
Natasha: Faster Non-Convex Stochastic Optimization

Via Strongly Non-Convex Parameter

Zeyuan Allen-Zhu
zeyuan@csail.mit.edu

Princeton University / Institute for Advanced Study

February 2, 2017

Abstract

Given a non-convex function f(x) that is an average of n smooth functions, we design
stochastic first-order methods to find its approximate stationary points. The performance of our
new methods depend on the smallest (negative) eigenvalue −σ of the Hessian. This parameter
σ captures how strongly non-convex f(x) is, and is analogous to the strong convexity parameter
for convex optimization.

Our methods outperform the best known results for a wide range of σ, and can also be used
to find approximate local minima.

In particular, we find an interesting dichotomy: there exists a threshold σ0 so that the fastest
methods for σ > σ0 and for σ < σ0 have drastically different behaviors: the former scales with
n2/3 and the latter scales with n3/4.

1 Introduction

We study the problem of composite non-convex minimization:

min
x∈Rd

{
F (x)

def
= ψ(x) + f(x)

def
= ψ(x) +

1

n

n∑

i=1

fi(x)
}

(1.1)

where each fi(x) is nonconvex but smooth, and ψ(·) is proper convex, possibly nonsmooth, but
relatively simple. We are interested in finding a point x that is an approximate local minimum of
F (x).

• The finite-sum structure f(x) = 1
n

∑n
i=1 fi(x) arises prominently in large-scale machine learn-

ing tasks. In particular, when minimizing loss over a training set, each example i corresponds
to one loss function fi(·) in the summation. This finite-sum structure allows one to perform
stochastic gradient descent with respect to a random ∇fi(x).

• The so-called proximal term ψ(x) adds more generality to the model. For instance, if ψ(x) is
the indicator function of a convex set, then problem (1.1) becomes constraint minimization; if
ψ(x) = ‖x‖1, then we can allow problem (1.1) to perform feature selection. In general, ψ(x)
has to be a simple function where the projection operation arg minx{ψ(x) + 1

2η‖x − x0‖2} is
efficiently computable. At a first reading of this paper, one can assume ψ(x) ≡ 0 for simplicity.

Many non-convex machine learning problems fall into problem (1.1). Most notably, training deep
neural networks and classifications with sigmoid loss correspond to (1.1) where neither fi(x) or

1

ar
X

iv
:1

70
2.

00
76

3v
2

 [
m

at
h.

O
C

]
 2

7
Fe

b
20

17

mailto:zeyuan@csail.mit.edu

f(x) is convex [3]. However, our understanding to this challenging non-convex problem is very
limited.

1.1 Strongly Non-Convex Optimization

Let L be the smoothness parameter for each fi(x), meaning all the eigenvalues of ∇2fi(x) lie in
[−L,L].1

We denote by σ ∈ [0, L] the strong-nonconvexity parameter of f(x) = 1
n

∑n
i=1 fi(x), meaning

that

all the eigenvalues of ∇2f(x) lie in [−σ, L].

We emphasize that parameter σ is analogous to the strong-convexity parameter µ for convex opti-
mization, where all the eigenvalues of ∇2f(x) lie in [µ,L] for some µ > 0.

We wish to find an ε-approximate stationary point (a.k.a. critical point) of F (x), that is

a point x satisfying ‖G(x)‖ ≤ ε

where G(x) is the so-called gradient mapping of F (x) (see Section 2 for a formal definition). In
the special case of ψ(·) ≡ 0, gradient mapping G(x) is the same as gradient ∇f(x), so x satisfies
‖∇f(x)‖ ≤ ε.

Since f(·) is σ-strongly nonconvex, any ε-approximate stationary point is automatically also an
(ε, σ)-approximate local minimum — meaning that the Hessian of the output point ∇2f(x) � −σI
is approximately positive semidefinite (PSD).

Motivations and Remarks

• We focus on strongly non-convex optimization because introducing this parameter σ allows us
to perform a more refined study of non-convex optimization. If σ equals L then L-strongly
nonconvex optimization is equivalent to the general non-convex optimization.

• We focus only on finding stationary points as opposed to local minima, because in a recent
study —see Appendix A— researchers have shown that finding (ε, δ)-approximate local minima
reduces to finding ε-approximate stationary points in an O(δ)-strongly nonconvex function.

• Parameter σ is often not constant and can be much smaller than L. For instance, second-order
methods often find (ε,

√
ε)-approximate local minima [18] and this corresponds to σ =

√
ε.

1.2 Known Results

Despite the widespread use of nonconvex models in machine learning and related fields, our under-
standing to non-convex optimization is still very limited. Until recently, nearly all research papers
have been mostly focusing on either σ = 0 or σ = L:

• If σ = 0, the accelerated SVRG method [8, 21] finds x satisfying F (x)−F (x∗) ≤ ε, in gradient
complexity Õ

(
n + n3/4

√
L/ε

)
.2 This result is irrelevant to this paper because f(x) is simply

convex.

• If σ = L, the SVRG method [3] finds an ε-approximate stationary point of F (x) in gradient
complexity O(n+ n2/3L/ε2).

