
Katyusha: The First Direct Acceleration of

Stochastic Gradient Methods
(version 5)∗

Zeyuan Allen-Zhu
zeyuan@csail.mit.edu

Princeton University / Institute for Advanced Study

March 18, 2016†

Abstract

Nesterov’s momentum trick is famously known for accelerating gradient descent, and has
been proven useful in building fast iterative algorithms. However, in the stochastic setting,
counterexamples exist and prevent Nesterov’s momentum from providing similar acceleration,
even if the underlying problem is convex.

We introduce Katyusha, a direct, primal-only stochastic gradient method to fix this issue.
It has a provably accelerated convergence rate in convex (off-line) stochastic optimization. The
main ingredient is Katyusha momentum, a novel “negative momentum” on top of Nesterov’s
momentum. It can be incorporated into a variance-reduction based algorithm and speed it
up, both in terms of sequential and parallel performance. Since variance reduction has been
successfully applied to a growing list of practical problems, our paper suggests that in each of
such cases, one could potentially try to give Katyusha a hug.

∗We would like to specially thank Shai Shalev-Shwartz for useful feedbacks and suggestions on this paper, thank
Blake Woodworth and Nati Srebro for pointer to their paper [49], thank Guanghui Lan for correcting our citation
of [16], thank Weston Jackson, Xu Chen and Zhe Li for verifying the proofs and correcting typos, and thank anonymous
reviewers for a number of writing suggestions. This paper is partially supported by an NSF Grant, no. CCF-1412958,
and a Microsoft Research Grant, no. 0518584. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of NSF or Microsoft.
†V1 of this paper appeared on arXiv on this date. V2 in May 2016 includes experiments, V3 and V4 polishes

writing, and V5 is a journal revision and includes missing proofs for some extended settings.

ar
X

iv
:1

60
3.

05
95

3v
5

 [
m

at
h.

O
C

]
 2

 M
ay

 2
01

7

mailto:zeyuan@csail.mit.edu

1 Introduction

In large-scale machine learning, the number of data examples is usually very large. To search for
the optimal solution, one often uses stochastic gradient methods which only require one (or a small
batch of) random example(s) per iteration in order to form an estimator of the full gradient.

While full-gradient based methods can enjoy an accelerated (and optimal) convergence rate if
Nesterov’s momentum trick is used [35–37], theory for stochastic gradient methods are generally
lagging behind and less is known for their acceleration.

At a high level, momentum is dangerous if stochastic gradients are present. If some gradient
estimator is very inaccurate, then adding it to the momentum and moving further in this direction
(for every future iteration) may hurt the convergence performance. In other words, when naively
equipped with momentum, stochastic gradient methods are “very prune to error accumulation” [25]
and do not yield accelerated convergence rates in general.1

In this paper, we show that at least for convex optimization purposes, such an issue can be
solved with a novel “negative momentum” that can be added on top of momentum. We obtain
accelerated and the first optimal convergence rates for stochastic gradient methods, and believe our
new insight can potentially deepen our understanding to the theory of accelerated methods.

Problem Definition. Consider the following composite convex minimization problem

min
x∈Rd

{
F (x)

def
= f(x) + ψ(x)

def
=

1

n

n∑

i=1

fi(x) + ψ(x)
}
. (1.1)

Here, f(x) = 1
n

∑n
i=1 fi(x) is a convex function that is a finite average of n convex, smooth func-

tions fi(x), and ψ(x) is convex, lower semicontinuous (but possibly non-differentiable) function,
sometimes referred to as the proximal function. We mostly focus on the case when ψ(x) is σ-
strongly convex and each fi(x) is L-smooth. (Both these assumptions can be removed and we shall
discuss that later.) We look for approximate minimizers x ∈ Rd satisfying F (x) ≤ F (x∗)+ε, where
x∗ ∈ arg minx{F (x)}.

Problem (1.1) arises in many places in machine learning, statistics, and operations research.
All convex regularized empirical risk minimization (ERM) problems such as Lasso, SVM, Logistic
Regression, fall into this category (see Section 1.2). Efficient stochastic methods for Problem (1.1)
also lead to fast algorithms for neural nets [2, 23] as well as SVD, PCA, and CCA [4, 6, 20].

We summarize the history of stochastic gradient methods solving Problem (1.1) into three eras.

The First Era: Stochastic Gradient Descent (SGD).
Recall that stochastic gradient methods iteratively perform the following update

stochastic gradient iteration: xk+1 ← arg min
y∈Rd

{ 1

2η
‖y − xk‖22 + 〈∇̃k, y〉+ ψ(y)

}
,

where η is the step length and ∇̃k is a random vector satisfying E[∇̃k] = ∇f(xk) and is referred
to as the gradient estimator. If the proximal function ψ(y) equals zero, the update reduces to
xk+1 ← xk − η∇̃k. A popular choice for the gradient estimator is to set ∇̃k = ∇fi(xk) for some
random index i ∈ [n] per iteration, and methods based on this choice are known as stochastic
gradient descent (SGD) [14, 52]. Since computing ∇fi(x) is usually n times faster than that of
∇f(x), SGD enjoys a low per-iteration cost as compared to full-gradient methods; however, SGD
cannot converge at a rate faster than 1/ε even if F (·) is strongly convex and smooth.

1In practice, experimentalists have observed that momentums could sometimes help if stochastic gradient iterations
are used. However, the so-obtained methods (1) sometimes fail to converge in an accelerated rate, (2) become unstable
and hard to tune, and (3) have no support theory behind them. See Section 7.1 for an experiment illustrating that.

1

The Second Era: Variance Reduction Gives Faster Convergence.
The convergence rate of SGD can be further improved with the so-called variance-reduction

technique, first proposed by Schmidt et al. [42] and followed by many others [13, 17, 23, 32, 33, 44–
46, 50, 51]. In these cited results, the authors have shown that SGD converges much faster if one
makes a better choice of the gradient estimator ∇̃k so that its variance reduces as k increases.
One way to choose this estimator can be described as follows [23, 51]. Keep a snapshot vector
x̃ = xk that is updated once every m iterations (where m is some parameter usually around 2n),
and compute the full gradient ∇f(x̃) only for such snapshots. Then, set

∇̃k = ∇fi(xk)−∇fi(x̃) +∇f(x̃) . (1.2)

This choice of gradient estimator ensures that its variance approaches to zero as k grows.
Furthermore, the number of stochastic gradients (i.e., the number of computations of ∇fi(x) for
some i) required to reach an ε-approximate minimizer of Problem (1.1) is only O

((
n + L

σ

)
log 1

ε

)
.

Since it is often denoted by κ
def
= L/σ the condition number of the problem, we rewrite the above

iteration complexity as O
(
(n+ κ) log 1

ε

)
.

Unfortunately, the iteration complexities of all known variance-reduction based methods have
a linear dependence on κ. It was an open question regarding how to obtain

an accelerated stochastic gradient method with an optimal
√
κ dependency.

The Third Era: Acceleration Gives Fastest Convergence.
This open question was partially solved recently by the APPA [19] and Catalyst [29] reductions,

both based on an outer-inner loop structure first proposed by Shalev-Shwartz and Zhang [47].
We refer to both of them as Catalyst in this paper. Catalyst solves Problem (1.1) using O

((
n +√

nκ
)

log κ log 1
ε

)
stochastic gradient iterations, through a logarithmic number of calls to a variance-

reduction method.2 However, Catalyst is still imperfect for the following reasons:

• Optimality. To the best of our knowledge, Catalyst does not match the optimal
√
κ de-

pendence [49] and has an extra log κ factor. For similar reasons, it only yields log2(1/ε)

ε1/2
(or

equivalently log4 T
T 2) suboptimal rates if the objective is not strongly convex, or is non-smooth;

and it only yields the log2(1/ε)
ε (or equivalently log4 T

T) suboptimal rates if the objective is both
non-strongly convex and non-smooth.3

• Practicality. To the best of our knowledge, Catalyst is not very practical since each of its
inner iterations needs to be very accurately executed. This makes the stopping criterion hard
to be tuned, and makes Catalyst sometimes run slower than non-accelerated variance-reduction
methods [28]. We have also confirmed this in our experiments.

• Generality. To the best of our knowledge, Catalyst has a few limitations for being a reduction-
based method. It does not seem to support non-Euclidean norm smoothness (see Section 6). It
does not seem to give competent parallel (i.e., mini-batch) performance (see Section 5).

A bit less known is the work of Lan and Zhou [27], where the authors proposed a primal-dual
method that also has a

√
κ log(κ) dependency. Their method is subject to the same optimality

issue as Catalyst, and requires n times more storage compared with Catalyst for Problem (1.1).
In sum, it is not only desirable but also an open question to develop a direct and primal-only

accelerated stochastic gradient method without using reductions or paying the extra log κ factor.

2Note that n+
√
nκ is always less than O(n+ κ).

3Obtaining optimal rates is one of the main goals in optimization and machine learning. For instance, obtaining the
optimal 1/T rate for online learning was a very meaningful result, even though the log T/T rate was known [21, 41].

2

This could have both theoretical and practical impacts to the problems that fall into the general
framework of (1.1), and potentially deepen our understanding to acceleration in stochastic settings.

1.1 Our Main Results and High-Level Ideas

We develop a direct, accelerated stochastic gradient method Katyusha for solving Problem (1.1) in

O
((
n+
√
nκ
)

log(1/ε)
)

stochastic gradient iterations (see Theorem 3.1).

This gives both optimal dependency on κ and on ε which, to the best of our knowledge, was
not obtained before for stochastic gradient methods. In addition, if F (·) is non-strongly convex,
Katyusha converges to an ε-minimizer in

O
(
n log(1/ε) +

√
nL/ε · ‖x0 − x∗‖

)
stochastic gradient iterations (see Corollary 3.12).

This gives an optimal ε ∝ n
T 2 convergence rate. Again, to the best of our knowledge, was not

obtained before for stochastic gradient methods. For instance, Catalyst has rate ε ∝ n log4 T
T 2 .

Our Algorithm. If ignoring the proximal term ψ(·) and viewing it as zero, our Katyusha method
iteratively perform the following updates for k = 0, 1, . . . :
• xk+1 ← τ1zk + τ2x̃+ (1− τ1 − τ2)yk; (so xk+1 = yk + τ1(zk − yk) + τ2(x̃− yk))
• ∇̃k+1 ← ∇f(x̃) +∇fi(xk+1)−∇fi(x̃) where i is a random index in [n];
• yk+1 ← xk+1 − 1

3L∇̃k+1, and

• zk+1 ← zk − α∇̃k+1.
Above, x̃ is a snapshot point which is updated every m iterations, ∇̃k+1 is the gradient estimator
defined in the same way as (1.2), τ1, τ2 ∈ [0, 1] are two momentum parameters, and α is a parameter
that is equal to 1

3τ1L
. The reason for keeping a sequence of three vectors (xk, yk, zk) is a common

ingredient that can be found in all existing accelerated methods.4

Our New Technique – Katyusha Momentum. The most interesting ingredient of Katyusha
is the novel choice of xk+1 which is a convex combination of yk, zk, and x̃. Our theory suggests
the parameter choices τ2 = 0.5 and τ1 = min{

√
nσ/L, 0.5} and they work well in practice too. To

explain this novel combination, let us recall the classical “momentum” view of accelerated methods.
In a classical accelerated gradient method, xk+1 is only a convex combination of yk and zk (or

equivalently, τ2 = 0 in our formulation). At a high level, zk plays the role of “momentum” which
adds a weighted sum of the gradient history into yk+1. As an illustrative example, suppose τ2 = 0,
τ1 = τ , and x0 = y0 = z0. Then, one can compute that

yk =

x0 − 1
3L∇̃1, k = 1;

x0 − 1
3L∇̃2 −

(
(1− τ) 1

3L + τα
)
∇̃1, k = 2;

x0 − 1
3L∇̃3 −

(
(1− τ) 1

3L + τα
)
∇̃2 −

(
(1− τ)2 1

3L + (1− (1− τ)2)α
)
∇̃1, k = 3.

Since α is usually much larger than 1/3L, the above recursion suggests that the contribution of a
fixed gradient ∇̃t gradually increases as time goes. For instance, the weight on ∇̃1 is increasing
because 1

3L <
(
(1− τ) 1

3L + τα
)
<
(
(1− τ)2 1

3L + (1− (1− τ)2)α
)
. This is known as “momentum”

which is at the heart of all accelerated first-order methods.
In Katyusha, we put a “magnet” around x̃, where we choose x̃ to be essentially “the average xt

of the most recent n iterations”. Whenever we compute the next xk+1, it will be attracted by the
magnet x̃ with weight τ2 = 0.5. This is a strong magnet: it ensures that xk+1 is not too far away

4One can of course rewrite the algorithm and keep track of only two vectors per iteration during implementation.
This will make the algorithm statement less clean so we refrain from doing so in this paper.

3

from x̃ so the gradient estimator remains “accurate enough”. This can be viewed as a “negative
momentum” component, because the magnet retracts xk+1 back to x̃ and this can be understood
as “counteracting a fraction of the positive momentum incurred from earlier iterations.”

We call it the Katyusha momentum.

This summarizes the high-level idea behind our Katyusha method. We remark here if τ1 = τ2 = 0,
Katyusha becomes almost identical to SVRG [23, 51] which is a variance-reduction based method.

1.2 Applications: Optimal Rates for Empirical Risk Minimization

Suppose we are given n feature vectors a1, . . . , an ∈ Rd corresponding to n data samples. Then, the
empirical risk minimization (ERM) problem is to study Problem (1.1) when each fi(x) is “rank-

one” structured: that is, fi(x)
def
= gi(〈ai, x〉) for some loss function gi : R → R. Slightly abusing

notation, we also write fi(x) = fi(〈ai, x〉). (Assuming “rank-one” simplifies the notations; all of
the results stated in this subsection generalize to constant-rank structured functions fi(x).)

In such a case, Problem (1.1) becomes as

ERM: minx∈Rd
{
F (x)

def
= f(x) + ψ(x)

def
= 1

n

∑n
i=1 fi(〈ai, x〉) + ψ(x)

}
. (1.3)

Without loss of generality, we assume each ai has norm 1 because otherwise one can scale fi(·)
accordingly. As summarized for instance in [1], there are four interesting cases of ERM problems,
all can be written in the form of (1.3):

Case 1: ψ(x) is σ strongly convex and fi(x) is L-smooth. Examples: ridge regression, elastic net;

Case 2: ψ(x) is non-strongly convex and fi(x) is L-smooth. Examples: Lasso, logistic regression;

Case 3: ψ(x) is σ strongly convex and fi(x) is non-smooth. Examples: support vector machine;

Case 4: ψ(x) is non-strongly convex and fi(x) is non-smooth. Examples: `1-SVM.

Known Results. For all of the four ERM cases above, accelerated stochastic methods were
introduced in the literature, most notably AccSDCA [47], APCG [30], SPDC [53]. However, all
known accelerated methods have suboptimal convergence rates for Case 2, 3 and 4.5 In particular,
the best known convergence rate was log(1/ε)√

ε
, log(1/ε)√

ε
, and log(1/ε)

ε respectively for Case 2, 3, and 4,

and this is a factor log(1/ε) worse than the optimal rate for each of the three classes [49].
It is an open question also in the optimization community to design a stochastic gradient

method with optimal convergence for such problems. In particular, Dang and Lan [16] provided an
interesting attempt to remove such log factors but using a non-classical notion of convergence.6

Besides the log factor loss in the running time,7 the aforementioned methods are dual-based and
therefore suffer from several other issues. First, they only apply to ERM problems but not to the
more general Problem (1.1). Second, they require proximal updates with respect to the Fenchel
conjugate f∗i (·) which is sometimes unpleasant to work with. Third, their performances cannot
benefit from the implicit strong convexity in f(·). All of these issues together make dual-based

5In fact, they also have the suboptimal dependence on the condition number L/σ for Case 1.
6Dang and Lan work in a primal-dual φ(x, y) formulation of Problem (1.1), and produce a primal-dual pair (x, y)

so that for every fixed (u, v), the expectation E[φ(x, v)−φ(u, y)] ≤ ε. Unfortunately, to ensure x is an ε-approximate
minimizer of Problem (1.1), one needs the stronger E[max(u,v) φ(x, v)− φ(u, y)] ≤ ε to hold.

7In fact, dual-based methods have to suffer from a log factor loss in the convergence rate. This is so because even
for Case 1 of Problem (1.3), converting an ε-maximizer for the dual objective to the primal, one only obtains an
nκε-minimizer on the primal objective. As a result, algorithms like APCG who directly work on the dual, algorithms
like SPDC who maintain both primal and dual variables, and algorithms like RPDG [27] that are primal-like but still
use dual analysis, have to suffer from a log loss in the convergence rates.

4

accelerated methods sometimes even outperformed by primal-only non-accelerated ones, such as
SAGA [17] or SVRG [23, 51].

