
GetMobile January 2015 | Volume 19, Issue 134

With users increasingly dependent on their phones, tablets, and wearables,
the mobile app ecosystem is more important today than ever before. Creating
and distributing apps has never been more accessible. Even single developers
can now reach global audiences. But mobile apps must cope with extremely
varied and dynamic operating conditions due to factors like diverse device
characteristics, wireless network heterogeneity, and varied user behavior.
App developers and operators of app marketplaces both lack testing tools
that can effectively account for such diversity and, as a result, app failures
and performance bugs (like excessive energy consumption) are commonly
found today. To address this challenge to mobile app development, we have
developed key techniques for scalable automated mobile app testing within
two prototype services — VanarSena and Caiipa. In this paper, we describe
our vision for SMASH, a unified cloud-based mobile app testing service that
combines the strengths of both previous systems to tackle the complexities
presently faced by testers of mobile apps.

hoW to
the next bILLIon
mobILe App bUgs?

[past➔Future]

Ill
us

tr
at

io
n,

 (t
hi

s
pa

ge
) b

ig
st

oc
kp

ho
to

.c
om

35January 2015 | Volume 19, Issue 1 GetMobile

ranveer chandra, börje f. Karlsson, nicholas D. Lane, chieh-Jan mike Liang,
suman nath, Jitu padhye, Lenin ravindranath and feng Zhao Microsoft Research

[past➔Future]

for the majority of users worldwide,
computing has evolved to be largely
defined by their mobile devices and

the apps that run on them, which are
distributed through app stores that are
fiercely competitive [11]. An app that
performs slowly or crashes frequently may
easily fade into obscurity as unforgiving
users are increasingly annoyed or switch
to alternatives. Even brand-name apps
for which there are no alternatives risk
tarnishing their reputations through
a poor user experience. To avoid such
consequences, app developers need to make
sure that their apps run smoothly not just
in their development environment, but also
in the hands of real users. Similarly, app
marketplace operators must make sure apps
they distribute meet certain standards of
performance and quality.

However, ensuring this is extremely
challenging [1]. Unlike traditional
applications, mobile apps are often used
in a variety of locations, over different
wireless networks, with a wide range of
input data from user interactions and
sensors, and on a variety of hardware
platforms. For example, wireless network
speed and latency can fluctuate 100-fold
at different locations across the world [7];
and mobile devices themselves differ by
screen size, CPU speed, available memory
and operating system version [8]. An app
running smoothly during development
with a good wireless network and on a
powerful device may run very slowly
or crash when a user runs it in other
environments. Coping with all of these
issues can be particularly challenging for
individual developers or small teams [12].

Existing testing tools available during
the development process — for example,
those that perform static or conventional-
forms of dynamic analysis [2,3,6] — are

not well suited to this challenge. The
principle failure of existing techniques is
their restricted ability to test app behaviour
under complex real-world conditions.
Recent testing tools that exercise a mobile
app by simulating user interaction do
so while also simulating a small number
of generic contexts, such as, 3G or Wi-
Fi network connections. However, such
tools support only a small fraction of the
conditions encountered in the real world
and do not attempt to represent complex
environments in which multiple conditions
(type of user, network, location, device
state) can cause unexpected negative app
side effects (excessive energy consumption,
app stalls, crashes). As a result, app
developers and distributors rely heavily
on post-facto analysis of telemetry data
collected from already deployed mobile
apps1. Although this approach exposes apps
to real-world conditions and developers get
a chance to fix bugs, it is often too late—
users have already used the buggy apps and
posted poor reviews.

To address these challenges, we have
recently developed two systems, Caiipa [4]
and VanarSena [9], which allow developers
to automatically test their apps under a
variety of conditions. Both tools have their
strengths and weaknesses, and the vision
for this paper is to describe how they can
be combined into a unified system to fulfill
developer needs. We refer to this single
system as SMASH: Scalable Mobile App
Software Hardening.

SMASH consists of a configurable
environment into which apps can be
installed and within which their function-
ality explored. During exploration, the app
can be systematically exposed to a variety
of environments and system events. For
example, a music streaming app might be
repeatedly exercised through common user
operations (playing music) while facing a
broad variety of network conditions (a 3G
to Wi-Fi network hand off) and common

network faults (HTTP protocol errors).
During tests, both the app and general
system behavior can be closely monitored
for problems ranging from the obvious,
such as app crashes, to subtle memory leaks
or excessive energy consumption. A key
enabler for this approach is the use of cloud
infrastructure allowing the number of hosting
environments to be scaled up as required,
based on the number of relevant tests or
completion time constraints. However,
support for app execution on real hardware is
also provided to cover specific scenarios and
to provide performance baselines.