1This definition also applies to functions f(x) that are not twice differentiable, see Section 2 for details.
2We use the Õ notation to hide poly-logarithmic factors in n,L, 1/ε.

2

• If σ = L, gradient descent finds an ε-approximate stationary point of F (x) in gradient com-
plexity O(nL/ε2).

• If σ = L, stochastic gradient descent finds an ε-approx. stationary point of F (x) in gradient
complexity O(L2/ε4).

Throughout this paper, we refer to gradient complexity as the total number of stochastic gradient
computations ∇fi(x) and proximal computations y ← Proxψ,η(x)

def
= arg miny{ψ(y) + 1

2α‖y−x‖2}.3
Very recently, it was observed by two independent groups [1, 9] —although implicitly, see

Section 2.1— that for solving the σ-strongly nonconvex problem, one can repeatedly regularize
F (x) to make it σ-strongly convex, and then apply the accelerated SVRG method to minimize this
regularized function. Under mild assumption σ ≥ ε2, this approach

• finds an ε-approximate stationary point in gradient complexity Õ
(
nσ+n3/4

√
Lσ

ε2

)
.

We call this method repeatSVRG in this paper. Unfortunately, repeatSVRG is even slower than
the vanilla SVRG for σ = L by a factor n1/3, see Figure 1.

Remark on SGD. Stochastic gradient descent (SGD) has a slower convergence rate (i.e., in terms
of 1/ε4) than other cited first-order methods (i.e., in terms of 1/ε2). However, the complexity of
SGD does not depend on n and thus is incomparable to gradient descent, SVRG, or repeatSVRG.4

This is one of the main motivations to study how to reduce the complexity of non-SGD methods,
especially in terms of n.

1.3 Our New Results
co

m
p

le
xi

ty
 (

lo
g-

sc
al

e)

𝜎 = 𝐿/ 𝑛 𝜎 = 𝐿

repeatSVRG

Natasha

SVRG

𝜎 = 0

𝑛2/3 𝐿2𝜎 1/3

𝜀2

𝑛3/4 𝐿𝜎 1/2

𝜀2

𝑛2/3𝐿

𝜀2

𝑛𝐿

𝜀2

gradient descent

𝑛𝜎

𝜀2

Figure 1: Comparison to prior works

In this paper, we identify an interesting dichotomy with
respect to the spectrum of the nonconvexity parameter
σ ∈ [0, L]. In particular, we showed that if σ ≤ L/

√
n,

then our new method Natasha finds an ε-approximate
stationary point of F (x) in gradient complexity

O
(
n log

1

ε
+
n2/3(L2σ)1/3

ε2

)
.

In other words, together with repeatSVRG, we have im-
proved the gradient complexity for σ-stringly nonconvex
optimization to5

Õ
(

min
{n3/4

√
Lσ

ε2
,
n2/3(L2σ)1/3

ε2

})

and the first term in the min is smaller if σ > L/
√
n and the second term is smaller if σ < L/

√
n.

We illustrate our performance improvement in Figure 1. Our result matches that of SVRG for
σ = L, and has a much simpler analysis.

Additional Results. One can take a step further and ask what if each function fi(x) is (`1, `2)-
smooth for parameters `1, `2 ≥ σ, meaning that all the eigenvalues of ∇2fi(x) lie in [−`2, `1].

3Some authors also refer to them as incremental first-order oracle (IFO) and proximal oracle (PO) calls. In most
machine learning applications, each IFO and PO call can be implemented to run in time O(d) where d is the dimension
of the model, or even in time O(s) if s is the average sparsity of the data vectors.

4In practice, there are examples in non-convex empirical risk minimization [3] and in training neural networks [3, 19]
where SVRG alone can outperform SGD. Of course, for deep learning tasks, SGD remains to be the best practical
method of choice.

5We remark here that this is under mild assumptions for ε being sufficiently small. For instance, the result of
[1, 9] requires ε2 ≤ σ. In our result, the term n log 1

ε
disappears when ε6 ≤ L2σ/n.

3

We show that a variant of our method, which we call Natashafull, solves this more refined

problem of (1.1) with total gradient complexity O
(
n log 1

ε + n2/3(`1`2σ)1/3

ε2

)
as long as `1`2

σ2 ≤ n2.
Remark 1.1. In applications, `1 and `2 can be of very different magnitudes. The most influential ex-
ample is finding the leading eigenvector of a symmetric matrix. Using the so-called shift-and-invert
reduction [12], computing the leading eigenvector reduces to the convex version of problem (1.1),
where each fi(x) is (λ, 1)-smooth for λ � 1. Other examples include all the applications that
are built on shift-and-invert, including high rank SVD/PCA [5], canonical component analysis [4],
online matrix learning [6], and approximate local minima algorithms [1, 9].

Mini-Batch. Our result generalizes trivially to the mini-batch stochastic setting, where in each
iteration one computes ∇fi(x) for b random choices of index i ∈ [n] and average them. The stated
gradient complexities of Natasha and Natashafull can be adjusted so that the factor n2/3 is replaced
with n2/3b1/3.

