40 0 40 0.02 0.87
CIFAR-10 Exhaustive 20 10 200 0.36 72
SERF 20 0 20 7.19x107% 1.44 <1072

TABLE I

COST COMPARISON BETWEEN EXHAUSTIVE PROFILING AND SERF FOR DIFFERENT BENCHMARKS.

mum service parallelism should be best. This counter-intuitive
result is a consequence of the high interference. When the
interference among requests is high, service parallelism may
result in significantly increased service time, which exceeds
the waiting time benefit brought by allowing more requests
running in parallel, causing higher latency.

D. Benefits over Exhaustive Profiling

We evaluate SERF here against exhaustive profiling for
identifying the best parallel configurations under different
load levels. The experimental results verified both SERF
and exhaustive profiling always correctly identifies the best
configuration. However, the cost of SERF is significantly lower
than exhaustive profiling. Assume that the system has 80
different parallel configurations and the performance reference
table has 10 entries (e.g., 10 different load levels). SERF
requires only 80 quick profiling experiments while exhaustive
profiling requires 800 expensive profiling experiments to build
the performance reference table. The time for each profil-
ing experiment and the total time to build the performance
reference table is shown in Table II. Note SERF requires
much less time for each profiling experiment because it only
samples the service time and the service time is deterministic
without load impact (i.e., sample the service time of only 10
requests) while each exhaustive profiling experiment needs to
measure the average latency, which needs many samples to
achieve statical stability (e.g., when measuring latency less
than 5000 sample requests, the results become very unstable).
The results suggest that the time cost of SERF is more than
3 orders of magnitudes lower than exhaustive profiling, and
the time savings grows with the size of the DNN workload
and the number of performance reference table entries. Even
if compared to lightweight profiling, e.g., only do profiling
under high load, the cost of SERF is still more than 2 orders
of magnitudes lower.

E. Benefits over Static Configuration

Request arrival rate and system load changes dynamically
for online services [38]. In this section, we demonstrate how
SERF outperforms fixed configurations by adapting to load
changes. We use three baseline cases for comparison. Fixed-
low is a best configuration in low load and Fixed-mod is a
best configuration in moderate load. Fixed-other is another
configuration that performs better than Fixed-low in moderate
loads and better than Fix-mod in low loads. We compare the
performance of SERF and these baseline cases in a dynamic
user environment with load changes from moderate to low and
then back to moderate, see Figure 13. The y-axis is the latency

measured in ms, the x-axis represents the experiment’s elapsed
time. Fixed-low and Fixed-mod perform well under the loads
that they are optimized for, but perform poorly when load
changes. Fixed-other achieves more stable performance, but
not best under any load levels. SERF outperforms all these
baseline scheduling methods and consistently adapts to the
load change to achieve lowest latency. This experiment vali-
dates the need for adaptivity of SERF in a dynamic workload
environment, where, for example, a best configuration for high
loads could be sub-optimal for low loads. In addition, the
profiling cost of these fixed configurations is more than 2
orders of magnitude higher than SERF, e.g., for ImageNet-
22K, it takes nearly 2 days to identify Fixed-low or Fixed-
mod configuration by profiling, and it takes even longer for
Fix-other as profiling needs to be done for multiple loads. In
comparison, SERF only takes a few minutes for identifying
the best parallel configurations under various loads.

ImageNet-22K

Latency (ms)

Fixed-other —+—
SERF —x—

Fixed-low —e—
Fixed-mod —a—

Fig. 13. Latency comparison under dynamic load environment for different
scheduling approaches.

F. Discussion

Scalability. When SERF works in large systems, the number
of profiling experiments scales linearly with the total number
of parallelism combinations. Because each profiling takes
less than a few seconds, even for large systems running
large and scalable applications with thousands of parallelism
combinations, the profiling takes no more than a few hours.
This profiling time can be further reduced to a few minutes if
profiling experiments are conducted in parallel or in coarser
granularity. In addition, the computation of the queueing
model is efficient, i.e., constant with respect to the cluster
size. Therefore, SERF is scalable to schedule large systems.