Our Results. Katyusha simultaneously closes the gap for all of the three classes of problems with
the help from the optimal reductions developed in [1]. We obtain an ε-approximate minimizer for

Case 2 in O
(
n log 1

ε +
√
nL√
ε

)
iterations, for Case 3 in O

(
n log 1

ε +
√
n√
σε

)
iterations, and for Case 4 in

O
(
n log 1

ε +
√
n
ε

)
iterations. In contrast, none of the existing accelerated methods can lead to such

optimal rates even if the optimal reductions of [1] are used.
After this paper first appeared on arXiv, Woodworth and Srebro [49] proved the tightness of

our results. They showed lower bounds Ω
(
n +

√
nL√
ε

)
, Ω
(
n +

√
n√
σε

)
, and Ω

(
n +

√
n
ε

)
for Cases 2, 3,

and 4 respectively at least for small ε.8

1.3 Our Side Results

Parallelism / Mini-batch. Instead of using a single ∇fi(·) per iteration, for any stochastic
gradient method, one can replace it with the average of b stochastic gradients 1

b

∑
i∈S ∇fi(·), where

S is a random subset of [n] with cardinality b. This is known as the mini-batch technique and it
allows the stochastic gradients to be computed in a distributed manner, using up to b processors.

Our Katyusha method trivially extends to this mini-batch setting (see Section 3). For instance,
at least for b ∈ {1, 2, . . . , d√ne}, Katyusha enjoys a linear speed-up in the parallel running time. In
other words, if ignoring communication overhead,

Katyusha can be distributed to b ≤ √n machines with a parallel speed-up factor b.

In contrast, to the best of our knowledge, without any additional assumption, (1) non-accelerated
methods such as SVRG or SAGA do not enjoy any parallel speed-up; (2) Catalyst enjoys a parallel
speed-up factor of only

√
b.

Non-Uniform Smoothness. If each fi(·) has a possibly different smooth parameter Li and
L = 1

n

∑n
i=1 Li, then an naive implementation of Katyusha only gives a complexity that depends

on maxi Li but not L. In such a case, we can select the random index i ∈ [n] with probability
proportional to Li per iteration to slightly improve the total running time.

Furthermore, suppose f(x) = 1
n

∑n
i=1 fi(x) is smooth with parameter L, it satisfies L ∈ [L, nL].

One can ask whether or not L influences the performance of Katyusha. We show that, in the
mini-batch setting when b is large, the total complexity becomes a function on L as opposed to L.

A Precise Statement. Taking into account both the mini-batch parameter b and the non-uniform
smoothness parameters L and L, we show that Katyusha solves Problem (1.1) in

O
((
n+ b

√
L/σ +

√
nL/σ

)
· log

1

ε

)
stochastic gradient computations (see Theorem 5.2)

Non-Euclidean Norms. If the smoothness of each fi(x) is with respect to a non-Euclidean norm
(such as the well known `1 norm case over the simplex), our main result still holds. Our update on
the yk+1 side becomes the non-Euclidean norm gradient descent, and our update on the zk+1 side
becomes the non-Euclidean norm mirror descent. We include such details in Section 6. In contrast,
to the best of our knowledge, Catalyst, AccSDCA and APCG do not work with non-Euclidean
norms. SPDC can be revised to work with non-Euclidean norms, see [8].

8More precisely, their lower bounds for Cases 3 and 4 are Ω
(

min
{

1
σε
, n +

√
n√
σε

})
and Ω

(
min

{
1
ε2
, n +

√
n
ε

})
.

However, since the vanilla SGD requires O(1
σε

) and O(1
ε2

) iterations for Cases 3 and 4, such lower bounds are
matched by combining the best between Katyusha and SGD.

5

Remark on Katyusha Momentum Weight τ2. To provide the simplest proof, we choose
τ2 = 1/2 which also works well in practice. Our proof trivially generalizes to all constant values
τ2 ∈ (0, 1), and it could be beneficial to tune τ2 for different datasets. However, for a stronger
comparison, in our experiments we refrain from tuning τ2: by fixing τ2 = 1/2 and without increasing
parameter tuning difficulties, Katyusha already outperforms most of the state-of-the-arts.

In the mini-batch setting, it turns out the best theoretical choice is essentially τ2 = 1
2b , where b

is the size of the mini-batch. In other words, the larger the mini-batch size, the smaller weight we
want to give to Katyusha momentum. This should be intuitive, because when b = n we are almost
in the full-gradient setting and do not need Katyusha momentum.

1.4 Related Work

For smooth convex minimization problems, (full) gradient descent converges at a rate L
ε —or L

σ log 1
ε

if the objective is σ-strongly convex. This is not optimal among the class of first-order methods.

Nesterov showed that the optimal rate should be
√
L√
ε

—or
√
L√
σ

log 1
ε if the objective is σ-strongly

convex— and this was achieved by his celebrated accelerated (full) gradient descent method [35].

Randomized Coordinate Descent. Another way to define gradient estimator is to set ∇̃k =
d∇jf(xk) where j is a random coordinate. This is (randomized) coordinate descent as opposed to
stochastic gradient descent. Designing accelerated methods for coordinate descent is significantly
easier than designing that for stochastic gradient descent, and has indeed been done in many
previous results including [12, 30, 31, 38].9 The state-of-the-art accelerated coordinate descent
method is NUACDM [12]. Coordinate descent cannot be applied to solve Problem (1.1) because in
our setting, only one copy ∇fi(·) is computed in a stochastic iteration.

Hybrid Accelerated and Stochastic Methods. Several recent results study hybrid methods
with convergence rates that are generally non-accelerated and only accelerated in extreme cases.

• The authors of [22, 26] obtained iteration complexity of the form O(L/
√
ε+σ/ε2) in the presence

of stochastic gradient with variance σ. These results can be interpreted as follows, if σ is very
small, then one can directly apply Nesterov’s accelerated gradient method and achieve O(L/

√
ε);

or if σ is large then they match the SGD iteration complexity O(σ/ε2). For Problem (1.1), these
algorithms do not give faster running time than Katyusha unless σ is very small.10

• Nitanda’s method adds momentum to the non-accelerated variance-reduction method in a naive
manner [39] and thus corresponds to this paper but without Katyusha momentum (i.e., τ2 = 0).
The theoretical running time of [39] is always slower than this paper and cannot even outperform
SVRG [23, 51] unless κ > n2 —which is usually false in practice (see page 7 of [39]).11 We have
included an experiment in Section 7.1 to illustrate why Katyusha momentum is necessary.

Linear Coupling. Allen-Zhu and Orecchia proposed a framework called linear coupling that
facilitates the design of accelerated gradient methods [11]. The simplest use of linear coupling
can reconstruct Nesterov’s accelerated full-gradient method [11], or to provide faster coordinate

9The reason behind it can be understood as follows. If a function f(·) is L smooth with respect to coordinate j,
then a coordinate descent step x′ ← x− 1

L
∇jf(x)ej always decreases the objective, i.e., f(x+ 1

L
∇jf(x)ej) < f(x).

In contrast, this is false for stochastic gradient descent, because f(xk − η∇̃k) may be even larger than f(xk).
10When σ is large, even if n is large, the iteration complexity of [22, 26] becomes O(σ/ε2). In this regime, almost

all variance-reduction methods, including SVRG and Katyusha, can be shown to satisfy ε ≤ O(
√
σ√
T

) within the first

epoch, if the learning rates are appropriately chosen. Therefore, Katyusha and SVRG are no slower than [22, 26].
11Nitanda’s method is usually not considered as an accelerated method, since it requires mini-batch size to be very

large in order to be accelerated. If mini-batch is large then one can use full-gradient method directly and acceleration
is trivial. This is confirmed by [25, Section IV.F]. In contrast, our acceleration holds even if mini-batch size is 1.

6

descent [12]. More careful use of linear coupling can also give accelerated methods for non-smooth
problems (such as positive LP [9, 10], positive SDP [3], matrix scaling [7]) or for general non-
convex problems [2]. This present paper falls into this linear-coupling framework, but our Katyusha
momentum technique was not present in any of these cited results.

1.5 Roadmap

• In Section 2, we provide necessary notations and useful preliminaries .
• In Section 3, we state and prove our theorem on Katyusha for the strongly convex case, and

apply it to non-strongly convex or non-smooth cases using reductions.
• In Section 4, we provide a direct algorithm Katyushans for the non-strongly case.
• In Section 5, we generalize Katyusha to the mini-batch and non-uniform smoothness settings.
• In Section 6, we generalize Katyusha to the non-Euclidean norm setting.
• In Section 7, we provide an empirical evaluation to illustrate the necessity of Katyusha momen-

tum, and the practical performance of Katyusha comparing to the start-of-the-arts.

2 Preliminaries

Throughout this paper (except Section 6), we denote by ‖ · ‖ the Euclidean norm. We denote by
∇f(x) the full gradient of function f if it is differentiable, or the subgradient if f is only Lipschitz
continuous. Recall some classical definitions on strong convexity (SC) and smoothness.

Definition 2.1 (smoothness and strong convexity). For a convex function f : Rn → R,
• f is σ-strongly convex if ∀x, y ∈ Rn, it satisfies f(y) ≥ f(x) + 〈∇f(x), y − x〉+ σ

2 ‖x− y‖2.
• f is L-smooth if ∀x, y ∈ Rn, it satisfies ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

We also need to use the following definition of the HOOD property:

Definition 2.2 ([1]). An algorithm solving the strongly convex case of Problem (1.1) satisfies the
homogenous objective decrease (HOOD) property with time Time(L, σ), if for every starting point

x0, it produces an output x′ satisfying E
[
F (x′)

]
−F (x∗) ≤ F (x0)−F (x∗)

4 in time at most Time(L, σ).

The authors of [1] designed three reductions AdaptReg, AdaptSmooth, and JointAdaptRegSmooth
to convert an algorithm satisfying the HOOD property to solve the following three cases:

Theorem 2.3. Given an algorithm satisfying HOOD with Time(L, σ) and a starting vector x0.

• NonSC+Smooth. For Problem (1.1) where f(·) is L-smooth, AdaptReg outputs x satisfying
E
[
F (x)

]
− F (x∗) ≤ O(ε) in time

∑T−1
t=0 Time(L, σ02t) where σ0 = F (x0)−F (x∗)

‖x0−x∗‖2 and T = log2
F (x0)−F (x∗)

ε .

• SC+NonSmooth. For Problem (1.3) where ψ(·) is σ-SC and each fi(·) is
√
G-Lipschitz con-

tinuous, AdaptSmooth outputs x satisfying E
[
F (x)

]
− F (x∗) ≤ O(ε) in time

∑T−1
t=0 Time(2t

λ0
, σ) where λ0 = F (x0)−F (x∗)

G and T = log2
F (x0)−F (x∗)

ε .

• NonSC+NonSmooth. For Problem (1.3) where each fi(·) is
√
G-Lipschitz continuous, then

JointAdaptRegSmooth outputs x satisfying E
[
F (x)

]
− F (x∗) ≤ O(ε) in time

∑T−1
t=0 Time(2t

λ0
, σ02t) where λ0 = F (x0)−F (x∗)

G , σ0 = F (x0)−F (x∗)
‖x0−x∗‖2 and T = log2

F (x0)−F (x∗)
‖x0−x∗‖2 .

We shall verify in later that Katyusha satisfies HOOD so the above reductions can be applied.

7

Algorithm 1 Katyusha(x0, S, σ, L)

1: m← 2n; � epoch length

2: τ2 ← 1
2 , τ1 ← min

{√mσ√
3L
, 12
}

, α← 1
3τ1L

; � parameters

3: y0 = z0 = x̃0 ← x0; � initial vectors

4: for s← 0 to S − 1 do
5: µs ← ∇f(x̃s); � compute the full gradient once every m iterations

6: for j ← 0 to m− 1 do
7: k ← (sm) + j;
8: xk+1 ← τ1zk + τ2x̃

s + (1− τ1 − τ2)yk;
9: ∇̃k+1 ← µs +∇fi(xk+1)−∇fi(x̃s) where i is random from {1, 2, . . . , n};

10: zk+1 = arg minz
{

1
2α‖z − zk‖2 + 〈∇̃k+1, z〉+ ψ(z)

}
;

11: Option I: yk+1 ← arg miny
{
3L
2 ‖y − xk+1‖2 + 〈∇̃k+1, y〉+ ψ(y)

}
;

12: Option II: yk+1 ← xk+1 + τ1(zk+1 − zk) � we analyze only I but II also works

13: end for
14: x̃s+1 ←

(∑m−1
j=0 (1 + ασ)j

)−1 ·
(∑m−1

j=0 (1 + ασ)j · ysm+j+1

)
; � compute snapshot x̃

15: end for
16: return x̃S .

3 Katyusha in the Strongly Convex Setting

We formally introduce our Katyusha algorithm in Algorithm 1. It follows from our high-level
description in Section 1.1, and we make several remarks here behind our specific design.

• Katyusha is divided into epochs each consisting of m iterations. In theory, m can be anything
linear in n. We let snapshot x̃ be a weighted average of yk in the most recent epoch.

x̃ and ∇̃k correspond to a standard design on variance-reduced gradient estimators, called
SVRG [23, 51]. The practical recommendation is m = 2n [23]. Our choice ∇̃k is indepen-
dent from our acceleration techniques, and we expect our result continues to apply to other
choices of gradient estimators. We choose x̃ to be a weighted average, rather than the last or
the uniform average, because it yields the tightest possible result.12

• τ1 and α are standard parameters already present in Nesterov’s full-gradient method [11].

We choose α = 1/3τ1L to present the simplest proof, and recall it was α = 1/τ1L in the original
Nesterov’s full-gradient method. (Any α that is constant factor smaller than 1/τ1L works in
theory, and we use 1/3 to provide the simplest proof.) In practice, like other accelerated methods,
it suffices to fix α = 1/3τ1L and only tune τ1 and thus τ1 is viewed as the learning rate.

• The parameter τ2 is our novel weight for the Katyusha momentum. Any constant in (0, 1) works
for τ2, and we simply choose τ2 = 1/2 for our theoretical and experimental results.

We state our main theorem for Katyusha as follows:

12If one uses the uniform average, in theory, the algorithm needs to restart every a number of epochs (that is, by
resetting k = 0, s = 0, and x0 = y0 = z0); we refrain from doing so because we wish to provide a simple and direct
algorithm. We can also use the last iterate, then the total complexity loses a factor log(L/σ). In practice, it was
reported that even for SVRG, choosing average works better than choosing the last iterate [13].

8

Theorem 3.1. If each fi(x) is convex, L-smooth, and ψ(x) is σ-strongly convex in Problem (1.1),
then Katyusha(x0, S, σ, L) satisfies

E
[
F (x̃S)

]
− F (x∗) ≤

{
O
((

1 +
√
σ/(3Lm)

)−Sm) ·
(
F (x0)− F (x∗)

)
, if mσ

L ≤ 3
4 ;

O
(
1.5−S

)
·
(
F (x0)− F (x∗)

)
, if mσ

L > 3
4 .

In other words, choosing m = Θ(n), Katyusha achieves an ε-additive error (i.e., E
[
F (x̃S)

]
−

F (x∗) ≤ ε) using at most O
((
n+

√
nL/σ

)
· log F (x0)−F (x∗)

ε

)
iterations.13

The proof of Theorem 3.1 is included in Section 3.1 and 3.2. As discussed in Section 1.1, the
main idea behind our theorem is the negative momentum that helps reduce the error occurred from
the stochastic gradient estimator.

Remark 3.2. Because m = 2n, each iteration of Katyusha computes only 1.5 stochastic gradients
∇fi(·) in the amortized sense, the same as non-accelerated methods such as SVRG [23].14 Therefore,
the per-iteration cost of Katyusha is dominated by the computation of ∇fi(·), the proximal update
in Line 10 of Algorithm 1, plus an overhead O(d). If ∇fi(·) has at most d′ ≤ d non-zero entries,
this overhead O(d) is improvable to O(d′) using a sparse implementation of Katyusha.15

For ERM problems defined in Problem (1.3), the amortized per-iteration complexity of Katyusha
is O(d′) where d′ is the sparsity of feature vectors, the same as the per-iteration complexity of SGD.

3.1 One-Iteration Analysis

In this subsection, we first analyze the behavior of Katyusha in a single iteration (i.e., for a fixed
k). We view yk, zk and xk+1 as fixed in this section so the only randomness comes from the choice
of i in iteration k. We abbreviate in this subsection by x̃ = x̃s where s is the epoch that iteration
k belongs to, and denote by σ2k+1

def
= ‖∇f(xk+1)−∇̃k+1‖2 so E[σ2k+1] is the variance of the gradient

estimator ∇̃k+1 in this iteration.
Our first lemma lower bounds the expected objective decrease F (xk+1) − E[F (yk+1)]. Our

Prog(xk+1) defined below is a non-negative, classical quantity that would be a lower bound on the
amount of objective decrease if ∇̃k+1 were equal to ∇f(xk+1) [11]. However, since the variance σ2k+1

is non-zero, this lower bound must be compensated by a negative term that depends on E[σ2k+1].

Lemma 3.3 (proximal gradient descent). If

yk+1 = arg min
y

{3L

2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}
, and

Prog(xk+1)
def
= −min

y

{3L

2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}
≥ 0 ,

we have (where the expectation is only over the randomness of ∇̃k+1)

F (xk+1)− E
[
F (yk+1)

]
≥ E

[
Prog(xk+1)

]
− 1

4L
E
[
σ2k+1

]
.

14The claim “SVRG or Katyusha computes 1.5 stochastic gradients” requires one to store ∇if(x̃) in the memory
for each i ∈ [n], and this costs O(dn) space in the most general setting. If one does not store ∇if(x̃) in the memory,
then each iteration of SVRG or Katyusha computes 2.5 stochastic gradients for the choice m = 2n.