We envision deploying SMASH as a
testing service where developers are able
to submit an app binary to the system and,
within a short amount of time, obtain a
comprehensive report. This report includes
performance problems, hangs, or crashes;
with the app’s execution point (interaction
and stack traces) and external context
(specific network characteristics, for example)
that triggered them. Likewise, marketplace
operators should be able to submit pre-
release apps and determine if these apps meet
distributor-defined policies for robustness
and resource consumption. Report in hand,
developers will be able to quickly fix problems
by zooming in on the problematic code
and having a better understanding of the
environments that cause problems.

sMash goaLs
and ChaLLEngEs
Our goal is to build a scalable easy-to-use
system that tests mobile apps for frequently
occurring, externally inducible faults,
as thoroughly as possible. As illustrated
in Figure 1, we target two specific user
scenarios:

•	 App developers: who use SMASH
to complement their existing testing
procedures by stress-testing code
under hard-to-predict combinations
of contexts.

1 Usually from services like http://applause.com/
or http://www.flurry.com/.

editor: geoffrey challen

GetMobile January 2015 | Volume 19, Issue 136

•	 App marketplace operators: who accept
apps from developers and offer them to
consumers, and so must decide if an app
is ready for public release.

We anticipate the system being in daily
use by both user categories. For example,
a developer using it interactively while
debugging, or, in the case of marketplaces,
whenever new batches of apps are
submitted for release. As such, the results
of testing must reach users as quickly
as possible and in an actionable form.
Moreover, the system also needs to balance
thoroughness of tests with speed of results.

thoroughness
For SMASH to achieve its goal of
thoroughness when testing, our design
targets the following characteristics.

High Execution Coverage. While testing
an app, SMASH aims to execute as many
of its execution paths as possible. Since
mobile apps are UI-centric, an important
measure of execution coverage is the
fraction of unique app pages visited and
UI elements manipulated by the system
while testing an app.

High Fault Coverage. While executing
an app for testing, SMASH exposes it to

many external environments or faults.
Examples of faults include poor network
connection, malfunctioning sensor,
a hardware device with small screen,
unavailable functionalities, etc. Since the
space of possible faults is potentially infinite,
SMASH aims to cover the most probable
faults that appear in the wild.

Performance, Not Just Bugs. The
resource usage of apps, such as energy, is
just as important to the correctness and
robustness of a given app. Users would
be unwilling to use an app that quickly
exhausts battery, no matter how robust it is.
Thus, it is important for a testing solution
to report test results that carefully consider
app performance.

scalability and speed
We want SMASH to scale to testing a
large number of apps. SMASH needs to
thoroughly test each app and generate
test results within a matter of hours, so
developers and app distributors can more
easily incorporate it into their workflow.

A number of obstacles typically limit
the scalability of app testing. First, faithfully
simulating UI interactions with apps can
be time consuming. For example, waiting
for app network traffic to complete before
progressing to the next UI interaction.

Second, app distributors release hundreds of
new apps to the public every day and often
only have 20 or 30 minutes to examine an app
before deciding if it should be released [5].

actionable reports
Test results must be customized for the
type of end-user. For example, an app
distributor may require analysis of test
results with respect to certain store policies,
such as app startup time. Alternatively, a
developer will require much more detailed
outputs (stack traces, causal relationship
between various asynchronous calls) that
direct them towards which part of the app
should be debugged and how to decide
what problems to address first.

sMash arChitECturE
At a high level, SMASH consists of three
components: an app interaction engine
that executes and manipulates the app; an
execution environment that exposes the
executing app to various external conditions
and injects faults; and an analysis engine that
processes and reasons over the collected data
to produce a tailored report for the system
user. For certain apps, SMASH can also
use an instrumenter to collect additional
information [10]. A test scheduler module
controls the workflow of the system. Figure 1
illustrates the SMASH architecture.

figurE 1. SMASH Usage Scenarios and Architectural Overview

[past➔Future]

37January 2015 | Volume 19, Issue 1 GetMobile

app interaction Engine
The App Interaction Engine will spawn
a number of monkeys to test the app. A
monkey is a UI automation tool to explore
various parts of an app. It can launch the
app on a real mobile device or an emulator
and interact with it by mimicking user
interactions (clicking a button, swiping
a page) to recursively visit various pages
of the app. The key optimization goal of
a monkey is to maximize the number
of explored states within a given time
budget. SMASH will incorporate various
optimizations developed in VanarSena and
Caiipa to improve coverage and speed of
the monkey.

First, SMASH tries to identify all state
transitions that invoke the same event
handler or lead to a similar state and
will explore only one of such transitions.
Second, it can dynamically track when a
state transition has completed so that it can
immediately initiate the next transition.
Third, in addition to exhaustively exploring
the UI-state graph, it can prioritize its
exploration paths so that more important
states are explored before others. Such
states could be specified by developers or
identified via telemetry data from real users.
These forms of prioritization are useful
when SMASH does not have enough time
to explore all UI-states or when developers
wish to test for specific problems that are
more likely to affect real users.

