
Churn-Resilient Replication Strategy for
Peer-to-Peer Distributed Hash-Tables

Sergey Legtchenko1, Sébastien Monnet1, Pierre Sens1, and Gilles Muller2

1 LIP6/University of Paris VI/CNRS/INRIA
Firstname.Name@lip6.fr

2 EMN/INRIA
Gilles.Muller@emn.fr

Abstract. DHT-based P2P systems provide a fault-tolerant and scal-
able mean to store data blocks in a fully distributed way. Unfortunately,
recent studies have shown that if connection/disconnection frequency is
too high, data blocks may be lost. This is true for most current DHT-
based system’s implementations. To avoid this problem, it is necessary to
build really efficient replication and maintenance mechanisms. In this pa-
per, we study the effect of churn on an existing DHT-based P2P system
such as DHash or PAST. We then propose solutions to enhance churn
tolerance and evaluate them through discrete event simulations.

1 Introduction

Distributed Hash Tables (DHTs), are distributed storage services that use a
structured overlay relying on key-based routing (KBR) protocols [1,2]. DHTs
provide the system designer with a powerful abstraction for wide-area persis-
tent storage, hiding the complexity of network routing, replication, and fault-
tolerance. Therefore, DHTs are increasingly used for dependable and secure
applications like backup systems [3], distributed file systems [4,5] and content
distribution systems [6].

A practical limit in the performance and the availability of a DHT relies
in the variations of the network structure due to the unanticipated arrival and
departure of peers. Such variations, called churn, induce at worse the loss of some
data and at least performance degradation, due to the reorganization of the set
of replicas of the affected data, that consumes bandwith and CPU cycles. In
fact, Rodrigues and Blake have shown that using classical DHTs to store large
amounts of data is only viable if the peer life-time is in the order of several
days [7]. Until now, the problem of churn resilience has been mostly addressed
at the P2P routing level to ensure the reachability of peers by maintaining the
consistency of the logical neighborhood, e.g., the leafset, of a peer [8,9]. At the
storage level, avoiding data migration is still an issue when a reconfiguration of
the peers has to be done.

In a DHT, each data block is associated a root peer whose identifier is the
(numerically) closest to its key. The traditional replication scheme relies on using
the subset of the root leafset containing the closest logical peers to store the

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 485–499, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

486 S. Legtchenko et al.

copies of a data block [1]. Therefore, if a peer joins or leaves the leafset, the
DHT enforces the placement constraint on the closest peers and may migrate
many data blocks. In fact, it has been shown that the cost of these migrations
can be high in term of bandwidth consumption [3]. A solution to this problem,
relies on creating multiple keys for a single data block [10,11]; therefore, only
a peer maintaining a key can be affected by a reconfiguration. However, each
peer maintaining a data block has to periodically check the state of all the peers
possessing a replica. Since copies are randomly spread on the overlay the number
of peers to check can be huge.

This paper proposes a variant of the leafset replication strategy that tolerates
a high churn rate. Our goal is to avoid data block migrations when the desired
number of replicas is still available in the DHT. We relax the “logically closest”
placement constraint on block copies and allow a peer to be inserted in the leafset
without forcing migration. Then, to reliably locate the block copies, the root peer
of a block maintains replicated localization metadata. Metadata management
is integrated to the existing leafset management protocol and does not incur
additional overhead in practice.

We have implemented both PAST and our replication strategy on top of
PeerSim [12]. The main results of our evaluations are:

– We show that our approach achieves higher data availability in presence
of churn, than the original PAST replication strategy. For a connection or
disconnection occuring every minute our strategy loses two times less blocks
than PAST’s one.

– We show that our replication strategy induces an average of twice less block
transfers than PAST’s one.

The rest of this paper is organized as follows. Section 2 first presents an overview
of the basic replication schemes and maintenance algorithms commonly used in
DHT-based P2P systems, then their limitations are highlighted. Section 3 intro-
duces an enhanced replication scheme for which the DHT’s placement constraints
are relaxed so as to obtain a better churn resilience. Simulations of this algorithm
are presented in Section 4. Section 5 concludes with an overwiew of our results.

2 Background and Motivation

DHT based P2P systems are usually structured in three layers: 1) a routing layer,
2) the DHT itself, 3) the application that uses the DHT. The routing layer is
based on keys for identifying peers and is therefore commonly qualified as Key-
Based Routing (KBR). Such KBR layer hides the complexity of scalable routing,
fault tolerance, and self-organizing overlays to the upper layers. In recent years,
many research efforts have been made to improve the resilience of the KBR
layer to a high churn rate [8]. The main examples of KBR layers are Pastry [13],
Chord [2], Tapestry [14] and Kademlia [15]. The DHT layer is responsible for
storing data blocks. It implements a distributed storage service that provides
persistence and fault tolerance, and can scale up to a large number of peers.