15This requires to defer a coordinate update to the moment it is accessed. Update deferral is a standard technique
used in sparse implementations of all stochastic gradient methods, including SVRG, SAGA, APCG [17, 23, 30].

9

Proof.

Prog(xk+1) = −min
y

{3L

2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}

¬
= −

(3L

2
‖yk+1 − xk+1‖2 + 〈∇̃k+1, yk+1 − xk+1〉+ ψ(yk+1)− ψ(xk+1)

)

= −
(L

2
‖yk+1 − xk+1‖2 + 〈∇f(xk+1), yk+1 − xk+1〉+ ψ(yk+1)− ψ(xk+1)

)

+
(
〈∇f(xk+1)− ∇̃k+1, yk+1 − xk+1〉 − L‖yk+1 − xk+1‖2

)

≤ −

(
f(yk+1)− f(xk+1) + ψ(yk+1)− ψ(xk+1)

)
+

1

4L
‖∇f(xk+1)− ∇̃k+1‖2 .

Above, ¬ is by the definition of yk+1, and uses the smoothness of function f(·), as well as
Young’s inequality 〈a, b〉 − 1

2‖b‖2 ≤ 1
2‖a‖2. Taking expectation on both sides we arrive at the

desired result. �
The following lemma provides a novel upper bound on the expected variance of the gradient

estimator. Note that all known variance reduction analysis for convex optimization, in one way
or another, upper bounds this variance essentially by 4L · (f(x̃) − f(x∗)), the objective distance
to the minimizer (c.f. [17, 23]). The recent result of Allen-Zhu and Hazan [1] upper bounds it by
the point distance ‖xk+1 − x̃‖2 for non-convex objectives, which is tighter if x̃ is close to xk+1 but
unfortunately not enough for the purpose of this paper.

In this paper, we upper bound it by the tightest possible quantity which is essentially 2L ·(
f(x̃)−f(xk+1)

)
� 4L ·

(
f(x̃)−f(x∗)

)
. Unfortunately, this upper bound needs to be compensated

by an additional term 〈∇f(xk+1), x̃ − xk+1〉, which could be positive but we shall cancel it using
the introduced Katyusha momentum.

Lemma 3.4 (variance upper bound).

E
[
‖∇̃k+1 −∇f(xk+1)‖2

]
≤ 2L ·

(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

)
.

Proof. Each fi(x), being convex and L-smooth, implies the following inequality which is classical in
convex optimization and can be found for instance in Theorem 2.1.5 of the textbook of Nesterov [36].

‖∇fi(xk+1)−∇fi(x̃)‖2 ≤ 2L ·
(
fi(x̃)− fi(xk+1)− 〈∇fi(xk+1), x̃− xk+1〉

)

Therefore, taking expectation over the random choice of i, we have

E
[
‖∇̃k+1 −∇f(xk+1)‖2

]
= E

[∥∥(∇fi(xk+1)−∇fi(x̃)
)
−
(
∇f(xk+1)−∇f(x̃)

)∥∥2]

¬
≤ E

[∥∥∇fi(xk+1)−∇fi(x̃)
∥∥2]

≤ 2L · E

[
fi(x̃)− fi(xk+1)− 〈∇fi(xk+1), x̃− xk+1〉

]

= 2L ·
(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

)
.

Above, ¬ is because for any random vector ζ ∈ Rd, it holds that E‖ζ − Eζ‖2 = E‖ζ‖2 − ‖Eζ‖2;

follows from the first inequality in this proof. �
The next lemma is a classical one for proximal mirror descent.

Lemma 3.5 (proximal mirror descent). Suppose ψ(·) is σ-SC. Then, fixing ∇̃k+1 and letting

zk+1 = arg min
z

{1

2
‖z − zk‖2 + α〈∇̃k+1, z − zk〉+ αψ(z)− αψ(zk)

}
,

10

it satisfies for all u ∈ Rd,

α〈∇̃k+1, zk+1 − u〉+ αψ(zk+1)− αψ(u) ≤ −1

2
‖zk − zk+1‖2 +

1

2
‖zk − u‖2 −

1 + ασ

2
‖zk+1 − u‖2 .

Proof. By the minimality definition of zk+1, we have that

zk+1 − zk + α∇̃k+1 + αg = 0

where g is some subgradient of ψ(z) at point z = zk+1. This implies that for every u it satisfies

0 =
〈
zk+1 − zk + α∇̃k+1 + αg, zk+1 − u〉 .

At this point, using the equality 〈zk+1− zk, zk+1−u〉 = 1
2‖zk− zk+1‖2− 1

2‖zk−u‖2 + 1
2‖zk+1−u‖2,

as well as the inequality 〈g, zk+1−u〉 ≥ ψ(zk+1)−ψ(u)+ σ
2 ‖zk+1−u‖2 which comes from the strong

convexity of ψ(·), we can write

α〈∇̃k+1, zk+1 − u〉+ αψ(zk+1)− αψ(u)

= −〈zk+1 − zk, zk+1 − u〉 − 〈αg, zk+1 − u〉+ αψ(zk+1)− αψ(u)

≤ −1

2
‖zk − zk+1‖2 +

1

2
‖zk − u‖2 −

1 + ασ

2
‖zk+1 − u‖2 . �

The following lemma combines Lemma 3.3, Lemma 3.4 and Lemma 3.5 all together, using the
special choice of xk+1 which is a convex combination of yk, zk and x̃:

Lemma 3.6 (coupling step 1). If xk+1 = τ1zk + τ2x̃+ (1− τ1− τ2)yk, where τ1 ≤ 1
3αL and τ2 = 1

2 ,

α〈∇f(xk+1), zk − u〉 − αψ(u)

≤ α

τ1

(
F (xk+1)− E

[
F (yk+1)

]
+ τ2F (x̃)− τ2f(xk+1)− τ2〈∇f(xk+1), x̃− xk+1〉

)

+
1

2
‖zk − u‖2 −

1 + ασ

2
E
[
‖zk+1 − u‖2

]
+
α(1− τ1 − τ2)

τ1
ψ(yk)−

α

τ1
ψ(xk+1) .

Proof. We first apply Lemma 3.5 and get

α〈∇̃k+1, zk − u〉+ αψ(zk+1)− αψ(u)

= α〈∇̃k+1, zk − zk+1〉+ α〈∇̃k+1, zk+1 − u〉+ αψ(zk+1)− αψ(u)

≤ α〈∇̃k+1, zk − zk+1〉 −
1

2
‖zk − zk+1‖2 +

1

2
‖zk − u‖2 −

1 + ασ

2
‖zk+1 − u‖2 . (3.1)

By defining v
def
= τ1zk+1 + τ2x̃+ (1− τ1 − τ2)yk, we have xk+1 − v = τ1(zk − zk+1) and therefore

E
[
α〈∇̃k+1, zk − zk+1〉 −

1

2
‖zk − zk+1‖2

]
= E

[α
τ1
〈∇̃k+1, xk+1 − v〉 −

1

2τ21
‖xk+1 − v‖2

]

= E
[α
τ1

(
〈∇̃k+1, xk+1 − v〉 −

1

2ατ1
‖xk+1 − v‖2 − ψ(v) + ψ(xk+1)

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]

¬
≤ E

[α
τ1

(
〈∇̃k+1, xk+1 − v〉 −

3L

2
‖xk+1 − v‖2 − ψ(v) + ψ(xk+1)

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]

≤ E

[α
τ1

(
F (xk+1)− F (yk+1) +

1

4L
σ2k+1

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]

®
≤ E

[α
τ1

(
F (xk+1)− F (yk+1) +

1

2

(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

))

+
α

τ1

(
τ1ψ(zk+1) + τ2ψ(x̃) + (1− τ1 − τ2)ψ(yk)− ψ(xk+1)

)]
. (3.2)

11

Above, ¬ uses our choice τ1 ≤ 1
3αL , uses Lemma 3.3, ® uses Lemma 3.4 together with the

convexity of ψ(·) and the definition of v. Finally, noticing that E[〈∇̃k+1, zk−u〉] = 〈∇f(xk+1), zk−u〉
and τ2 = 1

2 , we obtain the desired inequality by combining (3.1) and (3.2). �
The next lemma simplifies the left hand side of Lemma 3.6 using the convexity of f(·), and gives

an inequality that relates the objective-distance-to-minimizer quantities F (yk)−F (x∗), F (yk+1)−
F (x∗), and F (x̃)−F (x∗) to the point-distance-to-minimizer quantities ‖zk−x∗‖2 and ‖zk+1−x∗‖2.
Lemma 3.7 (coupling step 2). Under the same choices of τ1, τ2 as in Lemma 3.6, we have

0 ≤ α(1− τ1 − τ2)
τ1

(F (yk)− F (x∗))− α

τ1

(
E
[
F (yk+1)

]
− F (x∗)

)
+
ατ2
τ1

(
F (x̃)− F (x∗)

)

+
1

2
‖zk − x∗‖2 −

1 + ασ

2
E
[
‖zk+1 − x∗‖2

]
.

Proof. We first compute that

α
(
f(xk+1)− f(u)

) ¬
≤ α〈∇f(xk+1), xk+1 − u〉

= α〈∇f(xk+1), xk+1 − zk〉+ α〈∇f(xk+1), zk − u〉

=
ατ2
τ1
〈∇f(xk+1), x̃− xk+1〉+

α(1− τ1 − τ2)
τ1

〈∇f(xk+1), yk − xk+1〉+ α〈∇f(xk+1), zk − u〉
®
≤ ατ2

τ1
〈∇f(xk+1), x̃− xk+1〉+

α(1− τ1 − τ2)
τ1

(f(yk)− f(xk+1)) + α〈∇f(xk+1), zk − u〉 .

Above, ¬ uses the convexity of f(·), uses the choice that xk+1 = τ1zk + τ2x̃ + (1 − τ1 − τ2)yk,
and ® uses the convexity of f(·) again. By applying Lemma 3.6 to the above inequality, we have

α
(
f(xk+1)− F (u)

)
≤ α(1− τ1 − τ2)

τ1
(F (yk)− f(xk+1))

+
α

τ1

(
F (xk+1)−E

[
F (yk+1)

]
+τ2F (x̃)−τ2f(xk+1)

)
+

1

2
‖zk−u‖2−

1 + ασ

2
E
[
‖zk+1−u‖2

]
− α
τ1
ψ(xk+1)

which implies

α
(
F (xk+1)− F (u)

)
≤ α(1− τ1 − τ2)

τ1
(F (yk)− F (xk+1))

+
α

τ1

(
F (xk+1)− E

[
F (yk+1)

]
+ τ2F (x̃)− τ2F (xk+1)

)
+

1

2
‖zk − u‖2 −

1 + ασ

2
E
[
‖zk+1 − u‖2

]
.

After rearranging and setting u = x∗, the above inequality yields

0 ≤ α(1− τ1 − τ2)
τ1

(F (yk)− F (x∗))− α

τ1

(
E
[
F (yk+1)− F (x∗)

])
+
ατ2
τ1

(
F (x̃)− F (x∗)

)

+
1

2
‖zk − x∗‖2 −

1 + ασ

2
E
[
‖zk+1 − x∗‖2

]
. �

3.2 Proof of Theorem 3.1

We are now ready to combine the analyses across iterations, and derive our final Theorem 3.1. Our
proof next requires a careful telescoping of Lemma 3.7 together with our specific parameter choices.

Proof of Theorem 3.1. Define Dk
def
= F (yk)− F (x∗), D̃s def

= F (x̃s)− F (x∗), and rewrite Lemma 3.7:

0 ≤ (1− τ1 − τ2)
τ1

Dk −
1

τ1
Dk+1 +

τ2
τ1
E
[
D̃s
]

+
1

2α
‖zk − x∗‖2 −

1 + ασ

2α
E
[
‖zk+1 − x∗‖2

]
.

12

At this point, let us define θ = 1 +ασ and multiply the above inequality by θj for each k = sm+ j.
Then, we sum up the resulting m inequalities for all j = 0, 1, . . . ,m− 1:

0 ≤ E
[(1− τ1 − τ2)

τ1

m−1∑

j=0

Dsm+j · θj −
1

τ1

m−1∑

j=0

Dsm+j+1 · θj
]

+
τ2
τ1
D̃s ·

m−1∑

j=0

θj

+
1

2α
‖zsm − x∗‖2 −

θm

2α

[
‖z(s+1)m − x∗‖2

]
.

Note that in the above inequality we have assumed all the randomness in the first s− 1 epochs are
fixed and the only source of randomness comes from epoch s. We can rearrange the terms in the
above inequality and get

E
[τ1 + τ2 − (1− 1/θ)

τ1

m∑

j=1

Dsm+j · θj
]
≤ (1− τ1 − τ2)

τ1

(
Dsm − θmE

[
D(s+1)m

])

+
τ2
τ1
D̃s ·

m−1∑

j=0

θj +
1

2α
‖zsm − x∗‖2 −

θm

2α
E
[
‖z(s+1)m − x∗‖2

]
.

Using the special choice that x̃s+1 =
(∑m−1

j=0 θj
)−1 ·∑m−1

j=0 ysm+j+1 ·θj and the convexity of F (·), we

derive that D̃s+1 ≤
(∑m−1

j=0 θj
)−1 ·∑m−1

j=0 Dsm+j+1 · θj . Substituting this into the above inequality,
we get

τ1 + τ2 − (1− 1/θ)

τ1
θE
[
D̃s+1

]
·
m−1∑

j=0

θj ≤ (1− τ1 − τ2)
τ1

(
Dsm − θmE

[
D(s+1)m

])

+
τ2
τ1
D̃s ·

m−1∑

j=0

θj +
1

2α
‖zsm − x∗‖2 −

θm

2α
E
[
‖z(s+1)m − x∗‖2

]
. (3.3)

We consider two cases next.

Case 1. Suppose mσ
L ≤ 3

4 . In this case, we choose α = 1√
3mσL

and τ1 = 1
3αL = mασ =

√
mσ√
3L
∈ [0, 12]

for Katyusha. It implies ασ ≤ 1/2m and therefore the following inequality holds:

τ2(θ
m−1 − 1) + (1− 1/θ) =

1

2
((1 + ασ)m−1 − 1) + (1− 1

1 + ασ
) ≤ (m− 1)ασ + ασ = mασ = τ1 .

In other words, we have τ1 + τ2 − (1− 1/θ) ≥ τ2θm−1 and thus (3.3) implies that

E
[τ2
τ1
D̃s+1 ·

m−1∑

j=0

θj +
1− τ1 − τ2

τ1
D(s+1)m +

1

2α
‖z(s+1)m − x∗‖2

]

≤ θ−m ·
(τ2
τ1
D̃s ·

m−1∑

j=0

θj +
1− τ1 − τ2

τ1
Dsm +

1

2α
‖zsm − x∗‖2

)
.

If we telescope the above inequality over all epochs s = 0, 1, . . . , S − 1, we obtain

E
[
F (x̃S)− F (x∗)

]
= E

[
D̃S
] ¬
≤ θ−Sm ·O

(
D̃0 +D0 +

τ1
αm
‖x0 − x∗‖2

)

≤ θ−Sm ·O

(
1 +

τ1
αmσ

)
· (F (x0)− F (x∗))

®
= O((1 + ασ)−Sm) ·

(
F (x0)− F (x∗)

)
. (3.4)

13

Above, ¬ uses the fact that
∑m−1

j=0 θj ≥ m and τ2 = 1
2 ; uses the strong convexity of F (·) which

implies F (x0)− F (x∗) ≥ σ
2 ‖x0 − x∗‖2; and ® uses our choice of τ1.

Case 2. Suppose mσ
L > 3

4 . In this case, we choose τ1 = 1
2 and α = 1

3τ1L
= 2

3L as in Katyusha.
Our parameter choices help us simplify (3.3) as (noting (τ1 + τ2 − (1− 1/θ))θ = 1)

2E
[
D̃s+1

]
·
m−1∑

j=0

θj ≤ D̃s ·
m−1∑

j=0

θj +
1

2α
‖zsm − x∗‖2 −

θm

2α
E
[
‖z(s+1)m − x∗‖2

]
.

Since θm = (1 + ασ)m ≥ 1 + ασm = 1 + 2σm
3L ≥ 3

2 , the above inequality implies

3

2
E
[
D̃s+1

]
·
m−1∑

j=0

θj +
9L

8
E
[
‖z(s+1)m − x∗‖2

]
≤ D̃s ·

m−1∑

j=0

θj +
3L

4
‖zsm − x∗‖2 .

If we telescope this inequality over all the epochs s = 0, 1, . . . , S − 1, we immediately have

E
[
D̃S ·

m−1∑

j=0

θj +
3L

4
‖zSm − x∗‖2

]
≤
(2

3

)S ·
(
D̃0 ·

m−1∑

j=0

θj +
3L

4
‖z0 − x∗‖2

)
.

Finally, since
∑m−1

j=0 θj ≥ m and σ
2 ‖z0 − x∗‖2 ≤ F (x0) − F (x∗) owing to the strong convexity of

F (·), we conclude that

E
[
F (x̃S)− F (x∗)

]
≤ O

(
1.5−S

)
·
(
F (x0)− F (x∗)

)
. (3.5)

Combining (3.4) and (3.5) we finish the proof of Theorem 3.1. �

3.3 Corollaries on Non-Smooth or Non-SC Problems

In this section we apply reductions from Theorem 2.3 to translate our Theorem 3.1 into optimal
algorithms also for non-strongly convex objectives and/or non-smooth objectives. To begin with,
it is an immediate corollary of Theorem 3.1 that Katyusha satisfies the HOOD property:

Corollary 3.8. Katyusha satisfies the HOOD property with T (L, σ) = O
(
n+

√
nL√
σ

)
iterations.