Generalization to other workloads. SERF also has a
potential to be used in other applications because SERF is
developed based on two abstracted properties: homogeneous

Prediction Error Distribution: Web-search Ranking
Average Prediction Error: 1.07%

CDF ——
DDH —e—

Probablity
©o0o0o00000
OHENWRUIONOWOR

o

1 2 3 4 5 6 7 8 9
Prediction Error (%)

Fig. 14. CDF and DDH of prediction errors.

request service demand and interference among requests run-
ning concurrently. Applications with similar properties can
also benefit from our approach. We use web-search rank-
ing [43] as an example for evaluation as it represents a
typical supervised machine learning problem. We instrument
the implementation in [43] to make it a parallel version to
simulate a serving system. We run extensive experiments with
various load levels using different paralellism configurations.
We show the average and distribution of the prediction errors
in Figure 14. The results show SERF is quite accurate as the
average error is only 1.07%, the 90th percentile is < 3%,
and the 95th percentile is < 5%. The experimental results
also show that SERF always identifies the best configuration
correctly. In the interest of space, we omit detailed discussion
here.

VI. RELATED WORK

DNN Serving. The state-of-the-art accuracy of DNNs on
important artificial intelligence tasks, such as image recog-
nition [1], [2], [3], speech recognition [9], [10], and text
processing [11] has made the end-to-end latency of large-scale
DNN serving systems an important research topic. Parallelism
has being shown to be critical for good DNN performance at
scale. Prior work [1], [3] has shown that parallel training on a
cluster of commodity CPU machines achieves high throughput
thus can train big DNN models (billions of connections) in a
reasonable amount of time (days instead of months). Although
these training platforms focus on improving system through-
put instead of request latency, the parallelism mechanisms
proposed there are directly translated to serving platforms
as inter-node, intra-node and service parallelisms. Several
recent work on DNN serving investigate hardware acceleration
using GPUs [44], FPGAs [45], and ASICs [28]. They focus
on mapping DNN computation to customized hardware, but
parallelism has also been shown critical to offer low latency.
All these prior studies develop DNN serving platforms that
support all or a subset of the parallelism mechanisms exploited
in our paper. However, none of them investigates scheduling
frameworks that make parallelism configuration choices based
on DNN characteristics, hardware characteristics, and system
load, which is the focus of SERF. SERF is complementary
to the above work and can be used as a scheduling frame-
work for these serving platforms to identify best parallelism
configurations and maximize their parallelism benefits.

Interactive Serving. There is a host of research in par-
allelizing request processing to reduce response latency, and

request scheduling in a multiprocessor environment to reduce
average latency. There has been a lot of work on measuring
and mitigating interference among co-located workloads [46],
[47]. The main theme is to predict performance interfer-
ence among workloads and discover optimal workload co-
locations to improve system utilization while meeting user
performance goals. These studies treat each workload as a
blackbox, and they do not consider solutions that involve
modifying the workload (e.g., changing parallelism degree).
Adaptive parallelism for interactive server systems uses intra-
node and service parallelism to reduce request latency. Ra-
man et al. propose an API and runtime system for dynamic
parallelism [33], where developers express parallelism options
and goals, such as minimizing mean response time. Jeon
et al. [32] propose a dynamic parallelization algorithm to
decide the degree of request parallelism in order to reduce the
average response time of Web search queries. Both approaches
assume independent service time among requests, thus they do
not consider interference among concurrent running requests,
which is a key property of DNN workload supported by SERF.
Another line of work [48] proposes to use parallelism to
reduce tail latency. DNN requests, however, are homogeneous
with similar service time, making these techniques ineffective.
Finding best parallel configurations has also been studied
on other applications and systems, such as database, data
analytics, MapReduce [49], [50], [51]. However, none of
these prior work leverages the distinctive properties of DNN
workloads to exploit request homogeneity and interference
awareness as SERF does.

Queueing Models. Here we outline some results that are
related to the M/D/c queue abstraction used in our work. While
the solution of the M/M/c system is exact [52], there are no
exact solutions for M/D/c systems. We note the existence of
the Allen-Cunnen approximation formula for GI/G/c [41] and
Kimura’s approximation [53], both of which can also apply
to M/D/c since M is a special case of GI. Alternatively,
an M/D/c system can be approximated using an n-stage
Erlang for the service process, essentially by approximating
the system using a M/Ph/1 queue. While the M/Ph/1 queue
can be solved using the matrix-geometric method [54], the
M/Ph/c suffers from the well known problem of state space
explosion. We direct the interested reader to [34] for an
overview of various results on the M/D/c queue that have been
developed since the early 1930s. However, none of the above
approximation methods for M/D/c systems can be easily
adapted to estimate latency of M /D,-,,,erf /c systems. Here we
extend the approximation by Cosmetatos to achieve this goal.