1.4 Our Techniques

Let us first recall the main idea behind stochastic variance-reduced methods, such as SVRG [14].
The SVRG method divides iterations into epochs, each of length n. It maintains a snapshot

point x̃ for each epoch, and computes the full gradient ∇f(x̃) only for snapshots. Then, in each
iteration t at point xt, SVRG defines gradient estimator ∇̃ = ∇fi(xt) − ∇fi(x̃) + ∇f(x̃) which
satisfies Ei[∇̃] = ∇f(xt), and performs proximal update xt+1 ← Proxψ,α

(
xt−α∇̃

)
for some learning

rate α. (Recall that if ψ(·) ≡ 0 then we would have xt+1 ← xt − α∇̃.)
In nearly all the aforementioned results for nonconvex optimization, researchers have either

directly applied SVRG [3] (for the case σ = L), or repeatedly applied SVRG [1, 9] (for general
σ ∈ [0, L]). This puts some limitation in the algorithmic design, because SVRG requires each
epoch to be of length exactly n.6

Our New Idea. In this paper, we propose Natasha and Natashafull, two methods that are no
longer black-box reductions to SVRG. Both of them still divide iterations into epochs of length n,
and compute gradient estimators ∇̃ the same way as SVRG. However, we do not apply compute
xt − α∇̃ directly.

• In our base algorithm Natasha, we divide each epoch into p sub-epochs, each with a starting
vector x̂. Our theory suggests the choice p ≈ (σ

2

L2n)1/3. Then, we replace the use of ∇̃ with

∇̃+2σ(xt−x̂). This is equivalent to replacing f(x) with its regularized version f(x)+σ‖x−x̂‖2,
where the center x̂ varies across sub-epochs. We provide pseudocode in Algorithm 1 and
illustrate it in Figure 2.

We view this additional term 2σ(xt− x̂) as a type of retraction, which stabilizes the algorithm
by moving the vector a bit in the backward direction towards x̂.

• In our full algorithm Natashafull, we add one more ingredient on top of Natasha. That is, we
perform updates zt+1 ← Proxψ,α(zt − α∇̃) with respect to a different sequence {zt}, and then

define xt = 1
2zt + 1

2 x̂ and compute gradient estimators ∇̃ at points xt. We provide pseudocode
in Algorithm 2.

We view this averaging xt = 1
2zt + 1

2 x̂ as another type of retraction, which stabilizes the
algorithm by moving towards x̂. The technique of computing gradients at points xt but moving

6The epoch length of SVRG is always n (or a constant multiple of n in practice), because this ensures the

computation of ∇̃ is of amortized gradient complexity O(1). The per-iteration complexity of SVRG is thus the same
as the traditional stochastic gradient descent (SGD).

4

…

regularized by 𝜎 𝑥 − 𝑥 2

…

regularized by 𝜎 𝑥 − 𝑥 2

…

regularized by 𝜎 𝑥 − 𝑥 2

…

 𝒙

next 𝒙

… … …

Figure 2: One full epoch of Natasha. The n iterations are divided into p sub-epochs, each consisting of m = n/p
steps.

a different sequence of points zt is related to the Katyusha momentum recently developed for
convex optimization [2].

1.5 Other Related Work

Methods based on variance-reduced stochastic gradients were first introduced for convex optimiza-
tion. The first such method is SAG by Schmidt et al [20]. The two most popular choices for
gradient estimators are the SVRG-like one we adopted in this paper (independently introduced
by [14, 22], and the SAGA-like one introduced by [10]. In nearly all applications, the results proven
for SVRG-like estimators and SAGA-like estimators are simply exchangeable (therefore, the results
of this paper naturally generalize to SAGA-like estimators).

The first “non-convex use” of variance reduction is by Shalev-Shwartz [21] who assumes that
each fi(x) is non-convex but their average f(x) is still convex. This result has been slightly improved
to several more refined settings [8]. The first truly non-convex use of variance reduction (i.e., for f(x)
being also non-convex) is independently by [3] and [19]. First-order methods only find stationary
points (unless there is extra assumption on the randomness of the data), and converge no faster
than 1/ε2.

When the second-order Hessian information is used, one can (1) find local minima instead
of stationary points, and (2) improve the 1/ε2 rate to 1/ε1.5. The first such result is by cubic-
regularized Newton’s method [18]; however, its per-iteration complexity is very high. Very recently,
two independent groups of authors tackled this problem from a somewhat similar viewpoint [1, 9]:
if the computation of Hessian-vector multiplications (i.e.,

(
∇2fi(x)

)
v) is on the same order of the

computation of gradients ∇fi(x),7 then one can obtain a (ε,
√
ε)-approximate local minimum in

gradient complexity Õ
(
n
ε1.5

+ n3/4

ε1.75

)
, if we use big-O to also hide dependencies on the smoothness

parameters.8 Although Carmon et al. [9] only stated a complexity of Õ
(

n
ε1.75

)
in the non-stochastic

setting, their result generalizes to our stated complexity in the stochastic setting. As we argue in
Appendix A, both these methods reduce the problem of finding (ε,

√
ε)-approximate local minima

to that of finding ε-approximate stationary points in
√
ε-strongly nonconvex functions.