Remark 3.9. Existing accelerated stochastic methods before this work (even for simpler Problem (1.3))
either do not satisfy HOOD or satisfy HOOD with an additional factor log(L/σ) in the number of
iterations. This is why they do not yield optimal convergence rates even if Theorem 2.3 is used.

Combining Corollary 3.8 with Theorem 2.3, we have the following corollaries:

Corollary 3.10. If each fi(x) is convex, L-smooth and ψ(·) is not necessarily strongly convex in
Problem (1.1), then by applying AdaptReg on Katyusha with a starting vector x0, we obtain an
output x satisfying E[F (x)]− F (x∗) ≤ ε in at most

O
(
n log F (x0)−F (x∗)

ε +
√
nL·‖x0−x∗‖√

ε

)
∝ 1√

ε
iterations. (Or equivalently ε ∝ 1

T 2 .)

In contrast, the best known convergence rate was

Catalyst: O
((
n+
√
nL·‖x0−x∗‖√

ε

)
log F (x0)−F (x∗)

ε log L‖x0−x∗‖2
ε

)
∝ log2(1/ε)√

ε
iterations. (Or ε ∝ log4 T

T 2 .)

14

Algorithm 2 Katyushans(x0, S, σ, L)

1: m← 2n; � epoch length

2: τ2 ← 1
2 ;

3: y0 = z0 = x̃0 ← x0; � initial vectors

4: for s← 0 to S − 1 do
5: τ1,s ← 2

s+4 , αs ← 1
3τ1,sL

� different parameter choices comparing to Katyusha

6: µs ← ∇f(x̃s); � compute the full gradient only once every m iterations

7: for j ← 0 to m− 1 do
8: k ← (sm) + j;
9: xk+1 ← τ1,szk + τ2x̃

s + (1− τ1,s − τ2)yk;
10: ∇̃k+1 ← µs +∇fi(xk+1)−∇fi(x̃s) where i is randomly chosen from {1, 2, . . . , n};
11: zk+1 = arg minz

{
1

2αs
‖z − zk‖2 + 〈∇̃k+1, z〉+ ψ(z)

}
;

12: Option I: yk+1 ← arg miny
{
3L
2 ‖y − xk+1‖2 + 〈∇̃k+1, y〉+ ψ(y)

}
;

13: Option II: yk+1 ← xk+1 + τ1,s(zk+1 − zk) � we analyze only I but II also works

14: end for
15: x̃s+1 ← 1

m

∑m
j=1 ysm+j ; � compute snapshot x̃

16: end for
17: return x̃S .

Corollary 3.11. If each fi(x) is
√
G-Lipschitz continuous and ψ(x) is σ-SC in Problem (1.3),

then by applying AdaptSmooth on Katyusha with a starting vector x0, we obtain an output x
satisfying E[F (x)]− F (x∗) ≤ ε in at most

O
(
n log F (x0)−F (x∗)

ε +
√
nG√
σε

)
∝ 1√

ε
iterations. (Or equivalently ε ∝ 1

T 2 .)

In contrast, the best known convergence rate was

APCG/SPDC: O
((
n+

√
nG√
σε

)
log nG(F (x0)−F (x∗))

σε

)
∝ log(1/ε)√

ε
iterations. (Or ε ∝ log2 T

T 2 .)

Corollary 3.12. If each fi(x) is
√
G-Lipschitz continuous and ψ(x) is not necessarily strongly

convex in Problem (1.3), then by applying JointAdaptRegSmooth on Katyusha with a starting
vector x0, we obtain an output x satisfying E[F (x)]− F (x∗) ≤ ε in at most

O
(
n log F (x0)−F (x∗)

ε +
√
nG‖x0−x∗‖

ε

)
∝ 1

ε iterations. (Or equivalently ε ∝ 1
T .)

In contrast, the best known convergence rate was

APCG/SPDC: O
((
n+
√
nG‖x0−x∗‖

ε

)
log nG‖x0−x∗‖2(F (x0)−F (x∗))

ε2

)
∝ log(1/ε)

ε iterations. (Or ε ∝ log T
T .)

4 Katyusha in the Non-Strongly Convex Setting

Due to the increasing popularity of non-strongly convex minimization tasks (most notably `1-
regularized problems), researchers often make additional efforts to design separate methods for
minimizing the non-strongly convex variant of Problem (1.1) that are direct, meaning without
restarting and in particular without using any reductions such as Theorem 2.3 [13, 17].

In this section, we also develop our direct and accelerated method for the non-strongly convex
variant of Problem (1.1). We call it Katyushans and state it in Algorithm 2.

15

The only difference between Katyushans and Katyusha is that we choose τ1 = τ1,s = 2
s+4 to be

a parameter that depends on the epoch index s, and accordingly α = αs = 1
3Lτ1,s

. This should not

be a big surprise because in accelerated full-gradient methods, the values τ1 and α also decrease
(although with respect to k rather than s) when there is no strong convexity [11]. We note that τ1
and τ2 remain constant throughout an epoch, and this could simplify the implementations.

We state the following convergence theorem for Katyushans and defer its proof to Appendix B.1.
The proof also relies on the one-iteration inequality in Lemma 3.7, but requires telescoping such
inequalities in a different manner as compared with Theorem 3.1.

Theorem 4.1. If each fi(x) is convex, L-smooth in Problem (1.1) and ψ(·) is not necessarily
strongly convex, then Katyushans(x0, S, L) satisfies

E
[
F (x̃S)

]
− F (x∗) ≤ O

(F (x0)− F (x∗)
S2

+
L‖x0 − x∗‖2

mS2

)

In other words, choosing m = Θ(n), Katyushans achieves an ε-additive error (i.e., E
[
F (x̃S)

]
−

F (x∗) ≤ ε) using at most O
(
n
√
F (x0)−F (x∗)√

ε
+
√
nL‖x0−x∗‖√

ε

)
iterations.

Remark 4.2. Katyushans is a direct, accelerated solver for the non-SC case of Problem (1.1). It is
illustrative to compare it with the convergence theorem of a direct, non-accelerated solver of the
same setting. Below is the convergence theorem of SAGA after translating to our notations:

SAGA: E
[
F (x)

]
− F (x∗) ≤ O

(F (x0)− F (x∗)
S

+
L‖x0 − x∗‖2

nS

)
.

It is clear from this comparison that Katyushans is a factor S faster than non-accelerated methods
such as SAGA, where S = T/n if T is the total number of stochastic iterations. This convergence

can also be written in terms of the number of iterations which is O
(n(F (x0)−F (x∗))

ε + L‖x0−x∗‖2
ε

)
.

Remark 4.3. Theorem 4.1 appears worse than the reduction-based complexity in Corollary 3.12.
This can be fixed by setting either the parameters τ1 or the epoch length m in a more sophisticated
way. Since it complicates the proofs and the notations we refrain from doing so in this version of
the paper.16 In practice, being a direct method, Katyushans enjoys satisfactory performance.

5 Katyusha in the Mini-Batch Setting

We mentioned in earlier versions of this paper that our Katyusha method naturally generalizes
to mini-batch (parallel) settings and non-uniform smoothness settings, but did not include a full
proof. In this section, we carefully deal with both generalizations together.

Mini-batch. In each iteration k, instead of using a single ∇fi(xk+1), one can

use the average of b stochastic gradients 1
b

∑
i∈Sk ∇fi(xk+1)

where Sk is a random subset of [n] with cardinality b. This average can be computed in a distributed
manner using up to b processors. This idea is known as mini-batch for stochastic gradient methods.

Non-Uniform Smoothness. Suppose in Problem (1.1),

each fi(x) is Li-smooth and f(x) = 1
n

∑n
i=1 fi(x) is L-smooth.

16Recall that a similar issue has also happened in the non-accelerated world: the iteration complexity O(n+L
ε

) in
SAGA can be improved to O(n log 1

ε
+ L

ε
) by doubling the epoch length across epochs [13]. Similar techniques can

also be used to improve our result above.

16

We denote by L = 1
n

∑n
i=1 Li, and assume without loss of generality L ≤ L ≤ nL. 17 We note that

L can sometimes be indeed much greater than L, see Remark 5.3.

Remark 5.1. Li and L only need to be upper bounds to the minimum smoothness parameters of
fi(·) and f(·) respectively. In practice, sometimes the minimum smoothness parameters for fi(x)
is efficiently computable (such as for ERM problems).

5.1 Algorithmic Changes and Theorem Restatement

To simultaneously deal with mini-batch and non-uniform smoothness, we propose the following
changes to Katyusha:

• Change the epoch length from m = Θ(n) to m = dnb e.
This is standard. In each iteration we need to compute O(b) stochastic gradients; therefore every
dnb e iterations, we can compute the full gradient once without hurting the total performance.

• Define distribution D over [n] to be choosing i ∈ [n] with probability pi
def
= Li/nL, and define

gradient estimator ∇̃k+1
def
= ∇f(x̃) + 1

b

∑
i∈Sk

1
npi

(
∇fi(xk+1) − ∇fi(x̃)

)
, where Sk ⊆ [n] is a

multiset with b elements each i.i.d. generated from D.

This is standard, see for instance Prox-SVRG [50], and it is easy to verify E[∇̃k+1] = ∇f(xk+1).

• Change τ2 from 1
2 to min

{
L
2Lb ,

1
2

}
.

Note that if L = L then we have τ2 = 1
2b . In other words, the larger the mini-batch size, the

smaller weight we want to give to Katyusha momentum. This should be intuitive. The reason
τ2 has a more involved form when L 6= L is explained in Remark 5.4 later.

• Change L in gradient descent step (Line 19) to some other L� ≥ L, and define α = 1
3τ1L�

instead.

In most cases (e.g., when L = L or L ≥ Lm/b) we choose L� = L. Otherwise, we let L� =
L

2bτ2
≥ L. The reason L� has a more involved form is explained in Remark 5.4 later.

• Change τ1 to be τ1 = min
{√

8bmσ√
3L

τ2, τ2
}

if L ≤ Lm/b or τ1 = min
{√

2σ√
3L
, 1
2m

}
if L > Lm/b.

This corresponds to a phase-transition behavior of Katyusha1 (see Remark 5.5 later). Intuitively,
when L ≤ Lm/b then we are in a mini-batch phase; when L > Lm/b we are in a full-batch phase.

• Due to technical reasons, we define x̃s as a slightly different weighted average (Line 22) and
output xout which is a weighted combination of x̃S and ySm as opposed to simply x̃S (Line 24).

We emphasize here that some of these changes are not necessary for instance in the special case
of L = L, but to state the strongest theorem, we have to include all such changes. It is a simple
exercise to verify that, if L = L and b = 1, then up to only constant factors in the parameters,
Katyusha1 is exactly identical to Katyusha. We have the following main theorem for Katyusha1:

17It is easy to verify (using triangle inequality) that f(x) = 1
n

∑
i∈[n] fi(x) must be L smooth. Also, if f(x) is

L-smooth then each fi(x) must be nL smooth (this can be checked via Hessian ∇2fi(x) � n∇2f(x) or similarly if f
is not twice-differentiable).

17

Algorithm 3 Katyusha1(x0, S, σ, L, (L1, . . . , Ln), b)

1: m← dn/be and L← 1
n(L1 + · · ·+ Ln); � m is epoch length

2: τ2 ← min
{

L
2Lb ,

1
2

}
; � if L = L then τ2 = 1

2b
and L� = L

3: if L ≤ Lm
b then

4: τ1 ← min
{√

8bmσ√
3L

τ2, τ2
}

and L� ← L
2bτ2

;

5: else
6: τ1 ← min

{√
2σ√
3L
, 1
2m

}
and L� ← L;

7: end if
8: α← 1

3τ1L�
; � parameters

9: Let distribution D be to output i ∈ [n] with probability pi
def
= Li/(nL).

10: y0 = z0 = x̃0 ← x0; � initial vectors

11: for s← 0 to S − 1 do
12: µs ← ∇f(x̃s); � compute the full gradient once every m iterations

13: for j ← 0 to m− 1 do
14: k ← (sm) + j;
15: xk+1 ← τ1zk + τ2x̃

s + (1− τ1 − τ2)yk;
16: Sk ← b independent copies of i from D with replacement.
17: ∇̃k+1 ← µs + 1

b

∑
i∈Sk

1
npi

(
∇fi(xk+1)−∇fi(x̃s)

)
;

18: zk+1 = arg minz
{

1
2α‖z − zk‖2 + 〈∇̃k+1, z〉+ ψ(z)

}
;

19: Option I: yk+1 ← arg miny
{
3L�
2 ‖y − xk+1‖2 + 〈∇̃k+1, y〉+ ψ(y)

}
;

20: Option II: yk+1 ← xk+1 + τ1(zk+1 − zk) � we analyze only I but II also works

21: end for
22: x̃s+1 ←

(∑m−1
j=0 θj

)−1 ·
(∑m−1

j=0 θj · ysm+j+1

)
; � where θ = 1 + min{ασ, 1

4m

}

23: end for
24: return xout ← τ2mx̃S+(1−τ1−τ2)ySm

τ2m+(1−τ1−τ2) .

Theorem 5.2. If each fi(x) is convex and Li-smooth, f(x) is L-smooth, ψ(x) is σ-strongly convex
in Problem (1.1), then for any b ∈ [n], xout = Katyusha1(x0, S, σ, L, (L1, . . . , Ln), b) satisfies

E
[
F (xout)

]
− F (x∗) ≤

O
((

1 +
√
bσ/(6Lm)

)−Sm)
·
(
F (x0)− F (x∗)

)
, if mσb

L
≤ 3

8 and L ≤ Lm
b ;

O
((

1 +
√
σ/(6L)

)−Sm) ·
(
F (x0)− F (x∗)

)
, if m2σ

L ≤ 3
8 and L > Lm

b ;

O
(
1.25−S

)
·
(
F (x0)− F (x∗)

)
, otherwise.

In other words, choosing m = dn/be, Katyusha achieves an ε-additive error (i.e., E
[
F (xout)

]
−

F (x∗) ≤ ε) using at most

S · n = O
((
n+ b

√
L/σ +

√
nL/σ

)
· log

F (x0)− F (x∗)
ε

)

stochastic gradient computations.

5.2 Observations and Remarks

We explain the significance of Theorem 5.2 below.
We use total work to refer to the total number of stochastic gradient computations, and iteration

complexity (also known as parallel depth) to refer to the total number of iterations.

18

Parallel Performance. The total work of Katyusha1 stays the same when b ≤ (nL/L)1/2 ∈[√
n, n

]
. This means, at least for all values b ∈ {1, 2, . . . , d√ne}, our Katyusha1 achieves the same

total work and thus

Katyusha1 can be distributed to b ≤ √n machines with a parallel speed-up factor b
(known as linear speed-up if ignoring communication overhead.)

In contrast, even in the special case of L = L and if no additional assumption is made, to the best
of our knowledge:

• Mini-batch SVRG requires Õ
(
n+ bL

σ

)
total work.

Therefore, if SVRG is distributed to b machines, the total work is increased by a factor of b, and
the parallel speed-up factor is 1 (i.e., no speed up).

• Catalyst on top of mini-batch SVRG requires Õ
(
n+

√
bLn√
σ

)
total work.

Therefore, if Catalyst is distributed to b machines, the total work is increased by a factor
√
b,

and the parallel speed-up factor is
√
b only.

When preparing the journal revision (i.e., version 5), we found out at least in the case L = L,
some other groups of researchers very recently obtained similar results for the ERM Problem (1.3)
using SPDC [48], and for the general Problem (1.1) [34].18 These results together with Theorem 5.2
confirm the power of acceleration in the parallel regime for stochastic gradient methods.

Outperforming Full-Gradient Method. If b = n, the total work of Katyusha1 becomes
Õ
(
(L/σ)1/2n

)
. This matches the total work of Nesterov’s accelerated gradient method [11, 35, 36],

and does not depend on the possibly larger parameter L.
More interestingly, to achieve the same iteration complexity Õ

(
(L/σ)1/2

)
as Nesterov’s method,

our Katyusha1 only needs to compute b = (nL/L)1/2 stochastic gradients ∇fi(·) per iteration (in
the amortized sense). This can be much faster than computing ∇f(·).
Remark 5.3. Recall L is in the range [L, nL] so indeed L can be much larger than L. For instance
in linear regression we have fi(x) = 1

2(〈ai, x〉 − bi)2. Denoting by A = [a1, . . . , an] ∈ Rd×n, we have
L = 1

nλmax(A>A) and L = 1
n‖A‖2F . If each entry of each ai is a random Gaussian N(0, 1), then L

is around d and L is around only Θ(1 + d
n) (using the Wishart random matrix theory).

Remark 5.4. The parameter specifications in Katyusha1 look intimidating partially because we
have tried to obtain the strongest statement and match the full-gradient descent performance when
b = n. If L is equal to L, then one can simply set τ2 = 1

2b and L� = L in Katyusha1.

Phase Transition between Mini-Batch and Full-Batch. Theorem 5.2 indicates a phase
transition of Katyusha1 at the point b0 = (nL/L)1/2.

• If b ≤ b0, we say Katyusha1 is in the mini-batch phase and the total work is Õ
(
n +

√
nL/σ

)
,

independent of b.