Churn-Resilient Replication Strategy 487

DHTs provide simple get and put abstractions that greatly simplifies the task of
building large-scale distributed applications. PAST [1] and DHash [16] are DHTs
respectively built on top of Pastry [13] and Chord [2]. Finally, the application
layer is a composition of any distributed application that may take advantage
of a DHT. Representative examples are the CFS distributed file system [5] and
the PeerStore backup system [3].

In the rest of this section we present replication techniques that are used for
implementing the DHT layer. Then, we describe related work that consider the
impact of churn on the replicated data stored in the DHT.

2.1 Replication in DHTs

In a DHT, each peer and each data block is assigned an identifier (i.e., a key).
A data block’s key is usually the result of a hash function performed on the
block. The peer whose identifier is the closest to the block’s key is called the
block’s root. All the identifiers are arranged in a logical structure, such as a ring
as used in Chord [2] and Pastry [13] or a d-dimensional torus as implemented in
CAN [10] and Tapestry [11].

A peer possesses a restricted local knowledge of the P2P network, i.e., the
leafset, which amounts to a list of L close neighbors in the ring. For instance,
in Pastry the leafset contains the addresses of the L/2 closest neighbors in the
clockwise direction of the ring, and the L/2 closest neighbors counter-clockwise.
Each peer monitors its leafset, removing peers which have disconnected from the
overlay and adding new neighbor peers as they join the ring.

In order to tolerate failures, each data block is replicated on k peers which
compose the replica-set of a data block. Two protocols are in charge of the replica
management, the initial placement protocol and the maintenance protocol. We
now describe existing solutions for implementing these two protocols.

Replica placement protocols. There are two main basic replica placement strate-
gies, leafset-based and multiple key based:

Leafset-based replication. The data block’s root is responsible for storing one
copy of the block. The block is also replicated on the root’s closest neighbors
in a subset of the leafset. The neighbors storing a copy of the data block may
be either successors of the root in the ring, predecessors or both. Therefore,
the different copies of a block are stored contiguously in the ring as shown by
Figure 1. This strategy has been implemented in PAST [1] and DHash [16].
Successor replication is a variant of leafset-based replication where replica
peers are only the immediate successors of the root peer instead of being the
closest peers [17].

Multiple key replication. This approach relies on computing k different stor-
age keys corresponding to different root peers for each data block. Data
blocks are then replicated on the k root peers. This solution has been im-
plemented by CAN [10] and Tapestry [11]. GFS [18] uses a variant based on
random placement to improve data repair performance. Path and symmetric
replication are variants of multiple key based replication [19,17].

488 S. Legtchenko et al.

Fig. 1. Leafset-based and multiple key based replication (k = 5)

Lian et al. propose an hybrid stripe replication scheme where small objects are
grouped in blocks and then randomly placed [20]. They show using an analytical
framework that their scheme achieves on near-optimal reliability. Finally, several
works have focused on the placement strategies based on availability of nodes.
Van Renesse [21] proposes a replica placement algorithm on DHT by considering
the reliability of nodes and placing copies on nodes until the desired availability
was achieved. To this end, he proposes to track the reliability of each node such
that each node knows the reliability information about each peer. In FARSITE
[22], dynamic placement strategies improve the availability of files. Files are
swapped between servers according to the current availability of these latter.
With theses approaches, the number of copies can be reduced. However, the cost
to track reliability of nodes can be high. Furthermore, such approaches may lead
to an high unbalanced distribution whereby highly available nodes contain most
of the replicas and can become overloaded.

Maintenance protocols. The maintenance protocols have to maintain k copies of
each data block without violating the initial placement strategy. This means that
the k copies of each data block have to be stored on the root peer contiguous
neighbors in the case of the leafset-based replication scheme and on the root
peers in the multiple key based replication scheme.

The leafset-based maintenance mechanism is based on periodic information
exchanges within the leafsets. For instance, in the fully decentralized PAST
maintenance protocol [1], each peer sends a bloom filter1 of the blocks it stores
to its leafset. When a leafset peer receives such a request, it uses the bloom filter
to determine whether it stores one or more blocks that the requester should also
store. It then answers with the list of the keys of such blocks. The requesting
peer can then fetch the missing blocks listed in all the answers it receives.