Other related papers include Ge et al. [13] where the authors showed that a noise-injected
version of SGD converges to local minima instead of critical points, as long as the underlying
function is “strict-saddle.” Their theoretical running time is a large polynomial in the dimension.
Lee et al. [15] showed that gradient descent, starting from a random point, almost surely converges

7A lot of interesting problems satisfy this property, including training neural nets.
8More precisely, they obtain an (ε,

√
L2ε)-approximate local minimum using gradient complexity Õ

(
n
√
L2

ε1.5
+

n3/4L
1/4
2 L1/2

ε1.75

)
where L2 is the second-order smoothness of f(·).

5

to a local minimum if the function is “strict-saddle”. The rate of convergence required is somewhat
unknown.

2 Preliminaries

Throughout this paper, we denote by ‖ · ‖ the Euclidean norm. We use i ∈R [n] to denote that i
is generated from [n] = {1, 2, . . . , n} uniformly at random. We denote by ∇f(x) the full gradient
of function f if it is differentiable, and ∂f(x) any subgradient if f is only Lipschitz continuous at
point x. We let x∗ be any minimizer of F (x).

Recall some definitions on strong convexity (SC), strongly nonconvexity, and smoothness.

Definition 2.1. For a function f : Rd → R,
• f is σ-strongly convex if ∀x, y ∈ Rd, it satisfies f(y) ≥ f(x) + 〈∂f(x), y − x〉+ σ

2 ‖x− y‖2.
• f is σ-strongly nonconvex if ∀x, y ∈ Rd, it satisfies f(y) ≥ f(x) + 〈∂f(x), y − x〉 − σ

2 ‖x− y‖2.
• f is (`1, `2)-smooth if ∀x, y ∈ Rd, it satisfies

f(x) + 〈∇f(x), y − x〉+ `1
2 ‖x− y‖2 ≥ f(y) ≥ f(x) + 〈∇f(x), y − x〉 − `2

2 ‖x− y‖2 .

• f is L-smooth if it is (L,L)-smooth.

The (`1, `2)-smoothness parameters were introduced in [8] to tackle the convex setting of prob-
lem (1.1). The notion of strong nonconvexity is also known as “lower smoothness [8]” or “almost
convexity [9]”. We refrain from using the name “almost convexity” because it coincides with several
other definitions in optimization literatures.

Definition 2.2. Given a parameter η > 0, the gradient mapping of F (·) in (1.1) at point x is

Gη(x)
def
=

1

η

(
x− x′

)
where x′ = arg min

y

{
ψ(y) + 〈∇f(x), y〉+

1

2η
‖y − x‖2

}

In particular, if ψ(·) ≡ 0, then Gη(x) ≡ ∇f(x).

The following theorem for the SVRG method can be found for instance in [8], which is built on
top of the results [11, 16, 21]:

Theorem 2.3 (SVRG). Let G(y)
def
= ψ(y) + 1

n

∑n
i=1 gi(y) be σ-strongly convex, then the SVRG

method finds a point y satisfying G(y)−G(y∗) ≤ ε
• with gradient complexity O

(
(n+ L2

σ2) log 1
ε

)
, if each gi(·) is L-smooth (for L ≥ σ); or

• with gradient complexity O
(
(n+ `1`2

σ2) log 1
ε

)
, if each gi(·) is (`1, `2)-smooth (for `1, `2 ≥ σ).

If one performs acceleration, the running times become Õ
(
n+n3/4

√
L/σ

)
and Õ

(
n+n3/4(`1`2σ

2)1/4
)
.

2.1 RepeatSVRG

We recall the idea behind a simple algorithm —that we call repeatSVRG— which finds the ε-
approximate stationary points for problem (1.1) when f(x) is σ-strongly nonconvex. The algorithm

is divided into stages. In each stage t, consider a modified function Ft(x)
def
= F (x) + σ‖x− xt‖2. It

is easy to see that Ft(x) is σ-strongly convex, so one can apply the accelerated SVRG method to
minimize Ft(x). Let xt+1 be any sufficiently accurate approximate minimizer of Ft(x).9

9Since the accelerated SVRG method has a linear convergence rate for strongly convex functions, the complexity
to find such xt+1 only depends logarithmically on this accuracy.

6

Now, one can prove (c.f. Section 4) that xt+1 is an O(σ‖xt−xt+1‖)-approximate stationary point
for F (x). Therefore, if σ‖xt−xt+1‖ ≤ ε we can stop the algorithm because we have already found an
O(ε)-approximate stationary point. If σ‖xt−xt+1‖ > ε , then it must satisfy that F (xt)−F (xt+1) ≥
σ‖xt − xt+1‖2 ≥ Ω(ε2/σ), but this cannot happen for more than T = O

(
σ
ε2

(F (x0) − F ∗) stages.
Therefore, the total gradient complexity is T multiplied with the complexity of accelerated SVRG
in each stage (which is Õ(n+ n3/4

√
L/σ) according to Theorem 2.3).

Remark 2.4. The complexity of repeatSVRG can be inferred from [1, 9], but is not explicitly stated.
For instance, the paper [9] does not allow F (x) to have a non-smooth proximal term ψ(x), and
applies accelerated gradient descent instead of accelerated SVRG.