• If b > b0, we say Katyusha1 is in the full-batch phase, and the total work is Õ
(
n+ b

√
L/σ

)
, so

essentially linearly-scales with b and matches that of Nesterov’s method when b = n.

Remark 5.5. We set different values for τ1 and L� in the mini-batch phase and full-batch phase
respectively (see Line 3). From the final complexities above, it should not be surprising that τ1
depends on L but not L in the mini-batch phase, and depends on L but not L in the full-batch
phase. In addition, one can even tune the parameters so that it suffices for Katyusha to output x̃S

18These two papers claimed that Katyusha does not enjoy linear speed-up for b ≤ √n, based on an earlier version
of the paper (where we did not include the mini-batch theorem). As evidenced by Theorem 5.2, such claims are false.

19

in the mini-batch phase and ySm in the full-batch phase; we did not do so and simply choose to
output xout which is a convex combination of x̃S and ySm.

Remark 5.6. In the simple case L = L, Nitanda [39] obtained a total work Õ
(
n+ n−b

n−1
L
σ + b

√
L/σ

)
,

which also implies a phase transition for b. However, this result is no better than ours for all b, and
in addition, in terms of total work, it is no faster than SVRG when b ≤ n/2, and no faster than
accelerated full-gradient descent when b > n/2.

5.3 Corollaries on Non-Smooth or Non-SC Problems

In the same way as Section 3.3, we can apply the reductions from [1] to convert the performance
of Theorem 5.2 to non-smooth or non-strongly convex settings. We state the corollaries below:

Corollary 5.7. If each fi(x) is convex and Li-smooth, f(x) is L-smooth, ψ(·) is not necessarily
strongly convex in Problem (1.1), then for any b ∈ [n], by applying AdaptReg on Katyusha1 with
a starting vector x0, we obtain an output x satisfying E[F (x)]− F (x∗) ≤ ε in at most

O
(
n log F (x0)−F (x∗)

ε + b
√
L·‖x0−x∗‖√

ε
+

√
nL·‖x0−x∗‖√

ε

)
stochastic gradient computations.

Corollary 5.8. If each fi(x) is
√
Gi-Lipschitz continuous and ψ(x) is σ-SC in Problem (1.3),

then for any b ∈ [n], by applying AdaptSmooth on Katyusha1 with a starting vector x0, we obtain
an output x satisfying E[F (x)]− F (x∗) ≤ ε in at most

O
(
n log F (x0)−F (x∗)

ε + b
√
G√
σε

+

√
nG√
σε

)
stochastic gradient computations.

Corollary 5.9. If each fi(x) is
√
Gi-Lipschitz continuous and ψ(x) is not necessarily strongly

convex in Problem (1.3), then for any b ∈ [n], by applying JointAdaptRegSmooth on Katyusha1

with a starting vector x0, we obtain an output x satisfying E[F (x)]− F (x∗) ≤ ε in at most

O
(
n log F (x0)−F (x∗)

ε + bG‖x0−x∗‖
ε +

√
nG‖x0−x∗‖

ε

)
stochastic gradient computations.

6 Katyusha in the Non-Euclidean Norm Setting

In this section, we show that Katyusha and Katyushans naturally extend to settings where the
smoothness definition is with respect to a non-Euclidean norm.

Non-Euclidean Norm Smoothness. We consider smoothness (and strongly convexity) with

respect to an arbitrary norm ‖ · ‖ in domain Q
def
= {x ∈ Rd : ψ(x) < +∞}. Symbolically, we say

• f is σ-strongly convex w.r.t. ‖·‖ if ∀x, y ∈ Q, it satisfies f(y) ≥ f(x)+〈∇f(x), y−x〉+ σ
2 ‖x−y‖2;

• f is L-smooth w.r.t. ‖ · ‖ if ∀x, y ∈ Q, it satisfies ‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖.19

Above, ‖ · ‖∗ def
= max{〈ξ, x〉 : ‖x‖ ≤ 1} is the dual norm of ‖ · ‖. For instance, `p norm is dual to `q

norm if 1
p + 1

q = 1. Some famous problems have better smoothness parameters when non-Euclidean
norms are adopted, see the discussions in [11].

Bregman Divergence. Following the traditions in the non-Euclidean norm setting [11], we

19This definition has another equivalent form: ∀x, y ∈ Q, it satisfies f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L
2
‖y − x‖2.

20

• select a distance generating function w(·) that is 1-strongly convex w.r.t. ‖ · ‖, and20

• define the Bregman divergence function Vx(y)
def
= w(y)− w(x)− 〈∇w(x), y − x〉.

The final algorithms and proofs will be described using Vx(y) and w(x).

Generalized Strong Convexity of ψ(·). We require ψ(·) to be σ-strongly convexity with
respect to function Vx(y) rather than the ‖ · ‖ norm; or symbolically,

ψ(y) ≥ ψ(x) + 〈∇ψ(x), y − x〉+ σVx(y) .

(For instance, this is satisfied if ω(y)
def
= 1

σψ(y).) This is known as the “generalized strong con-
vexity” [43] and is necessary for any linear-convergence result in the SC setting. Of course, in the
non-SC setting, we do not require any (general or not) strong convexity for ψ(·).

6.1 Algorithm Changes and Theorem Restatements

Suppose each fi(x) is Li-smooth with respect to norm ‖ · ‖, and a Bregman divergence function
Vx(y) is given. We perform the following changes to the algorithms:

• In Line 9 of Katyusha (resp. Line 10 of Katyushans), we choose i with probability proportional
to Li instead of uniformly at random.

• In Line 10 of Katyusha (resp. Line 11 of Katyushans), we change the arg min to be its non-
Euclidean norm variant [11]: zk+1 = arg minz

{
1
αVzk(z) + 〈∇̃k+1, z〉+ ψ(z)

}

• We forbidden Option II and use Option I only (but without replacing ‖y−xk+1‖2 with Vxk+1
(y)).

Interested readers can find discussions regarding why such changes are natural in [11]. We call the
resulting algorithms Katyusha2 and Katyusha2ns, and include them in Appendix D for complete-
ness’ sake. We state our final theorems below (recall L = 1

n

∑n
i=1 Li).

Theorem 6.1 (ext. of Theorem 3.1). If each fi(x) is convex and Li-smooth with respect to some
norm ‖ · ‖, Vx(y) is a Bregman divergence function for ‖ · ‖, and ψ(x) is σ-strongly convex with
respect to Vx(y), then Katyusha2(x0, S, σ, (L1, . . . , Ln)) satisfies

E
[
F (x̃S)

]
− F (x∗) ≤

{
O
((

1 +
√
σ/(9Lm)

)−Sm)
·
(
F (x0)− F (x∗)

)
, if mσ/L ≤ 9

4 ;

O
(
1.5−S

)
·
(
F (x0)− F (x∗)

)
, if mσ/L > 9

4 .

In other words, choosing m = Θ(n), Katyusha2 achieves an ε-additive error (i.e., E
[
F (x̃S)

]
−

F (x∗) ≤ ε) using at most O
((
n+

√
nL/σ

)
· log F (x0)−F (x∗)

ε

)
iterations.

Theorem 6.2 (ext. of Theorem 4.1). If each fi(x) is convex and Li-smooth with respect to some
norm ‖ · ‖, Vx(y) is a Bregman divergence function for ‖ · ‖, and ψ(·) is not necessarily strongly
convex, then Katyusha2ns(x0, S, (L1, . . . , Ln)) satisfies

E
[
F (x̃S)

]
− F (x∗) ≤ O

(F (x0)− F (x∗)
S2

+
LVx0(x∗)
nS2

)
.

In other words, Katyusha2ns achieves an ε-additive error (i.e., E
[
F (x̃S)

]
− F (x∗) ≤ ε) using at

most O
(
n
√
F (x0)−F (x∗)√

ε
+

√
nLVx0 (x

∗)√
ε

)
iterations.

20For instance, if Q = Rd and ‖ · ‖p is the `p norm for some p ∈ (1, 2], one can choose w(x) = 1
2(p−1)

‖x‖2p; if

Q = {x ∈ Rd :
∑
i xi = 1} is the probability space and ‖ · ‖1 is the `1 norm, one can choose w(x) =

∑
i xi log xi.

21

The proofs of Theorem 6.1 and Theorem 6.2 follow exactly the same proof structures of Theorem 3.1
and Theorem 4.1, so we include them only in Appendix D.

6.2 Remarks

We highlight one main difference between the proof of Katyusha2 and that of Katyusha: if ξ is a
random vector and ‖ · ‖ is an arbitrary norm, we do not necessarily have E[‖ξ − E[ξ]‖2∗] ≤ E[‖ξ‖2∗].
Therefore, we only used E[‖ξ − E[ξ]‖2∗] ≤ 2E[‖ξ‖2∗] + 2‖E[ξ]‖2∗ (see Lemma D.2) and this loses a
constant factor in some parameters. (For instance, α now becomes 1

9τ1L
as opposed to 1

3τ1L
).

More interestingly, one may ask how our revised algorithms Katyusha2 or Katyusha2ns perform
in the mini-batch setting (just like we have studied in Section 5 for the Euclidean case). We are
optimistic here, but unfortunately do not have a clean worst-case statement for how much speed-up
we can get. The underlying reason is that, if D is a distribution for vectors, µ = Eξ∼D[ξ] is its
expectation, and ξ1, . . . , ξb are b i.i.d. samples from D, then letting ξ = 1

b (ξ1 + · · ·+ ξb), we do not
necessarily have E[‖ξ − µ‖2∗] ≤ 1

bEξ∼D[‖ξ − µ‖2∗]. In other words, using a mini-batch version of the
gradient estimator, the “variance” with respect to an arbitrary norm may not necessarily go down
by a factor of b. For such reason, in the mini-batch setting, the best total work we can cleanly

state, say for Katyusha2 in the SC setting, is only O
((
n+

√
bnL/σ

)
· log F (x0)−F (x∗)

ε

)
.

7 Empirical Evaluations

We conclude this paper with empirical evaluations to our theoretical speed-ups. We work on
Lasso and ridge regressions (with regularizer λ

2‖x‖2 for ridge and regularizer λ‖x‖1 for Lasso)
on the following six datasets: adult, web, mnist, rcv1, covtype, sensit. We defer dataset and
implementation details to Appendix A.

Algorithms and Parameter Tuning. We have implemented the following algorithms, all with
mini-batch size 1 for this version of the paper:

• SVRG [23] with default epoch length m = 2n. We tune only one parameter : the learning rate.

• Katyusha for ridge and Katyushans for Lasso. We tune only one parameter : the learning rate.

• SAGA [17]. We tune only one parameter : the learning rate.

• Catalyst [29] on top of SVRG. We tune three parameters: SVRG’s learning rate, Catalyst’s
learning rate, as well as the regularizer weight in the Catalyst reduction.

• APCG [30]. We tune the learning rate. For Lasso, we also tune the `2 regularizer weight.

• APCG+AdaptReg (Lasso only). Since APCG intrinsically require an `2 regularizer to be added
on Lasso, we apply AdaptReg from [1] to adaptively learn this regularizer and improve APCG’s
performance. Two parameters to be tuned: APCG’s learning rate and σ0 in AdaptReg.

All of the parameters were equally, fairly, and automatically tuned by our code base. For interested
readers, we discuss more details in Appendix A.

We emphasize that Katyusha is as simple as SAGA or SVRG in terms of parameter tuning. In
contrast, APCG for Lasso requires two parameters to be tuned, and Catalyst requires three. [28]

Performance Plots. Following the tradition of ERM experiments, we use the number of “passes”
of the dataset as the x-axis. Letting n be the number of feature vectors, each new stochastic gradient
computation ∇fi(·) counts as 1/n pass, and a full gradient computation ∇f(·) counts as 1 pass.

The y-axis in all of our plots represent the objective distance to the minimum. We emphasize
that it is practically also crucial to study high-accuracy regimes (such as objective distance ≤ 10−7).

22

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

SVRG Katyusha Katyusha(tau2=0)

(a) web, ridge λ = 10−6

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

SVRG Katyusha Katyusha(tau2=0)

(b) mnist, ridge λ = 10−6

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

SVRG Katyusha Katyusha(tau2=0)

(c) rcv1, ridge λ = 10−6

Figure 1: Comparing SVRG vs. Katyusha vs. Katyusha with τ2 = 0.

This is because nowadays there is an increasing number of methods that reduce large-scale machine
learning tasks to multiple black-box calls to ERM solvers [4, 5]. In all such applications, due to
error blowups between oracle calls, the ERM solver is required to be very accurate in training error.

7.1 Effectiveness of Katyusha Momentum

In our Katyusha method, τ1 controls to the classical Nesterov’s momentum and τ2 controls our
newly introduced Katyusha momentum. We find in our theory that setting τ2 = 1/2 is a good
choice so we universally set it to be 1/2 without tuning in all our experiments. (Of course, if time
permits, tuning τ2 could only help in performance.)

Before this paper, researchers have tried heuristics that is to add Nesterov’s momentums directly
to stochastic gradient methods [39], and this corresponds to setting τ2 = 0 in Katyusha. In
Figure 1, we compare Katyusha with τ2 = 1/2 and τ2 = 0 in order to illustrate the importance and
effectiveness of our Katyusha momentum.

We conclude that the old heuristics (i.e., τ2 = 0) sometimes indeed make the method faster
after careful parameter tuning. However, for certain tasks such as Figure 1(c), without Katyusha
momentum the algorithm does not even enjoy an accelerated convergence rate.

7.2 Performance Comparison Across Algorithms

For each of the six datasets and each objective (ridge or lasso), we experiment on three different
magnitudes of regularizer weights.21 This totals 36 performance charts, and we include them in
full at the end of this paper. For the sake of cleanness, in Figure 2 we select 6 representative charts
for ridge regression and make the following observations.

• Accelerated methods are more powerful when the regularizer weights are small (cf. [12, 30, 47]).
For instance, Figure 2(c) and 2(f) are for large values of λ and Katyusha performs relatively the
same as compared with SVRG / SAGA; however, Katyusha significantly outperforms SVRG /
SAGA for small values of λ, see for instance Figure 2(b) and 2(e).

• Katyusha almost always either outperform or equal-perform its competitors. The only notable
place it gets outperformed is by SVRG (see Figure 2(f)); however, this performance gap cannot
be large because Katyusha is capable of recovering SVRG if τ1 = τ2 = 0.22

21We choose three values λ that are powers of 10 and around 10/n, 1/n, 1/10n. This range can be verified to
contain the best regularization weights using cross validation.

22The only reason Katyusha does not match the performance of SVRG in Figure 2(f) is because we have not tuned
parameter τ2. If we also tune τ2 for the best performance, Katyusha shall no longer be outperformed by SVRG. In
any case, it is not really necessary to tune τ2 because the performance of Katyusha is already superb.

23

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(a) covtype, ridge λ = 10−6 (small)

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(b) rcv1, ridge λ = 10−7 (small)

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(c) adult, ridge λ = 10−4 (large)

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha

(d) web, ridge λ = 10−6 (small)

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha

(e) mnist, ridge λ = 10−6 (small)

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha

(f) sensit, ridge λ = 10−4 (large)

Figure 2: Some representative performance charts where λ is the regularizer weight.

• Catalyst does not work as beautiful as its theory in high-accuracy regimes, even though we have
carefully tuned parameters α0 and κ in Catalyst in addition to its learning rate. Indeed, in
Figure 2(a), 2(c) and 2(f) Catalyst (which is a reduction on SVRG) is outperformed by SVRG.

• APCG performs poorly on all Lasso tasks (cf. Figure 2(d), 2(e), 2(f)) because it is not designed
for non-SC objectives. The reduction in [1] helps to fix this issue, but not by a lot.

• APCG can sometimes be largely dominated by SVRG or SAGA (cf. Figure 2(f)): this is because
for datasets such as sensit, dual-based methods (such as APCG) cannot make use of the implicity
local strong convexity in the objective. In such cases, Katyusha is not lost to SVRG or SAGA.

8 Conclusion

The novel Katyusha momentum technique introduced in this paper gives rise to accelerated conver-
gence rates even in the stochastic setting. For many classes of the problems, such convergence rates
are the first to match the theoretical lower bounds [49]. The algorithms generated by Katyusha
momentum are simple yet highly practical and parallelizable.

More importantly, this new technique has the potential to enrich our understanding of accel-
erated methods in a broader sense. Currently, although acceleration methods are becoming more
and more important to the field of computer science, they are still often regarded as “analytical
tricks” [15, 24] and lacking complete theoretical understanding. The Katyusha momentum pre-
sented in this paper, however, adds a new level of decoration on top of the classical Nesterov
momentum. This decoration is shown valuable for stochastic problems in this paper, but may also
lead to future applications as well. In general, the author hopes that the technique and analysis in
this paper could facilitate more studies in this field and thus become a stepping stone towards the
ultimate goal of unveiling the mystery of acceleration.

24

Appendix

A Experiment Details

The datasets we used in this paper are downloaded from the LibSVM website [18]:
• the adult (a9a) dataset (32, 561 samples and 123 features).
• the web (w8a) dataset (49, 749 samples and 300 features).
• the covtype (binary.scale) dataset (581, 012 samples and 54 features).
• the mnist (class 1) dataset (60, 000 samples and 780 features).
• the rcv1 (train.binary) dataset (20, 242 samples and 47, 236 features).
• the sensit (combined) dataset (78, 823 samples and 100 features).