In the case of the multiple key replication strategies, the maintenance has to
be done on a “per data block” basis. For each data block stored in the system,
it is necessary to periodically check if the different root peers are still alive and
are still storing a copy of the data block.
1 For short, the sent bloom filter is a compact and approximative view of the list of

blocks stored by a peer.

Churn-Resilient Replication Strategy 489

2.2 Impact of the Churn on the DHT Performance

A high churn rate induces a lot of changes in the P2P network, and the main-
tenance protocol must frequently adapt to the new structure by migrating data
blocks. While some migrations are mandatory to restore k copies, some others
are necessary only for enforcing placement invariants.

A first example arises at the root peer level which may change if a new peer
with a closer identifier joins the system. In this situation, the data block will be
migrated on the new peer. A second example occurs in leafset-based replication,
if a peer possesses an identifier that places it within a replica-set. Therefore,
data blocks have to be migrated by the DHT to enforce replicas to maintain the
“closest peers from the root” property. It should be noticed that larger the replica-
set, higher the probability for a new peer to induce migrations. Kim and Park
try to limit this problem by allowing data blocks to interleave in leafsets [23].
However, they have to maintain a global knowledge of the complete leafset: each
peer has to know the content of all the peers in its leafset. Unfortunately, the
maintenance algorithm is not described in detail and its real cost is unknown.

In the case of the multiple key replication strategy, a new peer may be inserted
between two replicas without requiring migrating data blocks, as long as the
new peer identifier does not make it one of the data block roots. However, this
replication method has the drawback that maintenance has to be done on a
per-data block basis; therefore it does not scale up with the number of blocks
managed by a peer. For backup and file systems that may store up to thousands
of data blocks per peer, this is a severe limitation.

3 Relaxing the DHT’s Placement Constraints to Tolerate
Churn

The goal of this work to is to design a DHT that tolerates a high rate of churn
without degradating of performance. For this, we avoid to copy data blocks when
this is not mandatory for restoring a missing replica. We introduce a leafset based
replication that relaxes the placement constraints in the leafset. Our solution,
named RelaxDHT, is presented thereafter.

3.1 Overview of RelaxDHT

RelaxDHT is built on top of a KBR layer such as Pastry or Chord. Our design
decisions are to use replica localization meta-data and separate them from data
block storage. We keep the notion of a root peer for each data block. However,
the root peer does no longer store a copy of the blocks for which it is the root.
It only maintains metadata describing the replica-set and periodically sends
messages to the replica-set peers to ensure that they keep storing their copy.
Using localization metadata allows a data block replica to be anywhere in the
leafset; a new peer may join a leafset without necessarily inducing data blocks
migrations.

490 S. Legtchenko et al.

We choose to restrain the localization of replicas within the root’s leafset for
two reasons. First, to remain scalable, the number of messages of our protocol
does not depend on the number of data blocks managed by a peer, but only on the
leafset size. Second, because the routing layer already induces many exchanges
within leafsets, the local view of the leafset at the DHT-layer can be used as a
failure detector. We now detail the salient aspects of the RelaxDHT algorithm.

Insertion of a new data block. To be stored in the system, a data block is
inserted using the put(k,b) operation. This operation produces an “insert mes-
sage” which is sent to the root peer. Then, the root randomly chooses a replica-set
of k peers around the center of the leafset. This reduces the probability that a
chosen peer quickly becomes out of the leafset due to the arrival of new peers.
Finally, the root sends to the replica-set peers a “store message” containing:

1. the data block itself,
2. the identity of the peers in the replica-set (i.e., the metadata),
3. the identity of the root.

As a peer may be root for several data blocks and part of the replica-set of other
data blocks2, it stores:

1. a list rootOfList of data block identifiers with their associated replica-set
peer-list for blocks for which it is the root;

2. a list replicaOfList of data blocks for which it is part of the replica-set.
Along with data blocks, this list also contains: the identifier of the data
block, the associated replica-set peer-list and the identity of the root peer.

A lease counter is associated to each stored data block. This counter is set to
the value “Lease” which is a constant. It is then decremented at each KBR-
layer maintenance. The maintenance protocol described below is responsible to
periodically reset this counter to “Lease”.

Maintenance protocol. The goal of this periodic protocol is to ensure that: 1)
a root peer exists for each data block. The root is the peer that the closest
identifier from the data block’s one; 2) each data block is replicated on k peers
located in the data block root’s leafset.