3 Our Algorithms

We introduce two variants of our algorithms: (1) the base method Natasha targets on the simple
regime when f(x) and each fi(x) are both L-smooth, and (2) the full method Natashafull targets
on the more refined regime when f(x) is L-smooth but each fi(x) is (`1, `2)-smooth.

Both methods follow the general idea of variance-reduced stochastic gradient descent: in each
inner-most iteration, they compute a gradient estimator ∇̃ that is of the form ∇̃ = ∇f(x̃) −
∇fi(x̃) +∇fi(x) and satisfies Ei∈R[n][∇̃] = ∇f(x). Here, x̃ is a snapshot point that is changed once
every n iterations (i.e., for each different k = 1, 2, . . . , T ′ in the pseudocode), and we call it a full
epoch for every distinct k. Notice that the amortized gradient complexity for computing ∇̃ is O(1)
per-iteration.

Base Method. In Natasha (see Algorithm 1), as illustrated by Figure 2, we divide each full
epoch into p sub-epochs s = 0, 1, . . . , p− 1, each of length m = n/p. In each sub-epoch s, we start

with a point x0 = x̂, and replace f(x) with its regularized version fs(x)
def
= f(x) +σ‖x− x̂‖2. Then,

in each iteration t of the sub-epoch s, we

• compute gradient estimator ∇̃ with respect to fs(xt), and

• perform update xt+1 = arg miny
{
ψ(y) + 〈∇̃, y〉+ 1

2α‖y − xt‖2
}

with learning rate α.

Effectively, the introduction of the regularizer σ‖x− x̂‖2 makes sure that when performing update
xt ← xt+1, we also move a bit towards point x̂ (i.e., retraction by regularization). Finally, when
the sub-epoch is done, we define x̂ to be a random one from {x0, . . . , xm−1}.
Full Method. In Natashafull, we also divide each full epoch into p sub-epochs. In each sub-epoch
s, we start with a point x0 = z0 = x̂ and define fs(x)

def
= f(x) + σ‖x − x̂‖2. However, this time in

each iteration t, we

• compute gradient estimator ∇̃ with respect to fs(xt),

• perform update zt+1 = arg miny
{
ψ(y) + 〈∇̃, y〉+ 1

2α‖y − zt‖2
}

with learning rate α, and

• choose xt+1 = 1
2zt+1 + 1

2 x̂.

Effectively, the regularizer σ‖x − x̂‖2 makes sure that when performing updates, we move a bit
towards point x̂ (i.e., retraction by regularization); at the same time, the choice xt+1 = 1

2zt+1 + 1
2 x̂

also helps us move towards point x̂ (i.e., retraction by the so-called “Katyusha momentum”10).
Finally, when the sub-epoch is over, we define x̂ to be a random one from the set {x0, . . . , xm−1},
and move to the next sub-epoch.

10The idea for this second kind of retraction, and the idea of having the updates on a sequence zt but computing
gradients at points xt, is largely motivated by our recent work on the Katyusha momentum and the Katyusha
acceleration [2].

7

Algorithm 1 Natasha(x∅, p, T ′, α)

Input: starting vector x∅, sub-epoch count p ∈ [n], epoch count T ′, learning rate α > 0.
Output: vector xout.

1: x̂← x∅; m← n/p; X ← [];
2: for k ← 1 to T ′ do � T ′ full epochs

3: x̃← x̂; µ← ∇f(x̃);
4: for s← 0 to p− 1 do � p sub-epochs in each epoch

5: x0 ← x̂; X ← [X, x̂];
6: for t← 0 to m− 1 do � m iterations in each sub-epoch

7: i← a random choice from {1, · · · , n}.
8: ∇̃ ← ∇fi(xt)−∇fi(x̃) + µ+ 2σ(xt − x̂) � Ei[∇̃] = ∇

(
f(x) + σ‖x− x̂‖2

)∣∣
xt

9: xt+1 = arg miny∈Rd
{
ψ(y) + 1

2α‖y − xt‖2 + 〈∇̃, y〉
}

10: end for
11: x̂← a random choice from {x0, x1, . . . , xm−1}; � for practitioners, choose the average

12: end for
13: end for
14: x̂← a random vector in X; � for practitioners, choose the last

15: xout ← an approximate minimizer of G(y)
def
= F (y) + σ‖y − x̂‖2 using SVRG.

16: return xout. � it suffices to run SVRG for O(n log 1
ε
) iterations.

Algorithm 2 Natashafull(x∅, p, T ′, α)

Input: starting vector x∅, sub-epoch count p ∈ [n], epoch count T ′, learning rate α > 0.
Output: vector xout.