VII. CONCLUSIONS

We presented SERF, a scheduling framework for DNN
serving systems, which combines lightweight profiling with
an interference-aware queueing-based prediction model. SERF
efficiently identifies best parallel configurations to minimize
average request latency and it dynamically adapts to varying
loads almost instantly.

VIII. ACKNOWLEDGMENTS

This work is supported by NSF grant CCF-1218758.

[1]

[8

[

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]

[22]

[23]

[24]

REFERENCES

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. W. Senior, P. A. Tucker, K. Yang, and A. Y. Ng,
“Large scale distributed deep networks.” in NIPS, 2012.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

T. Chilimbi, J. Apacible, K. Kalyanaraman, and Y. Suzue, “Project adam:
Building an efficient and scalable deep learning training system,” in
OSDI, 2014.

J. Mao, W. Xu, Y. Yang, J. Wang, and A. L. Yuille, “Explain images
with multimodal recurrent neural networks,” CoRR, 2014.

H. Fang, S. Gupta, F. N. Iandola, R. Srivastava, L. Deng, P. Dolldr,
J. Gao, X. He, M. Mitchell, J. C. Platt, C. L. Zitnick, and G. Zweig,
“From captions to visual concepts and back,” in CVPR, 2015.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in CVPR, 2014.

J. Y. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga,
and G. Toderici, “Beyond Short Snippets: Deep Networks for Video
Classification,” in CVPR, 2015.

S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. J. Mooney, and
K. Saenko, “Translating videos to natural language using deep recurrent
neural networks,” in NAACL HLT, 2015.

G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
TASLP, 2012.

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., “Deep-
Speech: Scaling up end-to-end speech recognition,” arXiv preprint
arXiv:1412.5567, 2014.

D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep
big simple neural nets excel on handwritten digit recognition,” CoRR,
2010.

D. Talbot, “How Microsoft
and Google Now,”
microsoft-cortana-unique-features,26506.html,
20.

R. Mcmillan, “How Skype used AI to build its amazing
new language translator,” http://www.wired.com/2014/12/
skype-used-ai-build-amazing-new-language-translator/, accessed:
2015-11-20.

C. Rosenberg, “Improving photo search: A step across the
semantic gap,” http://googleresearch.blogspot.com/2013/06/
improving-photo-search-step-across.html, accessed: 2015-11-20.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “A pic-
ture is worth a thousand (coherent) words: building a natural
description of images,” http://googleresearch.blogspot.com/2014/11/
a-picture-is-worth-thousand-coherent.html, accessed: 2015-11-20.

B. Ramsundar, S. Kearnes, P. Riley, D. Webster, D. Konerding, and
V. Pande, “Massively Multitask Networks for Drug Discovery,” arXiv
preprint arXiv:1502.02072, 2015.

F. Nelson, “Nvidia demos a car computer trained with deep learning”,”
http://www.technologyreview.com/news/533936/, accessed: 2015-11-20.
Microsoft, “Microsoft azure machine learning,” http://azure.microsoft.
com/en-us/services/machine-learning/, accessed: 2015-11-20.

Amazon, “Amazon machine learning,” https://aws.amazon.com/
machine-learning/, accessed: 2015-11-20.

T. Hoff, “Latency is everywhere and it costs you sales—how to crush it,”
HS, 2009.

N. Bhatti, A. Bouch, and A. Kuchinsky, “Integrating user-perceived
quality into web server design,” CN, 2000.

Cortana improves upon Siri
http://www.tomshardware.com/news/
accessed: 2015-11-

Microsoft, “Publish an azure machine learning web service,”
https://azure.microsoft.com/en-us/documentation/articles/
machine-learning- publish-a-machine-learning-web-service/, accessed:

2015-11-20.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR, 2009.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[25]

[26]
(27]

(28]

[29]

[30]
[31]

[32]
(33]

[34]
[35]

[36]

[37]
[38]
[391
[40]
[41]
[42]
[43]

[44]

[45]

[46]

[471

[48]

[49]

[501

(511

[52]
(53]

[54]

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, 1. J. Goodfellow,
A. Bergeron, N. Bouchard, and Y. Bengio, “Theano: new features and
speed improvements,” DLUFL, 2012.