At each period T , a peer p executes Algorithm 1, so as to send maintenance
messages to the other peers of the leafset. It is important to notice that Algo-
rithm 1 uses the leafset knowledge maintained by the KBR layer which is rel-
atively accurate because the inter-maintenance time of the KBR layer is much
smaller than the DHT-layer’s one.

The messages constructed by Algorithm 1 contain a set of following two
elements:

STORE element for asking a replica node to keep storing a specific data block.
2 It is possible, but not mandatory, for a peer to be both root and part of the replica-set

of a same data block.

Churn-Resilient Replication Strategy 491

Algorithm 1. RelaxDHT maintenance message construction
Result: msgs, the built messages.
for data ∈ rootOfList do1

for replica ∈ data.replicaSet do2
if NOT isInCenter (replica,leafset) then3

newPeer =choosePeer (replica,leafset);4
replace (data.replicaSet, replica,newPeer);5

for replica ∈ data.replicaSet do6
add(msgs [replica],<STORE, data.blockID, data.replicaSet >);7

for data in replicaOfList do8
if NOT checkRoot (data.rootPeer,leafset) then9

newRoot =getRoot (data.blockID,leafset);10
add (msgs [newRoot],<NEW ROOT, data.blockID, data.replicaSet >):11

for p ∈ leafset do12
if NOT empty (msgs [p]) then13

send(msgs [p],p);14

NEW ROOT element for notifying a node that it has become the new root of
a data block.

These message elements contain both a data block identifier and the associated
replica-set peer-list. In order to remain scalable in term of the number of data
blocks algorithm 1 sends at most one single message to each leafset member.

Algorithm 1 is composed of three phases: the first one computes STORE
elements using the rootOfList structure -lines 1 to 7-, the second one computes
NEW ROOT elements using the replicaOfList structure -from line 8 to 11-,
the last one sends messages to the destination peers in the leafset -line 12 to the
end-. Message elements computed in the two first phases are added in msgs[].
msgs[q] is a message containing all the elements to send to node q at the last
phase.

Therefore, each peer periodically sends a maximum of leafset-size main-
tenance messages to its neighbors.

In the first phase, for each block for which the peer is the root, it checks
if every replica is still in the center of its leafset (line 3) using its local view
provided by the KBR layer. If a replica node is outside, the peer replaces it by
randomly choosing a new peer in the center of the leafset and it then updates
the replica-set of the block (lines 4 and 5). Finally, the peer adds a STORE
element in each replica set peers messages (lines 6 and 7). In the second phase,
for each block stored by the peer (i.e., the peer is part of the block’s replica-set),
it checks if the root node did not change. This verification is done by comparing
the replicaOfList metadata and the current leafset state (line 9). If the root
has changed, the peer adds a NEW ROOT message element to announce to the
future root peer that it is the root of the data block3. Finally, from line 12 to
line 14, a loop sends the computed messages to each leafset member.

3 Note that it is possible (but rare) to temporarily have two different peers acting as
a root peer for a same data block but it will not lead to data loss.

492 S. Legtchenko et al.

Algorithm 2. RelaxDHT maintenance message reception
Data: message, the received message.
for elt ∈ message do1

switch elt.type do2
case STORE3

if elt.data ∈ replicaOfList then4
newLease(replicaOfList,elt.data);5
updateRepSet(replicaOfList,elt.data);6

else7
requestBlock(elt.data);8

case NEW ROOT9
rootOfList = rootOfList ∪ elt.data;10

Maintenance message treatment

For a STORE element (line 3), if the peer already stores a copy of the corre-
sponding data block, it resets the associated lease counter and updates the
corresponding replica-set if necessary (lines 4, 5 and 6). If the peer does not
store the associated data block (i.e., it is the first STORE message element
for this data block received by this peer), it fetches it from one of the peers
mentioned in the received replica-set (line 8).

For a NEW ROOT element a peer adds the data block-id and replica-set in
the rootOfList structure (line 10).

End of a lease treatment. If a data block lease counter reaches 0, it means that
no STORE element has been received for a long time. This can be the result of
numerous insertions that have pushed the peer outside the center of the leafset
of the data block’s root. The peer sends a message to the root peer of the data
block to ask for the authorization to delete the block. Later, the peer will receive
an answer from the root peer. This answer either allows it to remove the data
block or asks it to put the data block again in the DHT (in the case the data
block has been lost).