1: x̂← x∅; m← n/p; X ← [];
2: for k ← 1 to T ′ do � T ′ full epochs

3: x̃← x̂; µ← ∇f(x̃);
4: for s← 0 to p− 1 do � p sub-epochs in each epoch

5: z0 ← x̂; x0 ← x̂; X ← [X, x̂];
6: for t← 0 to m− 1 do � m iterations in each sub-epoch

7: i← a random choice from {1, · · · , n};
8: ∇̃ ← ∇fi(xt)−∇fi(x̃) + µ+ 2σ(xt − x̂); � Ei[∇̃] = ∇

(
f(x) + σ‖x− x̂‖2

)∣∣
xt

9: zt+1 = arg miny∈Rd
{
ψ(y) + 1

2α‖y − zt‖2 + 〈∇̃, y〉
}

;

10: xt+1 = 1
2zt+1 + 1

2 x̂; � Katyusha momentum xt+1 = (1− β)zt+1 + βx̂

� theory predicts β = Θ
(σ(`1+`2)

`1`2

)
gives the best performance

� β = 1/2 however leads to the simplest proof

11: end for
12: x̂← a random choice from {x0, x1, . . . , xm−1}; � for practitioners, choose the average

13: end for
14: end for
15: x̂← a random vector in X; � for practitioners, choose the last

16: xout ← an approximate minimizer of G(y)
def
= F (y) + σ‖y − x̂‖2 using SVRG.

17: return xout. � it suffices to run SVRG for O(n log 1
ε
) iterations.

8

4 A Sufficient Stopping Criterion

In this section, we present a sufficient condition for finding approximate stationary points in a
σ-strongly nonconvex function. Lemma 4.1 below states that, if we regularize the original function
and define G(x)

def
= F (x) + σ‖x − x̂‖2 for an arbitrary point x̂, then the minimizer of G(x) is an

approximate saddle-point for F (x).

Lemma 4.1. Suppose G(y) = F (y)+σ‖y− x̂‖2 for some given point x̂, and let x∗ be the minimizer
of G(y). If we minimize G(y) and obtain a point x satisfying

G(x)−G(x∗) ≤ δ2σ ,

then for every η ∈
(
0, 1

max{L,4σ}
]

we have the gradient mapping

‖Gη(x)‖2 ≤ 12σ2‖x∗ − x̂‖2 +O
(
δ2
)
.

Notice that when ψ(x) ≡ 0 this lemma is trivial, and can be found for instance in [9]. The main
technical difficulty arises in order to deal with ψ(x) 6= 0.

Proof of Lemma 4.1. Let x∗ be the (unique) minimizer of G(y). Define auxiliary functions:

Φ(y)
def
= ψ(y) +

1

2η
‖y − x‖2 + 〈∇f(x), y − x〉 − ψ(x) and Φ(y)

def
= Φ(y) + σ‖y − x̂‖2 − σ‖x− x̂‖2

and letting z = arg miny Φ(y) and z = arg miny Φ(y). Observe that

• Φ(·) is 1
η -strongly convex so −Φ(z) = Φ(x)− Φ(z) ≥ 1

2η‖z − x‖2;
• Φ(·) is 1

η -strongly convex so Φ(z) ≥ Φ(z) + 1
2η‖z − z‖2;

• Φ(z) ≥ G(z)−G(x) ≥ G(x∗)−G(x) ≥ −δ2σ (because η ≤ 1/L and f(·) is L-smooth).

Summing the three inequalities up we have

σ‖z − x̂‖2 − σ‖x− x̂‖2 ≥ −δ2σ +
1

2η
‖z − x‖2 +

1

2η
‖z − z‖2 .

Since we have inequality ‖z − x̂‖2 = ‖(z − z) + (z − x̂)‖2 ≤ (1 + 1/β)‖(z − z)‖2 + (1 + β)‖(z − x̂)‖2
for any β > 0, we can choose β = 4ησ and obtain

(σ +
1

4η
)‖(z − z)‖2 + (σ + 4ησ2)‖(z − x̂)‖2 − σ‖x− x̂‖2 ≥ −δ2σ +

1

2η
‖z − x‖2 +

1

2η
‖z − z‖2

=⇒ (σ + 4ησ2)‖z − x̂‖2 − σ‖x− x̂‖2 ≥ −δ2σ +
1

2η
‖z − x‖2

(4.1)

where the implication uses the fact that 1
4η ≥ σ. At this point, notice that:

• We have ‖x− x∗‖2 ≤ 2
σ (G(x)−G(x∗)) ≤ 2δ2 by the strong convexity of G(·), and thus

−σ‖x− x̂‖2 ≤ −(σ − ησ2)‖x∗ − x̂‖2 +O(δ2/η) .

• We have ‖z − x∗‖2 ≤ 2
σ (G(z)−G(x∗)) ≤ 2δ2 because G(z) ≤ G(x), and thus

(σ + 4ησ2)‖z − x̂‖2 ≤ (σ + 5ησ2)‖x∗ − x̂‖2 +O(δ2/η) .

Plugging them into (4.1), we have

(σ + 5ησ2)‖x∗ − x̂‖2 − (σ − ησ2)‖x∗ − x̂‖2 ≥ 1

2η
‖z − x‖2 −O

(
δ2/η

)

9

and rearranging it we have

‖Gη(x)‖2 =
1

η2
‖x− z‖2 ≤ 12σ2‖x∗ − x̂‖2 +O

(
δ2
)
. �

5 Base Method: Analysis for One Full Epoch

In this section, we consider problem (1.1) where each fi(x) is L-smooth and F (x) is σ-approximate-
convex. We use our base method Natasha to minimize F (x), and analyze its behavior for one full
epoch in this section. We assume σ ≤ L without loss of generality, because any L-smooth function
is also L-strongly nonconvex.

Notations. We introduce the following notations for analysis purpose only.