To make easier comparison across datasets, we scale every vector by the average Euclidean norm
of all the vectors in the dataset. In other words, we ensure that the data vectors have an average
Euclidean norm 1. This step is for comparison only and not necessary in practice.

Parameter-tuning details. We select learning rates from the set {10−k, 2 × 10−k, 5 × 10−k :
k ∈ Z}, and select regularizer weights (for APCG) from the set {10−k : k ∈ Z}. We have fully
automated the parameter tuning procedure to ensure a fair and strong comparison.

While the learning rates were explicitly defined for SVRG and SAGA, there were implicit for all
accelerated methods. For Catalyst, the learning rate is in fact their α0 in the paper [28]. Instead
of choosing it to be the theory-predicted value, we multiply it with an extra factor to be tuned
and call this factor the “learning rate”. Similarly, for Katyusha and Katyushans, we multiply the
theory-predicted τ1 with an extra factor and this serves as a learning rate. For APCG, we use their
Algorithm 1 in the paper and multiply their theory-predicted µ with an extra factor.

For Catalyst, in principle one also has to tune the stopping criterion. After communicating
with an author of Catalyst, we learned that one can terminate the inner loop whenever the duality
gap becomes no more than, say one fourth, of the last duality gap from the previous epoch [28].
This stopping criterion was also found by the authors of [1] to be a good choice for reduction-based
methods.

B Appendix for Section 4

B.1 Proof of Theorem 4.1

Proof of Theorem 4.1. First of all, the parameter choices satisfy the presumptions in Lemma 3.6,
so again by defining Dk

def
= F (yk)− F (x∗) and D̃s def

= F (x̃s)− F (x∗), we can rewrite Lemma 3.7 as
follows:

0 ≤ αs(1− τ1,s − τ2)
τ1,s

Dk −
αs
τ1,s

E
[
Dk+1

]
+
αsτ2
τ1,s

D̃s +
1

2
‖zk − x∗‖2 −

1

2
E
[
‖zk+1 − x∗‖2

]
.

Summing up the above inequality for all the iterations k = sm, sm+ 1, . . . , sm+m− 1, we have

E
[
αs

1− τ1,s − τ2
τ1,s

D(s+1)m + αs
τ1,s + τ2
τ1,s

m∑

j=1

Dsm+j

]

≤ αs
1− τ1,s − τ2

τ1,s
Dsm + αs

τ2
τ1,s

mD̃s +
1

2
‖zsm − x∗‖2 −

1

2
E
[
‖z(s+1)m − x∗‖2

]
. (B.1)

Note that in the above inequality we have assumed all the randomness in the first s− 1 epochs are
fixed and the only source of randomness comes from epoch s.

25

If we define x̃s = 1
m

∑m
j=1 y(s−1)m+j , then by the convexity of function F (·) we have mD̃s ≤∑n

j=1D(s−1)m+j . Therefore, using the parameter choice αs = 1
3τ1,sL

, for every s ≥ 1 we can derive

from (B.1) that

E
[1

τ21,s
D(s+1)m +

τ1,s + τ2
τ21,s

m−1∑

j=1

Dsm+j

]

≤ 1− τ1,s
τ21,s

Dsm +
τ2
τ21,s

m−1∑

j=1

D(s−1)m+j +
3L

2
‖zsm − x∗‖2 −

3L

2
E
[
‖z(s+1)m − x∗‖2

]
. (B.2)

For the base case s = 0, we can also rewrite (B.1) as

E
[1

τ21,0
Dm +

τ1,0 + τ2
τ21,0

m−1∑

j=1

Dj

]

≤ 1− τ1,0 − τ2
τ21,0

D0 +
τ2m

τ21,0
D̃0 +

3L

2
‖z0 − x∗‖2 −

3L

2
E
[
‖zm − x∗‖2

]
. (B.3)

At this point, if we choose τ1,s = 2
s+4 ≤ 1

2 , it satisfies

1

τ21,s
≥ 1− τ1,s+1

τ21,s+1

and
τ1,s + τ2
τ21,s

≥ τ2
τ21,s+1

.

Using these two inequalities, we can telescope (B.3) and (B.2) for all s = 0, 1, . . . , S− 1. We obtain
in the end that

E
[1

τ21,S−1
DSm +

τ1,S−1 + τ2
τ21,S−1

m−1∑

j=1

D(S−1)m+j +
3L

2
‖zSm − z∗‖2

]

≤ 1− τ1,0 − τ2
τ21,0

D0 +
τ2m

τ21,0
D̃0 +

3L

2
‖z0 − x∗‖2 (B.4)

Since we have D̃S ≤ 1
m

∑m
j=1D(S−1)m+j which is no greater than

2τ21,S−1

m times the left hand side
of (B.4), we conclude that

E
[
F (x̃S)− F (x∗)

]
= E

[
D̃S
]
≤ O

(τ21,S
m

)
·
(1− τ1,0 − τ2

τ21,0
D0 +

τ2m

τ21,0
D̃0 +

3L

2
‖z0 − x∗‖2

)

= O
(1

mS2

)
·
(
m
(
F (x0)− F (x∗)

)
+ L‖x0 − x∗‖2

)
. �

C Appendix for Section 5

C.1 One-Iteration Analysis

Similar as Section 3.1, we first analyze the behavior of Katyusha1 in a single iteration (i.e., for a
fixed k). We view yk, zk and xk+1 as fixed in this section so the only randomness comes from the
choice of i in iteration k. We abbreviate in this subsection by x̃ = x̃s where s is the epoch that
iteration k belongs to, and denote by σ2k+1

def
= ‖∇f(xk+1)− ∇̃k+1‖2.

Our first lemma is analogous to Lemma 3.3, where note that we have replaced the use of L in
Lemma 3.3 with L� ≥ L:

26

Lemma C.1 (proximal gradient descent). If L� ≥ L and

yk+1 = arg min
y

{3L�
2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}
, and

Prog(xk+1)
def
= −min

y

{3L�
2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}
≥ 0 ,

we have (where the expectation is only over the randomness of ∇̃k+1)

F (xk+1)− E
[
F (yk+1)

]
≥ E

[
Prog(xk+1)

]
− 1

4L�
E
[
σ2k+1

]
.

Proof.

Prog(xk+1) = −min
y

{3L�
2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}

¬
= −

(3L�
2
‖yk+1 − xk+1‖2 + 〈∇̃k+1, yk+1 − xk+1〉+ ψ(yk+1)− ψ(xk+1)

)

= −
(L�

2
‖yk+1 − xk+1‖2 + 〈∇f(xk+1), yk+1 − xk+1〉+ ψ(yk+1)− ψ(xk+1)

)

+
(
〈∇f(xk+1)− ∇̃k+1, yk+1 − xk+1〉 − L�‖yk+1 − xk+1‖2

)

≤ −

(
f(yk+1)− f(xk+1) + ψ(yk+1)− ψ(xk+1)

)
+

1

4L�
‖∇f(xk+1)− ∇̃k+1‖2 .

Above, ¬ is by the definition of yk+1, and uses the smoothness of function f(·), as well as
Young’s inequality 〈a, b〉 − 1

2‖b‖2 ≤ 1
2‖a‖2. Taking expectation on both sides we arrive at the

desired result. �
The following lemma is analogous to Lemma 3.4. The main difference is that since we have not

chosen a mini-batch of size b, one should expect the variance to decrease by a factor of b. Also,
since we are in the non-uniform case one should expect the use of L in Lemma 3.4 to be replaced
with L:

Lemma C.2 (variance upper bound).

E
[
‖∇̃k+1 −∇f(xk+1)‖2

]
≤ 2L

b
·
(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

)
.

Proof. Each fi(x), being convex and Li-smooth, implies the following inequality which is classical in
convex optimization and can be found for instance in Theorem 2.1.5 of the textbook of Nesterov [36].

‖∇fi(xk+1)−∇fi(x̃)‖2 ≤ 2Li ·
(
fi(x̃)− fi(xk+1)− 〈∇fi(xk+1), x̃− xk+1〉

)

27

Therefore, taking expectation over the random choice of i, we have

E
[
‖∇̃k+1 −∇f(xk+1)‖2

]

= ESk
[∥∥∥
(1

b

∑

i∈Sk

(
∇f(x̃) +

1

npi

(
∇fi(xk+1)−∇fi(x̃)

)))
−∇f(xk+1)

∥∥∥
2]

=
1

b
Ei∼D

[∥∥∥
(
∇f(x̃) +

1

npi

(
∇fi(xk+1)−∇fi(x̃)

))
−∇f(xk+1)

∥∥∥
2]

=
1

b
Ei∼D

[∥∥∥ 1

npi

(
∇fi(xk+1)−∇fi(x̃)

)
−
(
∇f(xk+1)− f(x̃)

)∥∥∥
2]

¬
≤ 1

b
Ei∼D

[∥∥∥ 1

npi

(
∇fi(xk+1)−∇fi(x̃)

)∥∥∥
2

∗

]

≤ 1

b
·
∑

i∈[n]

2Li
n2pi

(
fi(x̃)− fi(xk+1)− 〈∇fi(xk+1), x̃− xk+1〉

)

=
2L

b
·
(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

)
.

Above, ¬ is because for any random vector ζ ∈ Rd, it holds that E‖ζ − Eζ‖2 = E‖ζ‖2 − ‖Eζ‖2;

follows from the first inequality in this proof. �
The next lemma is completely identical to Lemma 3.5 so we skip the proof.

Lemma C.3 (proximal mirror descent). Suppose ψ(·) is σ-SC. Then, fixing ∇̃k+1 and letting

zk+1 = arg min
z

{1

2
‖z − zk‖2 + α〈∇̃k+1, z − zk〉+ αψ(z)− αψ(zk)

}
,

it satisfies for all u ∈ Rd,

α〈∇̃k+1, zk+1 − u〉+ αψ(zk+1)− αψ(u) ≤ −1

2
‖zk − zk+1‖2 +

1

2
‖zk − u‖2 −

1 + ασ

2
‖zk+1 − u‖2 .

The following lemma combines Lemma C.1, Lemma C.2 and Lemma C.3 all together, using the
special choice of xk+1 which is a convex combination of yk, zk and x̃:

Lemma C.4 (coupling step 1). If xk+1 = τ1zk + τ2x̃ + (1 − τ1 − τ2)yk, where τ1 ≤ 1
3αL�

and

τ2 = L
2L�b

,

α〈∇f(xk+1), zk − u〉 − αψ(u)

≤ α

τ1

(
F (xk+1)− E

[
F (yk+1)

]
+ τ2F (x̃)− τ2f(xk+1)− τ2〈∇f(xk+1), x̃− xk+1〉

)

+
1

2
‖zk − u‖2 −

1 + ασ

2
E
[
‖zk+1 − u‖2

]
+
α(1− τ1 − τ2)

τ1
ψ(yk)−

α

τ1
ψ(xk+1) .

Proof. We first apply Lemma C.3 and get

α〈∇̃k+1, zk − u〉+ αψ(zk+1)− αψ(u)

= α〈∇̃k+1, zk − zk+1〉+ α〈∇̃k+1, zk+1 − u〉+ αψ(zk+1)− αψ(u)

≤ α〈∇̃k+1, zk − zk+1〉 −
1

2
‖zk − zk+1‖2 +

1

2
‖zk − u‖2 −

1 + ασ

2
‖zk+1 − u‖2 . (C.1)

28

By defining v
def
= τ1zk+1 + τ2x̃+ (1− τ1 − τ2)yk, we have xk+1 − v = τ1(zk − zk+1) and therefore

E
[
α〈∇̃k+1, zk − zk+1〉 −

1

2
‖zk − zk+1‖2

]
= E

[α
τ1
〈∇̃k+1, xk+1 − v〉 −

1

2τ21
‖xk+1 − v‖2

]

= E
[α
τ1

(
〈∇̃k+1, xk+1 − v〉 −

1

2ατ1
‖xk+1 − v‖2 − ψ(v) + ψ(xk+1)

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]

¬
≤ E

[α
τ1

(
〈∇̃k+1, xk+1 − v〉 −

3L�
2
‖xk+1 − v‖2 − ψ(v) + ψ(xk+1)

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]

≤ E

[α
τ1

(
F (xk+1)− F (yk+1) +

1

4L�
σ2k+1

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]

®
≤ E

[α
τ1

(
F (xk+1)− F (yk+1) +

L

2L�b

(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

))

+
α

τ1

(
τ1ψ(zk+1) + τ2ψ(x̃) + (1− τ1 − τ2)ψ(yk)− ψ(xk+1)

)]
. (C.2)

Above, ¬ uses our choice τ1 ≤ 1
3αL , uses Lemma C.1, ® uses Lemma C.2 together with the

convexity of ψ(·) and the definition of v. Finally, noticing that E[〈∇̃k+1, zk−u〉] = 〈∇f(xk+1), zk−u〉
and τ2 = 1

2 , we obtain the desired inequality by combining (C.1) and (C.2). �
The next lemma simplifies the left hand side of Lemma C.4 using the convexity of f(·), and gives

an inequality that relates the objective-distance-to-minimizer quantities F (yk)−F (x∗), F (yk+1)−
F (x∗), and F (x̃)−F (x∗) to the point-distance-to-minimizer quantities ‖zk−x∗‖2 and ‖zk+1−x∗‖2.
Lemma C.5 (coupling step 2). Under the same choices of τ1, τ2 as in Lemma C.4, we have

0 ≤ α(1− τ1 − τ2)
τ1

(F (yk)− F (x∗))− α

τ1

(
E
[
F (yk+1)

]
− F (x∗)

)
+
ατ2
τ1

(
F (x̃)− F (x∗)

)

+
1

2
‖zk − x∗‖2 −

1 + ασ

2
E
[
‖zk+1 − x∗‖2

]
.

Proof. We first compute that

α
(
f(xk+1)− f(u)

) ¬
≤ α〈∇f(xk+1), xk+1 − u〉

= α〈∇f(xk+1), xk+1 − zk〉+ α〈∇f(xk+1), zk − u〉

=
ατ2
τ1
〈∇f(xk+1), x̃− xk+1〉+

α(1− τ1 − τ2)
τ1

〈∇f(xk+1), yk − xk+1〉+ α〈∇f(xk+1), zk − u〉
®
≤ ατ2

τ1
〈∇f(xk+1), x̃− xk+1〉+

α(1− τ1 − τ2)
τ1

(f(yk)− f(xk+1)) + α〈∇f(xk+1), zk − u〉 .

Above, ¬ uses the convexity of f(·), uses the choice that xk+1 = τ1zk + τ2x̃ + (1 − τ1 − τ2)yk,
and ® uses the convexity of f(·) again. By applying Lemma C.4 to the above inequality, we have

α
(
f(xk+1)− F (u)

)
≤ α(1− τ1 − τ2)

τ1
(F (yk)− f(xk+1))

+
α

τ1

(
F (xk+1)−E

[
F (yk+1)

]
+τ2F (x̃)−τ2f(xk+1)

)
+

1

2
‖zk−u‖2−

1 + ασ

2
E
[
‖zk+1−u‖2

]
− α
τ1
ψ(xk+1)

which implies

α
(
F (xk+1)− F (u)

)
≤ α(1− τ1 − τ2)

τ1
(F (yk)− F (xk+1))

+
α

τ1

(
F (xk+1)− E

[
F (yk+1)

]
+ τ2F (x̃)− τ2F (xk+1)

)
+

1

2
‖zk − u‖2 −

1 + ασ

2
E
[
‖zk+1 − u‖2

]
.

29

After rearranging and setting u = x∗, the above inequality yields

0 ≤ α(1− τ1 − τ2)
τ1

(F (yk)− F (x∗))− α

τ1

(
E
[
F (yk+1)− F (x∗)

])
+
ατ2
τ1

(
F (x̃)− F (x∗)

)

+
1

2
‖zk − x∗‖2 −

1 + ασ

2
E
[
‖zk+1 − x∗‖2

]
. �

C.2 Proof of Theorem 5.2

We are now ready to combine the analyses across iterations, and derive our final Theorem 5.2.
Our proof next requires a careful telescoping of Lemma C.5 together with our specific parameter
choices.

Proof of Theorem 5.2. Define Dk
def
= F (yk)−F (x∗), D̃s def

= F (x̃s)−F (x∗), and rewrite Lemma C.5:

0 ≤ (1− τ1 − τ2)
τ1

Dk −
1

τ1
Dk+1 +

τ2
τ1
E
[
D̃s
]

+
1

2α
‖zk − x∗‖2 −

1 + ασ

2α
E
[
‖zk+1 − x∗‖2

]
.

At this point, let us θ be an arbitrary value in
[
1, 1 + ασ

]
and multiply the above inequality by θj

for each k = sm+ j. Then, we sum up the resulting m inequalities for all j = 0, 1, . . . ,m− 1:

0 ≤ E
[(1− τ1 − τ2)

τ1

m−1∑

j=0

Dsm+j · θj −
1

τ1

m−1∑

j=0

Dsm+j+1 · θj
]

+
τ2
τ1
D̃s ·

m−1∑

j=0

θj

+
1

2α
‖zsm − x∗‖2 −

θm

2α

[
‖z(s+1)m − x∗‖2

]
.