3.2 Side Effects and Limitations

Our replication strategy for peer-to-peer DHTs, by relaxing placement con-
straints of data block copies in leafsets, significantly reduces the number of data
blocks to be transferred when peers join or leave the system. Thanks to this, we
show in the next section that our maintenance mechanism allows us to better
tolerate churn, but it implies other effects. The two main ones concern the data
block distribution on the peers and the lookup performance. While the changes
in data blocks distribution can provide positive effects, the lookup performance
can be damaged.

Data blocks distribution. While with usual replication strategies in peer-to-peer
DHT’s, the data blocks are distributed among peers according to some hash
function. Therefore, if the number of data blocks is big enough, data blocks

Churn-Resilient Replication Strategy 493

should be uniformly distributed among all the peers. When using RelaxDHT,
this remains true if there are no peer connections/disconnections. However, in
presence of churn, as our maintenance mechanism does not transfer data blocks if
it is not necessary, new peers will store much less data blocks than peers involved
for a longer time in the DHT. It is important to notice that this side effect is
rather positive: more stable a peer is, more data blocks it will store. Furthermore,
it is possible to counter this effect easily by taking into account the quantity of
stored data blocks while randomly choosing peers to add in replica-sets.

Lookup performance. We have focused our research efforts on data loss. We
show in the next section that for equivalent churn patterns, the quantity of data
lost using RelaxDHT is considerably lower than the quantity of data lost using
a standard strategy like PAST’s one. However, with RelaxDHT, it is possible
that temporarily some data block roots are not consistent, inducing a network
overhead to find the data. For example, when a peer which is root for at least one
data block fails, the data block copies are still in the system but the standard
lookup mechanism may not find them: the new peer whose identifier is the closest
may not know the data block. This remains true until the failure is detected by
one of the peer in the replica-set and repaired using a “new root” message (see
algorithms above). It would be possible to flood the leafset or to perform a
“limited range walk” when a lookup fails, allowing lookups to find data blocks
even in the absence of root. However, note that: 1) some lookups do not need
to reach the root peer because the previous hop, arriving in the leafset, reaches
one of the replica; 2) a caching mechanism for metadata may limit this problem;
and 3) this case is rare.

4 Evaluation

This section provides a comparative evaluation of RelaxDHT and PAST [1]. This
evaluation, based on discrete event simulations, shows that RelaxDHT provides
a considerably better tolerance to churn: for the same churn levels, the number
of data losses is divided by up to two when comparing both systems.

4.1 Experimental Setup

To evaluate RelaxDHT, we have build a discrete event simulator using the Peer-
Sim [12] simulation kernel. We have based our simulator on an already existing
PeerSim module simulating the Pastry KBR layer. We have implemented both
the PAST strategy and the RelaxDHT strategy on top of this module. It is impor-
tant to note that all the different layers and all message exchanges are simulated.
Our simulator also takes into account network congestion: in our case, network
links may often be congested.

For all the simulation results presented in the section, we used a 100-peer
network with the following parameters (for both PAST and RelaxDHT):

– a leafset size of 24, which is the Pastry default value;
– an inter-maintenance duration of 10 minutes at the DHT level;

494 S. Legtchenko et al.

– an inter-maintenance duration of 1 minute at the KBR level;
– 10 000 data blocks of 10 000 KB replicated 3 times;
– network links of 1 Mbits/s for upload and 10 Mbits/s for download with a

delay uniformly chosen between 80 and 120 ms.

A 100-peer network may seem a relatively small scale. However, for both repli-
cation strategies, PAST and RelaxDHT, the studied behavior is local, contained
within a leafset (which size is bounded). It is however necessary to simulate a
whole ring in order to take into account side effects induced by the neighbor
leafsets. Furthermore, a tradeoff has to be made between system accuracy and
system size. In our case, it is important to simulate very precisely all peer com-
munications. We have run several simulations with a larger scale (1000 peers
and 100,000 data blocks) and have observed similar phenomenons.

We have injected churn following two different scenarii:

One hour churn. One perturbation phase with churn during one hour. This
phase is followed by another phase without connections/disconnections. In
this case study, during the churn phase each perturbation period we chose
randomly either a new peer connection or a peer disconnection. This per-
turbation can occur anywhere in the ring (uniformly chosen). We have run
numerous simulations varying the inter-perturbation delay.

Continuous churn. For this set of simulations, we focus on phase one of the
previous case. We study the system while varying the inter-perturbation
delay. In this case, “perturbation” can be either a new peer connection or a
disconnection.