• Let x̂s be the vector x̂ at the beginning of sub-epoch s.

• Let xst be the vector xt in sub-epoch s.

• Let ist be the index i ∈ [n] in sub-epoch s at iteration t.

• Let f s(x)
def
= f(x) + σ‖x− x̂s‖2, F s(x)

def
= F (x) + σ‖x− x̂s‖2, and xs∗

def
= arg minx{F s(x)}.

• Let ∇̃fs(xst)
def
= ∇fi(xst)−∇fi(x̃) +∇f(x̃) + 2σ(xt − x̂) where i = ist .

• Let ∇̃f(xst)
def
= ∇fi(xst)−∇fi(x̃) +∇f(x̃) where i = ist .

We obviously have that fs(x) and F s(x) are σ-strongly convex, and fs(x) is (L+ 2σ)-smooth.

5.1 Variance Upper Bound

The following lemma gives an upper bound on the variance of the gradient estimator ∇̃f s(xst):

Lemma 5.1. We have Eist
[
‖∇̃f s(xst)−∇fs(xst)‖2

]
≤ pL2‖xst − x̂s‖2 + pL2

∑s−1
k=0 ‖x̂k − x̂k+1‖2 .

Proof. We have

Eist
[
‖∇̃fs(xst)−∇fs(xst)‖2

]
= Eist

[
‖∇̃f(xst)−∇f(xst)‖2

]

= Ei∈R[n]
[∥∥(∇fi(xst)−∇fi(x̃)

)
−
(
∇f(xst)−∇f(x̃))

)∥∥2]

¬
≤ Ei∈R[n]

[∥∥∇fi(xst)−∇fi(x̃)
∥∥2]

≤ pEi∈R[n]

[∥∥∇fi(xst)−∇fi(x̂s)
∥∥2]+ p

∑s−1
k=0 Ei∈R[n]

[∥∥∇fi(x̂k)−∇fi(x̂k+1)
∥∥2]

®
≤ pL2‖xst − x̂s‖2 + pL2

∑s−1
k=0 ‖x̂k − x̂k+1‖2 .

Above, inequality ¬ is because for any random vector ζ ∈ Rd, it holds that E‖ζ −Eζ‖2 = E‖ζ‖2 −
‖Eζ‖2; inequality is because x̂0 = x̃ and for any p vectors a1, a2, . . . , ap ∈ Rd, it holds that
‖a1 + · · ·+ ap‖2 ≤ p‖a1‖2 + · · ·+ p‖ap‖2; and inequality ® is because each fi(·) is L-smooth. �

5.2 Analysis for One Sub-Epoch

The following inequality is classically known as the “regret inequality” for mirror descent [7], and
its proof is classical:

Fact 5.2. 〈∇̃fs(xst), xst+1−u〉+ψ(xst+1)−ψ(u) ≤ ‖x
s
t−u‖2
2α − ‖x

s
t+1−u‖2
2α − ‖x

s
t+1−xst‖2

2α for every u ∈ Rd.

10

Proof. Recall that the minimality of xst+1 = arg miny∈Rd{ 1
2α‖y−xst‖2+ψ(y)+〈∇̃fs(xst), y〉} implies

the existence of some subgradient g ∈ ∂ψ(xst+1) which satisfies 1
α(xst+1 − xst) + ∇̃fs(xst) + g = 0.

Combining this with ψ(u) − ψ(xst+1) ≥ 〈g, u − xst+1〉, which is due to the convexity of ψ(·), we

immediately have ψ(u)−ψ(xst+1)+ 〈 1α(xst+1−xst)+ ∇̃f s(xst), u−xst+1〉 ≥ 〈 1α(xst+1−xst)+ ∇̃fs(xst)+
g, u− xst+1〉 = 0. Rearranging this inequality we have

〈∇̃fs(xst), xst+1 − u〉+ ψ(xst+1)− ψ(u) ≤ 〈− 1

α
(xst+1 − xst), xst+1 − u〉

=
‖xst − u‖2

2α
− ‖x

s
t+1 − u‖2

2α
− ‖x

s
t+1 − xst‖2

2α
. �

The following lemma is our main contribution for the base method Natasha.

Lemma 5.3. As long as α ≤ 1
2L+4σ , we have

E
[(
F s(x̂s+1)− F s(xs∗)

)]
≤ E

[F s(x̂s)− F s(xs∗)
σαm/2

+ αpL2
(s∑

k=0

‖x̂k − x̂k+1‖2
)]

.