Note that in the above inequality we have assumed all the randomness in the first s− 1 epochs are
fixed and the only source of randomness comes from epoch s. We can rearrange the terms in the
above inequality and get

E
[τ1 + τ2 − (1− 1/θ)

τ1

m∑

j=1

Dsm+j · θj
]
≤ (1− τ1 − τ2)

τ1

(
Dsm − θmE

[
D(s+1)m

])

+
τ2
τ1
D̃s ·

m−1∑

j=0

θj +
1

2α
‖zsm − x∗‖2 −

θm

2α
E
[
‖z(s+1)m − x∗‖2

]
.

Using the special choice that x̃s+1 =
(∑m−1

j=0 θj
)−1 ·∑m−1

j=0 ysm+j+1 ·θj and the convexity of F (·), we

derive that D̃s+1 ≤
(∑m−1

j=0 θj
)−1 ·∑m−1

j=0 Dsm+j+1 · θj . Substituting this into the above inequality,
we get

τ1 + τ2 − (1− 1/θ)

τ1
θE
[
D̃s+1

]
·
m−1∑

j=0

θj ≤ (1− τ1 − τ2)
τ1

(
Dsm − θmE

[
D(s+1)m

])

+
τ2
τ1
D̃s ·

m−1∑

j=0

θj +
1

2α
‖zsm − x∗‖2 −

θm

2α
E
[
‖z(s+1)m − x∗‖2

]
. (C.3)

We consider two cases (and four subcases) next.

Case 1. Suppose L ≤ Lm
b . In this case, we choose

τ2 = min
{ L

2Lb
,
1

2

}
∈
[1

2m
,
1

2

]
and L� =

L

2bτ2
≥ L

30

Case 1.1. Suppose mσb
L
≤ 3

8 . In this subcase, we choose

α =

√
b√

6mσL
, τ1 =

1

3αL�
= 4mαστ2 =

√
8τ22 bmσ√

3L
∈
[
0, τ2

]
⊆
[
0,

1

2

]
, and θ = 1 + ασ

We have

ασ =
1√
6m2

√
bσm√
L
≤ 1

4m
and therefore the following inequality holds:

τ2(θ
m−1 − 1) + (1− 1/θ) = τ2((1 + ασ)m−1 − 1) + (1− 1

1 + ασ
) ≤ 2τ2mασ + ασ ≤ 4τ2mασ = τ1 .

In other words, we have τ1 + τ2 − (1− 1/θ) ≥ τ2θm−1 and thus (C.3) implies that

E
[τ2
τ1
D̃s+1 ·

m−1∑

j=0

θj +
1− τ1 − τ2

τ1
D(s+1)m +

1

2α
‖z(s+1)m − x∗‖2

]

≤ θ−m ·
(τ2
τ1
D̃s ·

m−1∑

j=0

θj +
1− τ1 − τ2

τ1
Dsm +

1

2α
‖zsm − x∗‖2

)
.

If we telescope the above inequality over all epochs s = 0, 1, . . . , S − 1, we obtain

E
[
F (xout)− F (x∗)

] ¬
≤ 1

τ2m+ (1− τ1 − τ2)
E
[
τ2D̃

S ·
m−1∑

j=0

θj +
(
1− τ1 − τ2

)
DSm

]

≤ θ−Sm ·O

(
D̃0 +D0 +

τ1
ατ2m

‖x0 − x∗‖2
)

®
≤ θ−Sm ·O

(
1 +

τ1
ατ2mσ

)
· (F (x0)− F (x∗))

¯
= O((1 + ασ)−Sm) ·

(
F (x0)− F (x∗)

)
. (C.4)

Above, inequality ¬ uses the choice xout = τ2mx̃S+(1−τ1−τ2)ySm
τ2m+(1−τ1−τ2) , the convexity of F (·), and the fact

∑m−1
j=0 θj ≥ m; inequality uses the fact that

∑m−1
j=0 θj ≤ O(m) (because ασ ≤ 1

4m), and the

fact that τ2 ≥ 1
2m ; inequality ® uses the strong convexity of F (·) which implies F (x0) − F (x∗) ≥

σ
2 ‖x0 − x∗‖2; and inequality ¯ uses our choice of τ1.

Case 1.2. Suppose mσb
L

> 3
8 . In this case, we choose

τ1 = τ2 and α =
1

3τ1L�
=

2b

3L
≥ 1

4σm
, θ = 1 +

1

4m

(Note that we can choose θ = 1 + 1
4m because 1

4m ≤ ασ.)
Under these parameter choices, we can calculate that

(τ1 + τ2 − (1− 1/θ))θ

τ2
= 2− 1− 2τ2

4mτ2
≥ 3

2
>

5

4
and θm ≥ 5

4

thus (C.3) implies that

E
[τ2
τ1
D̃s+1 ·

m−1∑

j=0

θj +
1− τ1 − τ2

τ1
D(s+1)m +

1

2α
‖z(s+1)m − x∗‖2

]

≤ 4

5
·
(τ2
τ1
D̃s ·

m−1∑

j=0

θj +
1− τ1 − τ2

τ1
Dsm +

1

2α
‖zsm − x∗‖2

)
.

31

If we telescope the above inequality over all epochs s = 0, 1, . . . , S − 1, we obtain

E
[
F (xout)− F (x∗)

] ¬
≤ 1

τ2m+ (1− τ1 − τ2)
E
[
τ2D̃

S ·
m−1∑

j=0

θj +
(
1− τ1 − τ2

)
DSm

]

≤
(5

4

)−S ·O
(
D̃0 +D0 +

τ1
ατ2m

‖x0 − x∗‖2
)

®
≤
(5

4

)−S ·O
(

1 +
τ1

ατ2mσ

)
· (F (x0)− F (x∗))

¯
= O((5/4)−S) ·

(
F (x0)− F (x∗)

)
. (C.5)

Above, inequality ¬ uses the choice xout = τ2mx̃S+(1−τ1−τ2)ySm
τ2m+(1−τ1−τ2) , the convexity of F (·), and the fact

∑m−1
j=0 θj ≥ m; inequality uses the fact that

∑m−1
j=0 θj ≤ O(m), and the fact that τ2 ≥ 1

2m ;

inequality ® uses the strong convexity of F (·) which implies F (x0) − F (x∗) ≥ σ
2 ‖x0 − x∗‖2; and

inequality ¯ uses our choice of τ1 and α.

Case 2. Suppose L > Lm
b . In this case, we choose

L� = L and τ2 =
L

2L�b
=

L

2Lb
∈
[
0,

1

2m

]

Case 2.1. Suppose m2σ
L ≤ 3

8 . In this subcase, we choose

α =
1√
6σL

, τ1 =
1

3αL
= 2ασ =

√
2σ√
3L
∈
[
0,

1

2m

]
, θ = 1 + ασ

We have ασ ≤ 1
4m and therefore the following inequality holds:

τ2(θ
m−1 − 1) + (1− 1/θ) = τ2((1 + ασ)m−1 − 1) + (1− 1

1 + ασ
) ≤ 2τ2mασ + ασ ≤ 2ασ = τ1 .

In other words, we have τ1 + τ2 − (1− 1/θ) ≥ τ2θm−1 and thus (C.3) implies that

E
[τ2
τ1
D̃s+1 ·

m−1∑

j=0

θj +
1− τ1 − τ2

τ1
D(s+1)m +

1

2α
‖z(s+1)m − x∗‖2

]

≤ θ−m ·
(τ2
τ1
D̃s ·

m−1∑

j=0

θj +
1− τ1 − τ2

τ1
Dsm +

1

2α
‖zsm − x∗‖2

)
.

If we telescope the above inequality over all epochs s = 0, 1, . . . , S − 1, we obtain

E
[
F (xout)− F (x∗)

] ¬
≤ 1

τ2m+ (1− τ1 − τ2)
E
[
τ2D̃

S ·
m−1∑

j=0

θj +
(
1− τ1 − τ2

)
DSm

]

≤ θ−Sm ·O

(
D̃0 +D0 +

τ1
α
‖x0 − x∗‖2

)

®
≤ θ−Sm ·O

(
1 +

τ1
ασ

)
· (F (x0)− F (x∗))

¯
= O((1 + ασ)−Sm) ·

(
F (x0)− F (x∗)

)
. (C.6)

Above, inequality ¬ uses the choice xout = τ2mx̃S+(1−τ1−τ2)ySm
τ2m+(1−τ1−τ2) , the convexity of F (·), and the fact

∑m−1
j=0 θj ≥ m; inequality uses the fact that

∑m−1
j=0 θj ≤ O(m) (because ασ ≤ 1

4m), and the fact

32

that τ2m+ (1− τ1− τ2) ≥ 1− τ1 + (m− 1)τ2 ≥ 1/2; inequality ® uses the strong convexity of F (·)
which implies F (x0)− F (x∗) ≥ σ

2 ‖x0 − x∗‖2; and inequality ¯ uses our choice of τ1.

Case 2.2. Suppose m2σ
L > 3

8 . In this case, we choose

τ1 =
1

2m
and α =

1

3τ1L
=

2m

3L
>

1

4σm
, θ = 1 +

1

4m

(Note that we can choose θ = 1 + 1
4m because 1

4m ≤ ασ.)
Under these parameter choices, we can calculate that

(τ1 + τ2 − (1− 1/θ))θ

τ2
=
τ1 + τ2
τ2

− 1− 2τ2
4mτ2

≥ 1 +
τ1 − 1/4m

τ2
≥ 3

2
>

5

4
and θm ≥ 5

4

thus (C.3) implies that

E
[τ2
τ1
D̃s+1 ·

m−1∑

j=0

θj +
1− τ1 − τ2

τ1
D(s+1)m +

1

2α
‖z(s+1)m − x∗‖2

]

≤ 4

5
·
(τ2
τ1
D̃s ·

m−1∑

j=0

θj +
1− τ1 − τ2

τ1
Dsm +

1

2α
‖zsm − x∗‖2

)
.

If we telescope the above inequality over all epochs s = 0, 1, . . . , S − 1, we obtain

E
[
F (xout)− F (x∗)

] ¬
≤ 1

τ2m+ (1− τ1 − τ2)
E
[
τ2D̃

S ·
m−1∑

j=0

θj +
(
1− τ1 − τ2

)
DSm

]

≤
(5

4

)−S ·O
(
D̃0 +D0 +

τ1
α
‖x0 − x∗‖2

)

®
≤
(5

4

)−S ·O
(

1 +
τ1
ασ

)
· (F (x0)− F (x∗))

¯
= O((5/4)−S) ·

(
F (x0)− F (x∗)

)
. (C.7)

Above, inequality ¬ uses the choice xout = τ2mx̃S+(1−τ1−τ2)ySm
τ2m+(1−τ1−τ2) , the convexity of F (·), and the

fact
∑m−1

j=0 θj ≥ m; inequality uses the fact that
∑m−1

j=0 θj ≤ O(m), and that τ2m + (1 − τ1 −
τ2) ≥ 1 − τ1 + (m − 1)τ2 ≥ 1/2; inequality ® uses the strong convexity of F (·) which implies
F (x0)− F (x∗) ≥ σ

2 ‖x0 − x∗‖2; and inequality ¯ uses our choice of τ1 and α. �

D Appendix for Section 6

In this section, we first include the complete pseudo-codes for Katyusha2 and Katyusha2ns. Then,
we provide a one-iteration analysis for both algorithms, in the same spirit as Section 3.1.

The final proofs of Theorem 6.1 and Theorem 6.2 are direct corollaries of such one-iteration
analysis, where the details we have already given in Section 3.2 and in Section B.1 respectively.

33

D.1 Pseudo-Codes

Algorithm 4 Katyusha2(x0, S, σ, (L1, . . . , Ln))

1: m← n; L = (L1 + · · ·+ Ln)/n;

2: τ2 ← 1
2 , τ1 ← min

{√
mσ/9L, 12

}
, α← 1

9τ1L
;

3: y0 = z0 = x̃0 ← x0;
4: for s← 0 to S − 1 do
5: µs ← ∇f(x̃s);
6: for j ← 0 to m− 1 do
7: k ← (sm) + j;
8: xk+1 ← τ1zk + τ2x̃

s + (1− τ1 − τ2)yk;
9: Pick i randomly from {1, 2, . . . , n}, each with probability Li/nL;

10: ∇̃k+1 ← µs +∇fi(xk+1)−∇fi(x̃s);
11: zk+1 = arg minz

{
1
αVzk(z) + 〈∇̃k+1, z〉+ ψ(z)

}
;

� Vx(y) is the Bregman divergence function, see Section 6

12: yk+1 ← arg miny
{
9L
2 ‖y − xk+1‖2 + 〈∇̃k+1, y〉+ ψ(y)

}
;

13: end for
14: x̃s+1 ←

(∑m−1
j=0 (1 + ασ)j

)−1 ·
(∑m−1

j=0 (1 + ασ)j · ysm+j+1

)
;

15: end for
16: return x̃S .

Algorithm 5 Katyusha2ns(x0, S, σ, (L1, . . . , Ln))

1: m← n; L = (L1 + · · ·+ Ln)/n;
2: τ2 ← 1

2 ;
3: y0 = z0 = x̃0 ← x0;
4: for s← 0 to S − 1 do
5: τ1,s ← 2

s+4 , αs ← 1
9τ1,sL

6: µs ← ∇f(x̃s);
7: for j ← 0 to m− 1 do
8: k ← (sm) + j;
9: xk+1 ← τ1,szk + τ2x̃

s + (1− τ1,s − τ2)yk;
10: Pick i randomly from {1, 2, . . . , n}, each with probability Li/nL;
11: ∇̃k+1 ← µs +∇fi(xk+1)−∇fi(x̃s);
12: zk+1 = arg minz

{
1
αs
Vzk(z) + 〈∇̃k+1, z〉+ ψ(z)

}
;

� Vx(y) is the Bregman divergence function, see Section 6

13: yk+1 ← arg miny
{
9L
2 ‖y − xk+1‖2 + 〈∇̃k+1, y〉+ ψ(y)

}
;

14: end for
15: x̃s+1 ← 1

m

∑m
j=1 ysm+j ;

16: end for
17: return x̃S .

D.2 One-Iteration Analysis

Similar as Section 3.1, we first analyze the behavior of Katyusha2 in a single iteration (i.e., for a
fixed k). We view yk, zk and xk+1 as fixed in this section so the only randomness comes from the

34

choice of i in iteration k. We abbreviate in this subsection by x̃ = x̃s where s is the epoch that
iteration k belongs to, and denote by σ2k+1

def
= ‖∇f(xk+1)− ∇̃k+1‖2∗.

Our first lemma is analogous to Lemma D.1 except the change of the parameter and the norm.

Lemma D.1 (proximal gradient descent). If

yk+1 = arg min
y

{9L

2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}
, and

Prog(xk+1)
def
= −min

y

{9L

2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}
≥ 0 ,

we have (where the expectation is only over the randomness of ∇̃k+1)

F (xk+1)− E
[
F (yk+1)

]
≥ E

[
Prog(xk+1)

]
− 1

16L
E
[
σ2k+1

]
.

Proof.

Prog(xk+1) = −min
y

{9L

2
‖y − xk+1‖2 + 〈∇̃k+1, y − xk+1〉+ ψ(y)− ψ(xk+1)

}

¬
= −

(9L

2
‖yk+1 − xk+1‖2 + 〈∇̃k+1, yk+1 − xk+1〉+ ψ(yk+1)− ψ(xk+1)

)

= −
(L

2
‖yk+1 − xk+1‖2 + 〈∇f(xk+1), yk+1 − xk+1〉+ ψ(yk+1)− ψ(xk+1)

)

+
(
〈∇f(xk+1)− ∇̃k+1, yk+1 − xk+1〉 − 4L‖yk+1 − xk+1‖2

)

≤ −

(
f(yk+1)− f(xk+1) + ψ(yk+1)− ψ(xk+1)

)
+

1

16L
‖∇f(xk+1)− ∇̃k+1‖2∗ .

Above, ¬ is by the definition of yk+1, and uses the smoothness of function f(·), as well as
Young’s inequality 〈a, b〉 − 1

2‖b‖2 ≤ 1
2‖a‖2∗. Taking expectation on both sides we arrive at the

desired result. �
The next lemma is analogous to Lemma 3.4 but with slightly different proof.

Lemma D.2 (variance upper bound).

E
[
‖∇̃k+1 −∇f(xk+1)‖2∗

]
≤ 8L ·

(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

)
.

Proof. Each fi(x), being convex and Li-smooth, implies the following inequality which is classical in
convex optimization and can be found for instance in Theorem 2.1.5 of the textbook of Nesterov [36].

‖∇fi(xk+1)−∇fi(x̃)‖2∗ ≤ 2Li ·
(
fi(x̃)− fi(xk+1)− 〈∇fi(xk+1), x̃− xk+1〉

)
(D.1)

Therefore, taking expectation over the random choice of i, we have

E
[
‖∇̃k+1 −∇f(xk+1)‖2∗

]

= E
[∥∥ 1

npi

(
∇fi(xk+1)−∇fi(x̃)

)
−
(
∇f(xk+1)−∇f(x̃)

)∥∥2
∗
]

¬
≤ 2E

[1

n2p2i

∥∥∇fi(xk+1)−∇fi(x̃)
∥∥2
∗
]

+ 2
∥∥∇f(xk+1)−∇f(x̃)

)∥∥2
∗

≤ 4 · E

[Li
n2p2i

(
fi(x̃)− fi(xk+1)− 〈∇fi(xk+1), x̃− xk+1〉

)]
+ 2
∥∥∇f(xk+1)−∇f(x̃)

)∥∥2
∗

®
= 4L ·

(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

)
+ 2
∥∥∇f(xk+1)−∇f(x̃)

)∥∥2
∗

≤ 8L ·
(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

)
.