We also experiment a scenario for which only one peer gets disconnected. We
then study the reaction of the system. The first set of experiments allows us to
study 1) how many data blocks are lost after a period of perturbation and 2)
how long it takes to the system to return to a state where all remaining/non-
lost data blocks are replicated k times. In real-life systems there will be some
period without churn, the system has to take advantage of them to converge to
a safer state. The second set of experiments zooms on the perturbation period.
It provides the ability to study how the system can resist when it has to repair
lost copies in presence of churn. Finally, the last set of simulations is done to
measure the reparation of one single failure.

4.2 Losses and Stabilization Time after One Hour Churn

We first study the number of lost data blocks (data block for which the 3 copies
are lost) in PAST and in RelaxDHT under the same churn conditions. Figure 2
shows the number of lost data blocks after a period of one hour of churn. The
inter-perturbation delay is increasing along the X axis. With RelaxDHT and
our maintenance protocol, the number of lost data blocks is much lower than
with the PAST’s one: it reaches 50% for perturbations interval from lower than
50 seconds.

The main reason of the result presented above is that, using PAST replication
strategy, the peers have more data blocks to download. This implies that the

Churn-Resilient Replication Strategy 495

PAST

40
perturbation interval (sec)

 1400

 1200

 1000

 800

 600

 400

 200

 0

RelaxDHT

50 60 120 180 240 300 360 420 480 540

B
lo

ck
s

lo
st

Block losses after churn

Fig. 2. Number of data block lost (ie. all
copies are lost)

PAST

40

Blocks exchanged

perturbation interval (sec)

 10000

 20000

 30000

 40000

 50000

 60000

50 60 120 180 240 300 360 420 480 540

D
ow

nl
oa

de
d

bl
oc

ks

RelaxDHT

 0

Fig. 3. Number of exchanged data blocks
to restore a stable state

mean download time of one data block is longer using PAST replication strategy.
Indeed, the maintenance of the replication scheme location constraints generate
a continuous network traffic that slows down critical traffic whose goal is to
restore lost data block copies.

Figure 3 shows the total number of blocks exchanged for both cases. There
again, the X axis represents the inter-perturbation delay. The figure shows that
with RelaxDHT the number of exchanged blocks is always near 2 times smaller
than in PAST. This is mainly due to the fact that in PAST case, many transfers
(near half of them) are only done to preserve the replication scheme constraints.
For instance, each time a new peer joins the DHT, it becomes root of some data
blocks (because its identifier is closer than the current root-peer’s one), or if it
is inserted within replica-sets that should remain contiguous.

Using PAST replication strategy, a newly inserted peer may need to download
data blocks during many hours, even if no failure/disconnection occurs. During
all this time, its neighbors need to send it the required data blocks, using a large
part of their upload bandwidth.

In our case, no or very few data blocks transfers are required when new peers
join the system. It becomes mandatory, only if some copies becomes too far
from their root-peer in the logical ring4. In this case, they have to be transferred
closer to the root before their hosting peer leaves the root-peer’s leafset. With
a replication degree of 3 and a leafset size of 24, many peers can join a leafset
before any data block transfer is required.

Finally, we have measured the time the system takes to return in a normal
state in which every remaining5 data block is replicated k times. Figure 4 shows
the results obtained while varying the delay between perturbations. We can
observe that the recovery time is twice longer in the case where PAST is used
compared to RelaxDHT. This result is mainly explained by the number of blocks

4 The acceptable distance, in number of peers in the logical ring, between a copie and
its root-peer is set to 8 in our simulations.

5 Blocks for which all copies are lost will never retreive a normal state and thus are
not taken into account.

496 S. Legtchenko et al.

540

Recovery time after churn

40

 35000

 30000

 25000

 20000

 15000

 10000

 5000

RelaxDHT
PAST

fu
ll

re
co

ve
ry

 ti
m

e
(s

ec
)

50 60 120 180
perturbation interval (sec)

240 300 360 420 480
 0

Fig. 4. Recovery time: time for retreiving all the copies of every remaining data block

to transfer which is much more lower in our case: our maintenance protocol
transfers only very few blocks for location constraints compared to PAST’s one.

This last result shows that the DHT using RelaxDHT repairs damaged data
blocks (data blocks for which some copies are lost) faster than PAST. It implies
that it will recover very fast, which means it will be able to cope with a new
churn phase. The next section describes our simulations with continuous churn.

4.3 Continuous Churn

Before presenting simulation results under continuous churn, it is important to
measure the impact of a single peer failure/disconnection.