R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in BigLearn, 2011.

L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in COMPSTAT, 2010.

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun et al., “Dadiannao: A machine-learning supercomputer,”
in MICRO, 2014.

L. Dagum and R. Menon, “OpenMP: an industry standard API for
shared-memory programming,” CSE, 1998.

C. Pheatt, “Intel® threading building blocks,” CCSC, 2008.

C. Demichelis and P. Chimento, “IP packet delay variation metric for
IP performance metrics (IPPM),” 2002.

M. Jeon, Y. He, S. Elnikety, A. L. Cox, and S. Rixner, “Adaptive
parallelism for web search,” in EuroSys, 2013.

A. Raman, H. Kim, T. Oh, J. W. Lee, and D. I. August, “Parallelism
orchestration using DoPE: the degree of parallelism executive,” in PLDI,
2011.

H. Tijms, “New and old results for the M/D/c queue,” JEC, 2006.

C. Mega, T. Waizenegger, D. Lebutsch, S. Schleipen, and J. Barney,
“Dynamic cloud service topology adaption for minimizing resources
while meeting performance goals,” IBM Journal of R & D, 2014.

Z. Zhang, L. Cherkasova, and B. T. Loo, “Optimizing cost and perfor-
mance trade-offs for mapreduce job processing in the cloud,” in NOMS,
2014.

J. Cao, W. S. Cleveland, D. Lin, and D. X. Sun, “On the nonstationarity
of internet traffic,” in SIGMETRICS, 2001.

M. F. Arlitt and C. L. Williamson, “Internet web servers: Workload
characterization and performance implications,” ToN, 1997.

T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido, “A nonstationary
poisson view of internet traffic,” in INFOCOM, 2004.

G. P. Cosmetatos, “Approximate explicit formulae for the average
queueing time in the processes (M/D/r) and (D/M/r),” Infor, 1975.

L. A. Baxter, “Probability, statistics, and queueing theory with computer
sciences applications,” Technometrics, 1992.

R. W. Wolff, “Poisson arrivals see time averages,” Operations Research,
1982.

A. Mohan, Z. Chen, and K. Q. Weinberger, “Web-search ranking with
initialized gradient boosted regression trees,” JMLR, 2011.

J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge,
R. G. Dreslinski, J. Mars, and L. Tang, “DjiNN and Tonic: DNN as a
service and its implications for future warehouse scale computers,” in
ISCA, 2015.

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in FPGA, 2015.

J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Souffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via sensible
co-locations,” in ISCA, 2011.

R. Kettimuthu, G. Vardoyan, G. Agrawal, P. Sadayappan, and I. T. Foster,
“An elegant sufficiency: load-aware differentiated scheduling of data
transfers,” in SC, 2015.

M. E. Haque, Y. H. Eom, Y. He, S. Elnikety, R. Bianchini, and
K. S. McKinley, “Few-to-many: Incremental parallelism for reducing
tail latency in interactive services,” in ASPLOS, 2015.

X. Liu and B. Wu, “Scaanalyzer: a tool to identify memory scalability
bottlenecks in parallel programs,” in SC, 2015.

R. Susukita, H. Ando, M. Aoyagi, H. Honda, Y. Inadomi, K. Inoue,
S. Ishizuki, Y. Kimura, H. Komatsu, M. Kurokawa, K. Murakami,
H. Shibamura, S. Yamamura, and Y. Yu, “Performance prediction of
large-scale parallell system and application using macro-level simula-
tion,” in SC, 2008.

M. Sarwat, S. Elnikety, Y. He, and M. FE. Mokbel, “Horton+: a distributed
system for processing declarative reachability queries over partitioned
graphs,” VLDB, 2013.

L. M. Leemis and S. K. Park, Discrete-event simulation: A first course,
2006.

T. Kimura, “Approximating the mean waiting time in the GI/G/s queue,”
JORS, 1991.

M. E. Neuts, Matrix-geometric solutions in stochastic models: an algo-
rithmic approach. Courier Corporation, 1981.