35

Above, inequality ¬ is because ‖a + b‖2∗ ≤ (‖a‖∗ + ‖b‖∗)2 ≤ 2‖a‖2∗ + 2‖b‖2∗; inequality follows
from (D.1); equality ® follows from the probability distribution that we select i with probability
pi = Li/(nL); inequality ¯ uses (D.1) again but replacing fi(·) with f(·). �

The next lemma is classical for mirror descent with respect to a general Bregman divergence.

Lemma D.3 (proximal mirror descent). Suppose ψ(·) is σ-SC with respect to Vx(y). Then, fixing
∇̃k+1 and letting

zk+1 = arg min
z

{
Vzk(z) + α〈∇̃k+1, z − zk〉+ αψ(z)− αψ(zk)

}
,

it satisfies for all u ∈ Rd,

α〈∇̃k+1, zk+1 − u〉+ αψ(zk+1)− αψ(u) ≤ −1

2
‖zk − zk+1‖2 + Vzk(u)− (1 + ασ)Vzk+1

(u) .

Proof. By the minimality definition of zk+1, we have that

∇Vzk(zk+1) + α∇̃k+1 + αg = 0

where g is some subgradient of ψ(z) at point z = zk+1. This implies that for every u it satisfies

0 =
〈
∇Vzk(zk+1) + α∇̃k+1 + αg, zk+1 − u〉 .

At this point, using the equality 〈∇Vzk(zk+1), zk+1− u〉 = Vzk(zk+1)− Vzk(u) + Vzk+1
(u) (known as

the “three-point equality of Bregman divergence”, see [40]), as well as the inequality 〈g, zk+1−u〉 ≥
ψ(zk+1)− ψ(u) + σVzk+1

(u) which comes from the strong convexity of ψ(·), we can write

α〈∇̃k+1, zk+1 − u〉+ αψ(zk+1)− αψ(u)

= −〈zk+1 − zk, zk+1 − u〉 − 〈αg, zk+1 − u〉+ αψ(zk+1)− αψ(u)

≤ −Vzk(zk+1) + Vzk(u)− (1 + ασ)Vzk+1
(u) .

Finally, using Vzk(zk+1) ≥ 1
2‖zk − zk+1‖2 which comes from the strong convexity of w(x) with

respect to ‖ · ‖, we complete the proof. �
The following lemma combines Lemma D.1, Lemma D.2 and Lemma D.3 all together, using the

special choice of xk+1 which is a convex combination of yk, zk and x̃:

Lemma D.4 (coupling step 1). If xk+1 = τ1zk + τ2x̃+ (1− τ1− τ2)yk, where τ1 ≤ 1
9αL

and τ2 = 1
2 ,

α〈∇f(xk+1), zk − u〉 − αψ(u)

≤ α

τ1

(
F (xk+1)− E

[
F (yk+1)

]
+ τ2F (x̃)− τ2E

[
F (xk+1)

]
− τ2〈∇f(xk+1), x̃− xk+1〉

)

+ Vzk(u)− (1 + ασ)E
[
Vzk+1

(u)
]

+
α(1− τ1 − τ2)

τ1
ψ(yk)−

α

τ1
ψ(xk+1) .

Proof. We first apply Lemma D.3 and get

α〈∇̃k+1, zk − u〉+ αψ(zk+1)− αψ(u)

= α〈∇̃k+1, zk − zk+1〉+ α〈∇̃k+1, zk+1 − u〉+ αψ(zk+1)− αψ(u)

≤ α〈∇̃k+1, zk − zk+1〉 −
1

2
‖zk − zk+1‖2 + Vzk(u)− (1 + ασ)Vzk+1

(u) . (D.2)

36

By defining v
def
= τ1zk+1 + τ2x̃+ (1− τ1 − τ2)yk, we have xk+1 − v = τ1(zk − zk+1) and therefore

E
[
α〈∇̃k+1, zk − zk+1〉 −

1

2
‖zk − zk+1‖2

]
= E

[α
τ1
〈∇̃k+1, xk+1 − v〉 −

1

2τ21
‖xk+1 − v‖2

]

= E
[α
τ1

(
〈∇̃k+1, xk+1 − v〉 −

1

2ατ1
‖xk+1 − v‖2 − ψ(v) + ψ(xk+1)

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]

¬
≤ E

[α
τ1

(
〈∇̃k+1, xk+1 − v〉 −

9L

2
‖xk+1 − v‖2 − ψ(v) + ψ(xk+1)

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]

≤ E

[α
τ1

(
F (xk+1)− F (yk+1) +

1

16L
σ2k+1

)
+
α

τ1

(
ψ(v)− ψ(xk+1)

)]

®
≤ E

[α
τ1

(
F (xk+1)− F (yk+1) +

1

2

(
f(x̃)− f(xk+1)− 〈∇f(xk+1), x̃− xk+1〉

))

+
α

τ1

(
τ1ψ(zk+1) + τ2ψ(x̃) + (1− τ1 − τ2)ψ(yk)− ψ(xk+1)

)]
. (D.3)

Above, ¬ uses our choice τ1 ≤ 1
9αL

, uses Lemma D.1, ® uses Lemma D.2 together with the

convexity of ψ(·) and the definition of v. Finally, noticing that E[〈∇̃k+1, zk−u〉] = 〈∇f(xk+1), zk−u〉
and τ2 = 1

2 , we obtain the desired inequality by combining (D.2) and (D.3). �
The next lemma is completely analogous to Lemma 3.7 except that we use Lemma D.4 rather

than Lemma 3.6. We ignore the proof since it is a simple copy-and-paste.

Lemma D.5 (coupling step 2). Under the same choices of τ1, τ2 as in Lemma D.4, we have

0 ≤ α(1− τ1 − τ2)
τ1

(F (yk)− F (x∗))− α

τ1

(
E
[
F (yk+1)

]
− F (x∗)

)
+
ατ2
τ1

(
F (x̃)− τ2F (x∗)

)

+Vzk(x∗)− (1 + ασ)E
[
Vzk+1

(x∗)
]
.

References

[1] Zeyuan Allen-Zhu and Elad Hazan. Optimal Black-Box Reductions Between Optimization
Objectives. In NIPS, 2016.

[2] Zeyuan Allen-Zhu and Elad Hazan. Variance Reduction for Faster Non-Convex Optimization.
In ICML, 2016.

[3] Zeyuan Allen-Zhu, Yin Tat Lee, and Lorenzo Orecchia. Using optimization to obtain a width-
independent, parallel, simpler, and faster positive SDP solver. In Proceedings of the 27th
ACM-SIAM Symposium on Discrete Algorithms, SODA ’16, 2016.

[4] Zeyuan Allen-Zhu and Yuanzhi Li. Doubly Accelerated Methods for Faster CCA and Gener-
alized Eigendecomposition. ArXiv e-prints, abs/1607.06017, July 2016.

[5] Zeyuan Allen-Zhu and Yuanzhi Li. Faster Principal Component Regression and Stable Matrix
Chebyshev Approximation. ArXiv e-prints, abs/1608.04773, August 2016.

[6] Zeyuan Allen-Zhu and Yuanzhi Li. LazySVD: Even Faster SVD Decomposition Yet Without
Agonizing Pain. In NIPS, 2016.

[7] Zeyuan Allen-Zhu, Yuanzhi Li, Rafael Oliveira, and Avi Wigderson. Much faster algorithms
for matrix scaling. ArXiv e-prints, abs/1704.02315, April 2017.

37

[8] Zeyuan Allen-Zhu, Zhenyu Liao, and Yang Yuan. Optimization Algorithms for Faster Com-
putational Geometry. In ICALP, 2016.

[9] Zeyuan Allen-Zhu and Lorenzo Orecchia. Nearly-Linear Time Positive LP Solver with Faster
Convergence Rate. In Proceedings of the 47th Annual ACM Symposium on Theory of Com-
puting, STOC ’15, 2015.

[10] Zeyuan Allen-Zhu and Lorenzo Orecchia. Using optimization to break the epsilon barrier: A
faster and simpler width-independent algorithm for solving positive linear programs in parallel.
In Proceedings of the 26th ACM-SIAM Symposium on Discrete Algorithms, SODA ’15, 2015.

[11] Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear Coupling: An Ultimate Unification of Gra-
dient and Mirror Descent. In Proceedings of the 8th Innovations in Theoretical Computer
Science, ITCS ’17, 2017. Full version available at http://arxiv.org/abs/1407.1537.

[12] Zeyuan Allen-Zhu, Peter Richtárik, Zheng Qu, and Yang Yuan. Even faster accelerated coor-
dinate descent using non-uniform sampling. In ICML, 2016.

[13] Zeyuan Allen-Zhu and Yang Yuan. Improved SVRG for Non-Strongly-Convex or Sum-of-Non-
Convex Objectives. In ICML, 2016.

[14] Léon Bottou. Stochastic gradient descent. http://leon.bottou.org/projects/sgd.

[15] Sébastien Bubeck, Yin Tat Lee, and Mohit Singh. A geometric alternative to Nesterov’s
accelerated gradient descent. ArXiv e-prints, abs/1506.08187, June 2015.

[16] Cong Dang and Guanghui Lan. Randomized First-Order Methods for Saddle Point Optimiza-
tion. ArXiv e-prints, abs/1409.8625, sep 2014.

[17] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A Fast Incremental Gradient
Method With Support for Non-Strongly Convex Composite Objectives. In NIPS, 2014.

[18] Rong-En Fan and Chih-Jen Lin. LIBSVM Data: Classification, Regression and Multi-label.
Accessed: 2015-06.

[19] Roy Frostig, Rong Ge, Sham M. Kakade, and Aaron Sidford. Un-regularizing: approximate
proximal point and faster stochastic algorithms for empirical risk minimization. In ICML,
volume 37, pages 1–28, 2015.

[20] Dan Garber and Elad Hazan. Fast and simple PCA via convex optimization. ArXiv e-prints,
September 2015.

[21] Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: Optimal algorithms
for stochastic strongly-convex optimization. The Journal of Machine Learning Research,
15(1):2489–2512, 2014.

[22] Chonghai Hu, Weike Pan, and James T Kwok. Accelerated gradient methods for stochastic
optimization and online learning. In Advances in Neural Information Processing Systems,
pages 781–789, 2009.

[23] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive vari-
ance reduction. In Advances in Neural Information Processing Systems, NIPS 2013, pages
315–323, 2013.

38

http://arxiv.org/abs/1407.1537
http://leon.bottou.org/projects/sgd

[24] Anatoli Juditsky. Convex optimization ii: Algorithms. Lecture notes, November 2013.

[25] Jakub Konečnỳ, Jie Liu, Peter Richtárik, and Martin Takáč. Mini-batch semi-stochastic gra-
dient descent in the proximal setting. IEEE Journal of Selected Topics in Signal Processing,
10(2):242–255, 2016.

[26] Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical
Programming, 133(1-2):365–397, January 2011.

[27] Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. ArXiv
e-prints, abs/1507.02000, October 2015.

[28] Hongzhou Lin. private communication, 2016.

[29] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A Universal Catalyst for First-Order
Optimization. In NIPS, 2015.

[30] Qihang Lin, Zhaosong Lu, and Lin Xiao. An Accelerated Proximal Coordinate Gradient
Method and its Application to Regularized Empirical Risk Minimization. In NIPS, pages
3059–3067, 2014.

[31] Zhaosong Lu and Lin Xiao. On the complexity analysis of randomized block-coordinate descent
methods. Mathematical Programming, pages 1–28, 2013.

[32] Mehrdad Mahdavi, Lijun Zhang, and Rong Jin. Mixed optimization for smooth functions. In
Advances in Neural Information Processing Systems, pages 674–682, 2013.

[33] Julien Mairal. Incremental Majorization-Minimization Optimization with Application to
Large-Scale Machine Learning. SIAM Journal on Optimization, 25(2):829–855, April 2015.
Preliminary version appeared in ICML 2013.

[34] Tomoya Murata and Taiji Suzuki. Doubly accelerated stochastic variance reduced dual aver-
aging method for regularized empirical risk minimization. arXiv preprint arXiv:1703.00439,
2017.

[35] Yurii Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). In Doklady AN SSSR (translated as Soviet Mathematics Doklady), volume 269, pages
543–547, 1983.

[36] Yurii Nesterov. Introductory Lectures on Convex Programming Volume: A Basic course, vol-
ume I. Kluwer Academic Publishers, 2004.

[37] Yurii Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103(1):127–152, December 2005.

[38] Yurii Nesterov. Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Prob-
lems. SIAM Journal on Optimization, 22(2):341–362, jan 2012.

[39] Atsushi Nitanda. Stochastic proximal gradient descent with acceleration techniques. In Ad-
vances in Neural Information Processing Systems, pages 1574–1582, 2014.

[40] Alexander Rakhlin. Lecture notes on online learning. Draft, 2009. Available at http://

www-stat.wharton.upenn.edu/~rakhlin/courses/stat991/papers/lecture_notes.pdf.

39

http://www-stat.wharton.upenn.edu/~rakhlin/courses/stat991/papers/lecture_notes.pdf
http://www-stat.wharton.upenn.edu/~rakhlin/courses/stat991/papers/lecture_notes.pdf

[41] Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal
for strongly convex stochastic optimization. In ICML, 2012.

[42] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. arXiv preprint arXiv:1309.2388, pages 1–45, 2013. Preliminary version
appeared in NIPS 2012.

[43] Shai Shalev-Shwartz. Online learning: Theory, algorithms, and applications. PhD thesis,
Hebrew University, 2007.

[44] Shai Shalev-Shwartz. SDCA without Duality. arXiv preprint arXiv:1502.06177, pages 1–7,
2015.

[45] Shai Shalev-Shwartz and Tong Zhang. Proximal Stochastic Dual Coordinate Ascent. arXiv
preprint arXiv:1211.2717, pages 1–18, 2012.

[46] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regular-
ized loss minimization. Journal of Machine Learning Research, 14:567–599, 2013.

[47] Shai Shalev-Shwartz and Tong Zhang. Accelerated Proximal Stochastic Dual Coordinate As-
cent for Regularized Loss Minimization. In Proceedings of the 31st International Conference
on Machine Learning, ICML 2014, pages 64–72, 2014.

[48] Atsushi Shibagaki and Ichiro Takeuchi. Stochastic primal dual coordinate method with non-
uniform sampling based on optimality violations. arXiv preprint arXiv:1703.07056, 2017.

[49] Blake Woodworth and Nati Srebro. Tight Complexity Bounds for Optimizing Composite
Objectives. In NIPS, 2016.

[50] Lin Xiao and Tong Zhang. A Proximal Stochastic Gradient Method with Progressive Variance
Reduction. SIAM Journal on Optimization, 24(4):2057—-2075, 2014.

[51] Lijun Zhang, Mehrdad Mahdavi, and Rong Jin. Linear convergence with condition number
independent access of full gradients. In Advances in Neural Information Processing Systems,
pages 980–988, 2013.

[52] Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the 21st International Conference on Machine Learning, ICML
2004, 2004.

[53] Yuchen Zhang and Lin Xiao. Stochastic Primal-Dual Coordinate Method for Regularized
Empirical Risk Minimization. In ICML, 2015.

40

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha
(a) adult, λ = 10−6

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha
(b) adult, λ = 10−5

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha
(c) adult, λ = 10−4

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha
(d) web, λ = 10−6

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha
(e) web, λ = 10−5

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha
(f) web, λ = 10−4

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha
(g) mnist, λ = 10−6

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha
(h) mnist, λ = 10−5

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha
(i) mnist, λ = 10−4

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha
(j) rcv1, λ = 10−6

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha
(k) rcv1, λ = 10−5

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha
(l) rcv1, λ = 10−4

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha
(m) covtype, λ = 10−7

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha
(n) covtype, λ = 10−6

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha
(o) covtype, λ = 10−5

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(p) sensit, λ = 10−6

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(q) sensit, λ = 10−5

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 20 40 60 80 100

APCG Catalyst SAGA SVRG Katyusha

(r) sensit, λ = 10−4

Figure 3: Experiments on ridge regression with `2 regularizer weight λ.
41

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha
(a) adult, λ = 10−6

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha
(b) adult, λ = 10−5

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha
(c) adult, λ = 10−4

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha
(d) web, λ = 10−6

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha
(e) web, λ = 10−5

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha
(f) web, λ = 10−4

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha
(g) mnist, λ = 10−6

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha
(h) mnist, λ = 10−5

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha
(i) mnist, λ = 10−4

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha
(j) rcv1, λ = 10−6

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha
(k) rcv1, λ = 10−5

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha
(l) rcv1, λ = 10−4

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha
(m) covtype, λ = 10−7

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha
(n) covtype, λ = 10−6

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha
(o) covtype, λ = 10−5

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha

(p) sensit, λ = 10−6

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha

(q) sensit, λ = 10−5

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

0 20 40 60 80 100

APCG APCG+AdapReg Catalyst

SAGA SVRG Katyusha

(r) sensit, λ = 10−4

Figure 4: Experiments on Lasso with `1 regularizer weight λ.

42