When a single peer fails, data blocks it stored have to be replicated on a
new one. Those blocks are transferred to such a new peer in order to rebuild
the initial replication degree k. In our simulations, with the parameters given
above, it takes 4609 seconds to PAST to recover the failure: i.e., to create a
new replica for each block stored on the faulty peer. While, with RelaxDHT,
it takes only 1889 seconds. The number of peers involved in the recovery is
much more important indeed. This gain is due to the parallelization of the data
blocks-transfers:

– in PAST, the content of contiguous peers is really correlated. With a repli-
cation degree of 3, only peers located at one or two hops of the faulty peer
in the ring may be used as sources or destinations for data transfers. In fact,
only k+1 peers are involved in the recovery of one faulty peer, where k is the
replication factor.

– in RelaxDHT, most of the peers contained in the faulty peer leafset (the
leafset contains 24 peers in our simulations) may be involved in the transfers.

The above simulation results show that RelaxDHT: 1) induce less data transfers,
and 2) remaining data transfers are more parallelized. Thanks to this two points,
even if the system remains under continuous churn, RelaxDHT will provide a
better churn tolerance.

Such results are illustrated in Figure 5. We can observe that, using the pa-
rameters described at the beginning of this section, PAST starts to lose data

Churn-Resilient Replication Strategy 497

 4500

60

RelaxDHT
PAST

Continuous Churn: Block losses

perturbation interval (sec)

L
os

t b
lo

ck
s

70 80 90 100 110 240180120 300 360 420 480 540 600 1200

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0

Fig. 5. Number of data blocks losses (all k
copies lost) while the system is under con-
tinuous churn, varying inter-perturbation
delay

360
 0

 20000

60

Continuous Churn: block exchanges

perturbation interval (sec)

 40000

 60000

 80000

 100000

 120000
RelaxDHT

PAST

D
ow

nl
oa

de
d

bl
oc

ks

70 80 90 100 110 120 180 240 300 480 540 600 1200420

Fig. 6. Number of data blocks transfers
required while the system is under con-
tinuous churn, varying inter-perturbation
delay

blocks when the inter-perturbation delay is around 7 minutes. This delay has
to reach less than 4 minutes for data blocks to be lost using RelaxDHT. If the
inter-perturbation delay continues to decrease, the number of lost data blocks
using RelaxDHT strategy remains near half the number of data blocks lost using
PAST strategy.

Finally, Figure 6 confirms that even with a continuous churn pattern, during
a 5 hour run, the number of data transfers required by the proposed solution
is much smaller (around half) than the number of data transfers induced by
PAST’s replication strategy.

5 Conclusion

Peer to peer distributed hash tables provide an efficient, scalable and easy-to-
use storage system. However, existing solutions do not tolerate a high churn rate
or are not really scalable in terms of number of stored data blocks. We have
identified the reasons why they do not tolerate high churn rate: they impose
strict placement constraints that induces unnecessary data transfers.

In this paper, we propose a new replication strategy, RelaxDHT that relaxes
the placement constraints: it relies on metadata (replica-peers/data identifiers)
to allow a more flexible location of data block copies within leafsets. Thanks to
this design, RelaxDHT entails fewer data transfers than classical leafset-based
replication mechanisms. Furthermore, as data block copies are shuffled among a
larger peer set, peer contents are less correlated. It results that in case of failure
more data sources are available for the recovery, which makes the recovery more
efficient and thus the system more churn-resilient. Our simulations, comparing
the PAST system to ours, confirm that RelaxDHT 1) induces less data block
transfers, 2) recovers lost data block copies faster and 3) loses less data blocks.
Furthermore, we have shown that the churn-resilience is obtained without adding
a great maintenance overhead.

498 S. Legtchenko et al.

References

1. Rowstron, A.I.T., Druschel, P.: Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility. In: SOSP 2001: Proceedings of the 8th
ACM symposium on Operating Systems Principles, December 2001, pp. 188–201
(2001)

2. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, F.F., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003)

3. Landers, M., Zhang, H., Tan, K.L.: Peerstore: Better performance by relaxing in
peer-to-peer backup. In: P2P 2004: Proceedings of the 4th International Conference
on Peer-to-Peer Computing, Washington, DC, USA, pp. 72–79. IEEE Computer
Society, Los Alamitos (2004)

4. Busca, J.M., Picconi, F., Sens, P.: Pastis: A highly-scalable multi-user peer-to-peer
file system. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648,
pp. 1173–1182. Springer, Heidelberg (2005)