Execution Environment
The goal of each instance of the Execution
Environment is to systematically emulate
various operating conditions while the
App Interaction Engine exercises an app.
SMASH selects conditions that both occur
in the real world and are unusual enough
to be missed or hard for developers to
reproduce while testing their own apps.
For thoroughness, SMASH considers a
diverse set of faults, due to environment
(network connectivity, locations), device
(low memory, busy CPU), user behaviour
(impatient interactions), inputs (incorrect
text entry, sensor readings), etc.

The key challenge is to identify which
external conditions to emulate. SMASH can

leverage two types of data sources to address
this: databases of historical crash or telemetry
data; and collected data about the mobile
environment, such as network conditions
and CPU and memory availability. By
mining such datasets, SMASH can identify
and rank problematic situations. Our initial
experience from an analysis of 25 million
real-world crashes [9] shows that most of
them are caused by a small number of root
causes, making it feasible for SMASH to
systematically induce them.

To go beyond testing for previously
detected common scenarios, SMASH
makes use of a comprehensive library of
stress tests from repositories of mobile
context sources. It uses machine learning
techniques to identify representative
contexts by determining which combinations
of contexts are likely to occur in the
real world, and removing redundant
combinations. This library generation
process is fed datasets collected from real
devices2. With such a context library,
SMASH can simulate conditions, such as
different CPU performance levels, amount
of available memory, controlled sensor
readings (GPS locations), and different
network parameters (Wi-Fi, WCDMA),
network quality levels, and network
transitions (3G to Wi-Fi).

SMASH can also prioritize test cases
for a given app. To this end, it utilizes
a learning algorithm that leverages
similarities between apps to identify
which conditions are most likely to impact
previously untested apps via observations
from previously exercised apps.

analysis Engine
After testing an app, SMASH will generate
a report that the developer can use to help
reproduce any problem found and pinpoint
the likely causes behind it. The information
includes replay logs, detailed user
transaction traces, and the performance
problems/crashes.

In addition to reporting crashes, SMASH
also reports anomalous app performance.
However, understanding performance
data (energy usage, latency) is challenging.
It is difficult to identify truly abnormal
app behavior compared to changes in
performance that are unavoidable given the
tested conditions. SMASH can build upon
the techniques used in Caiipa. For example,

to estimate normal behavior in a given
setting, SMASH considers the performance
of previous runs of the same app, as well
as that of other apps that are similar to the
target app. Because the number of issues
that appear to require investigation can
be quite large, SMASH will also provide
rankings of severity to help developers
prioritize their time.

Although SMASH cannot detect all
forms of problematic app behavior, new
analysis modules can be added to the
system as challenges in detecting additional
problems are overcome.

ProgrEss toWards sMash
Assembling SMASH is facilitated by our
two already working mobile app testing
prototypes — Caiipa and VanarSena. Each
prototype has been used to explore separate
techniques and scenarios required by
SMASH. Caiipa aims to stress test mobile
apps to cover a wide range of potential real-
world conditions apps may encounter. It is
designed to test an app under conditions
a developer never anticipated occurring.
Tests consider both app failures as well
as identifying resource consumption
outliers like excessive energy consumption
or the app process hanging. In contrast,
VanarSena focuses on app crashes and
seeks to efficiently test common-case failure
conditions of mobile apps — attempting to
identify and focus on root cause conditions
that are responsible for the majority of
failures observed in the wild.

Caiipa
As illustrated in Figure 2, Caiipa [4] has
been deployed as an internal service at
Microsoft. Caiipa can test apps under a
variety of mobile environment conditions,
including network bandwidth and quality,
varied device types, memory levels,
locations, and running key tests on real
hardware.

By focusing on the impact of mobile
contexts in app behaviour, Caiipa’s default
interaction engine is relatively simple
and applies a light weighted exploratory
user model, customizable as needed. One
limitation of UI interaction comes from
adopting a black-box approach during app
testing. However, this allows the system
to test any app regardless of the languages
used during development.

2 Microsoft’s Windows Error Reporting (WER)
or OpenSignal (http://opensignal.com).

[past➔Future]

GetMobile January 2015 | Volume 19, Issue 138

To cover a wide breadth of mobile
conditions, Caiipa currently includes a large
context library of 10,504 test cases. Caiipa
tested 265 commercially available Windows
Store and Windows Phone 8 apps in depth.
Our results show that test prioritization
can find up to 47% more crashes than the
conventional baselines, with the same amount
of computing resources. Additionally, by
considering the different real-world contexts,
Caiipa detects 11 times more crashes and 8
times more performance problems.

vanarsena
VanarSena’s architecture is described in detail
in [9]. VanarSena is designed to test apps for
a small set of externally inducible common
faults using a greybox approach; the app
binary is first instrumented and then run
within the Windows Phone Emulator using
a UI monkey. Several fault inducing modules
(FIMs) induce faults such as network errors
and simulating an impatient user.