5. Dabek, F., Kaashoek, F.M., Karger, D., Morris, R., Stoica, I.: Wide-area coopera-
tive storage with CFS. In: SOSP 2001: Proceedings of the 8th ACM symposium on
Operating Systems Principles, vol. 35, pp. 202–215. ACM Press, New York (2001)

6. Jernberg, J., Vlassov, V., Ghodsi, A., Haridi, S.: Doh: A content delivery peer-to-
peer network. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006.
LNCS, vol. 4128, pp. 1026–1039. Springer, Heidelberg (2006)

7. Rodrigues, R., Blake, C.: When multi-hop peer-to-peer lookup matters. In: Voelker,
G.M., Shenker, S. (eds.) IPTPS 2004. LNCS, vol. 3279, pp. 112–122. Springer,
Heidelberg (2005)

8. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT. In:
Proceedings of the 2004 USENIX Technical Conference, Boston, MA, USA (June
2004)

9. Castro, M., Costa, M., Rowstron, A.: Performance and dependability of structured
peer-to-peer overlays. In: DSN 2004: Proceedings of the 2004 International Con-
ference on Dependable Systems and Networks, Washington, DC, USA, p. 9. IEEE
Computer Society, Los Alamitos (2004)

10. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: SIGCOMM, vol. 31, pp. 161–172. ACM Press, New York
(2001)

11. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: A global-scale overlay for rapid service deployment. IEEE Journal on
Selected Areas in Communications (2003)

12. Jelasity, M., Montresor, A., Jesi, G.P., Voulgaris, S.: The Peersim simulator,
http://peersim.sf.net

13. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

14. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications 22, 41–53 (2004)

15. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based
on the XOR metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002)

http://peersim.sf.net

Churn-Resilient Replication Strategy 499

16. Dabek, F., Li, J., Sit, E., Robertson, J., Kaashoek, F.F., Morris, R.: Designing
a DHT for low latency and high throughput. In: NSDI 2004: Proceedings of the
1st Symposium on Networked Systems Design and Implementation, San Francisco,
CA, USA (March 2004)

17. Ktari, S., Zoubert, M., Hecker, A., Labiod, H.: Performance evaluation of repli-
cation strategies in DHTs under churn. In: MUM 2007: Proceedings of the 6th
international conference on Mobile and ubiquitous multimedia, pp. 90–97. ACM
Press, New York (2007)

18. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: SOSP
2003: Proceedings of the 9th ACM symposium on Operating systems principles,
pp. 29–43. ACM Press, New York (2003)

19. Ghodsi, A., Alima, L.O., Haridi, S.: Symmetric replication for structured peer-to-
peer systems. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.-H., Ouksel, A.M.
(eds.) DBISP2P 2005 and DBISP2P 2006. LNCS, vol. 4125, pp. 74–85. Springer,
Heidelberg (2007)

20. Lian, Q., Chen, W., Zhang, Z.: On the impact of replica placement to the reliability
of distributed brick storage systems. In: ICDCS 2005: Proceedings of the 25th
IEEE International Conference on Distributed Computing Systems, Washington,
DC, USA, pp. 187–196. IEEE Computer Society, Los Alamitos (2005)

21. van Renesse, R.: Efficient reliable internet storage. In: WDDDM 2004: Proceedings
of the 2nd Workshop on Dependable Distributed Data Management, Glasgow,
Scotland (October 2004)

22. Adya, A., Bolosky, W., Castro, M., Chaiken, R., Cermak, G., Douceur, J., Howell,
J., Lorch, J., Theimer, M., Wattenhofer, R.: Farsite: Federated, available, and reli-
able storage for an incompletely trusted environment. In: OSDI 2002: Proceedings
of the 5th Symposium on Operating Systems Design and Implementation, Boston,
MA, USA (December 2002)

23. Kim, K., Park, D.: Reducing data replication overhead in DHT based peer-to-peer
system. In: Gerndt, M., Kranzlmüller, D. (eds.) HPCC 2006. LNCS, vol. 4208,
pp. 915–924. Springer, Heidelberg (2006)

	Introduction
	Background and Motivation
	Replication in DHTs
	Impact of the Churn on the DHT Performance

	Relaxing the DHT's Placement Constraints to Tolerate Churn
	Overview of RelaxDHT
	Side Effects and Limitations

	Evaluation
	Experimental Setup
	Losses and Stabilization Time after One Hour Churn
	Continuous Churn

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