VanarSena uses two main techniques for
improving the speed of testing. The first one
is called hit testing. When presented with
the app UI, VanarSena classifies various
UI controls into equivalent classes that
exercise the same code path in the app. The
monkey then invokes only one control from
each class, which considerably speeds up
testing. Second, the added instrumentation
generates ProcessingCompleted events, which
allows the monkey to precisely decide when
to next interact with the app.

VanarSena supports testing apps written
in C# for the Windows Phone platform
and was used to test 3,000 Windows Phone
apps, uncovering 2,969 distinct faults, of
which 1,227 were previously unreported.

ConCLusion
In this paper, we have described how,
by integrating features from Caiipa and
VanarSena, a next generation test service
SMASH can be built. Currently both
systems address different requirements
including Microsoft’s internal quality
assurance processes and cross-platform
developer tools. Needless to say, new
additional challenges will arise as we move
forward in the combined system. However,
we expect the foundational vision laid out
in this paper to guide the development
of SMASH and help improve mobile app
testing in general. n

figurE 2. Caiipa Prototype

rEfErEnCEs
[1] S. Agarwal, R. Mahajan, A. Zheng, and V. Bahl.

Diagnosing Mobile Applications in the Wild.
In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, Hotnets-
IX, pages 22:1–22:6, New York, NY, USA, 2010.

[2] T. Azim and I. Neamtiu. Targeted and Depth-
first Exploration for Systematic Testing of
Android Apps. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object
Oriented Programming Systems Languages &
Applications, OOPSLA ’13, pages 641–660,
New York, NY, USA, 2013. ACM.

[3] L. Batyuk, M. Herpich, S. A. Camtepe, K.
Raddatz, A.-D. Schmidt, and S. Albayrak. Using
Static Analysis for Automatic Assessment and
Mitigation of Unwanted and Malicious Activities
within Android Applications. In Proceedings
of the 2011 6th International Conference on
Malicious and Unwanted Software, MALWARE
’11, pages 66–72, Washington, DC, USA, 2011.
IEEE Computer Society.

[4] Chieh-Jan Mike Liang, Nicholas D. Lane, Niels
Brouwers, Li Zhang, Börje F. Karlsson, Hao Liu,
Yan Liu, Jun Tang, Xiang Shan, Ranveer Chandra
and Feng Zhao. Caiipa: Automated Large-
scale Mobile App Testing through Contextual
Fuzzing. In Proceeding of the 20th Annual
International Conference on Mobile Computing
and Networking, MobiCom ’14, New York, NY,
USA, 2014. ACM.

[5] Fortune. 40 Staffers. 2 Reviews. 8,500
iPhone Apps per week. http://fortune.
com/2009/08/22/40-staffers-2-reviews-8500-
iphone-apps-per-week/.

[6] P. Godefroid, M. Y. Levin, and D. A. Molnar.
Automated Whitebox Fuzz Testing. In
Proceedings of the Network and Distributed
System Security Symposium, NDSS ’08. The
Internet Society, 2008.

[7] J. Huang, F. Qian, Q. Xu, Z. Qian, Z. M. Mao,
and A. Rayes. Uncovering Cellular Network
Characteristics: Performance, Infrastructure, and
Policies. Technical Report MSU-CSE-00-2, 2013.

[8] Open Signal. The Many Faces of a Little
Green Robot. http://opensignal.com/reports/
fragmentation.php.

[9] L. Ravindranath, S. Nath, J. Padhye, and H.
Balakrishnan. Automatic and Scalable Fault
Detection for Mobile Applications. In Proceeding
of the 12th Annual International Conference
on Mobile Systems, Applications, and Services,
MobiSys ’14, New York, NY, USA, 2014. ACM.

[10] L. Ravindranath, J. Padhye, S. Agarwal, R.
Mahajan, I. Obermiller, and S. Shayandeh.
AppInsight: Mobile App Performance
Monitoring in the Wild. In Proceedings of the
10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages
107–120, Berkeley, CA, USA, 2012. USENIX
Association.

[11] Techcrunch. Mobile App Users Are Both
Fickle And Loyal: Study. http://techcrunch.
com/2011/03/15/mobile-app-users-are-both-
fickle-and-loyal-study.

[12] Wall Street Journal. The Surprising
Numbers behind Apps. http://blogs.wsj.com/
digits/2013/03/11/the-surprising-numbers-
behind-apps/.

[past➔Future]