Proof. We first compute that

F s(xst+1)− F s(u) = fs(xst+1)− fs(u) + ψ(xst+1)− ψ(u)

¬
≤ f s(xst) + 〈∇fs(xst), xst+1 − xst 〉+

L+ 2σ

2
‖xst − xst+1‖2 − fs(u) + ψ(xst+1)− ψ(u)

≤ 〈∇fs(xst), xst+1 − xst 〉+

L+ 2σ

2
‖xst − xst+1‖2 + 〈∇fs(xst), xst − u〉+ ψ(xst+1)− ψ(u) . (5.1)

Above, inequality ¬ uses the fact that fs(·) is (L+2σ)-smooth; and inequality uses the convexity
of fs(·). Now, we take expectation with respect to ist on both sides of (5.1), and derive that:

Eist
[
F s(xst+1)

]
− F s(u)

¬
≤ Eist

[
〈∇̃fs(xst)−∇fs(xst), xst − xst+1〉+ 〈∇̃fs(xst), xst+1 − u〉+

L+ 2σ

2
‖xst − xst+1‖2 + ψ(xst+1)− ψ(u)

]

≤ Eist

[
〈∇̃fs(xst)−∇f s(xst), xst − xst+1〉+

‖xst − u‖2
2α

− ‖x
s
t+1 − u‖2

2α
−
(1

2α
− L+ 2σ

2

)
‖xst+1 − xst‖2

]

®
≤ Eist

[
α
∥∥∇̃fs(xst)−∇fs(xst)

∥∥2 +
‖xst − u‖2

2α
− ‖x

s
t+1 − u‖2

2α

]

¯
≤ Eist

[
αpL2‖xst − x̂s‖2 + αpL2

s−1∑

k=0

‖x̂k − x̂k+1‖2 +
‖xst − u‖2

2α
− ‖x

s
t+1 − u‖2

2α

]
. (5.2)

Above, inequality ¬ is follows from (5.1) together with the fact that Eist [∇̃fs(xst)] = ∇fs(xst) implies

Eist
[
〈∇f s(xst), xst+1 − xst 〉+ 〈∇fs(xst), xst − u〉

]

= Eist
[
〈∇̃fs(xst)−∇fs(xst), xst − xst+1〉+ 〈∇̃fs(xst), xst+1 − u〉

]
;

inequality uses Fact 5.2; inequality ® uses α ≤ 1
2L+4σ together with Young’s inequality 〈a, b〉 ≤

1
2‖a‖2 + 1

2‖b‖2; and inequality ¯ uses Lemma 5.1.
Finally, choosing u = xs∗ to be the (unique) minimizer of F s(·) = fs(·) + ψ(·), and telescoping

11

inequality (5.2) for t = 0, 1, . . . ,m− 1, we have

E
[m−1∑

t=1

(
F s(xst)− F s(xs∗)

)]

≤ E
[‖xs0 − xs∗‖2

2α
+

m−1∑

t=0

(
αpL2‖xst − x̂s‖2 + αpL2

s−1∑

k=0

‖x̂k − x̂k+1‖2
)]

≤ E
[F s(x̂s)− F s(xs∗)

σα
+ αpmL2

(s∑

k=0

‖x̂k − x̂k+1‖2
)]

.

Above, the second inequality uses the fact that x̂s+1 is chosen from {xs0, . . . , xsm−1} uniformly at
random, as well as the σ-strong convexity of F s(·).

Dividing both sides by m and rearranging the terms (using 1
2σα ≥ 1), we have

E
[(
F s(x̂s+1)− F s(xs∗)

)]
≤ E

[F s(x̂s)− F s(xs∗)
σαm/2

+ αpL2
(s∑

k=0

‖x̂k − x̂k+1‖2
)]

. �

5.3 Analysis for One Full Epoch

One can telescope Lemma 5.3 for an entire epoch and arrive at the following lemma:

Lemma 5.4. If α ≤ 1
2L+4σ , α ≥ 4

σm and α ≤ σ
p2L2 , we have

p−1∑

s=0

E
[(
F s(x̂s)− F s(xs∗)

)]
≤ 2E

[
F (x̂0)− F (x̂p)

]
.

Proof. Telescoping Lemma 5.3 for all the subepochs s = 0, 1, . . . , p− 1, we have

p−1∑

s=0

E
[(
F s(x̂s+1)− F s(xs∗)

)]
≤

p−1∑

s=0

E
[F s(x̂s)− F s(xs∗)

σαm/2
+ αp2L2‖x̂s − x̂s+1‖2

]

¬
≤

p−1∑

s=0

E
[F s(x̂s)− F s(xs∗)

σαm/2
+ σ · ‖x̂s+1 − x̂s‖2

]

=

p−1∑

s=0

E
[F s(x̂s)− F s(xs∗)

σαm/2
+
(
F s(x̂s+1)− F s(x̂s)

)
−
(
F (x̂s+1)− F (x̂s)

)]

Above, ¬ uses αp2L2 ≤ σ, and uses the definition F s(y) = F (y)+σ‖y−x̂s‖2. Finally, rearranging
both sides, and using the fact that 1

σαm ≤ 1
4 , we have the desired inequality. �

6 Base Method: Final Theorem

We are now ready to state and prove our main convergence theorem for Natasha:

12

Theorem 1. Suppose in (1.1), each fi(x) is L-smooth and F (x) is σ-approximate-convex for

σ ≤ L. Then, if L2

σ2 ≤ n, p = Θ
(
(σ

2

L2n)1/3
)

and α = Θ(σ
p2L2), our base method Natasha outputs a

point xout satisfying

E[‖Gη(xout)‖2] ≤ O
(
(L2σ)1/3n2/3

T ′n

)
· (F (x∅)− F ∗) .

for every η ∈
(
0, 1

max{L,4σ}
]
. In other words, to obtain E[‖Gη(xout)‖2] ≤ ε2, we need gradient

complexity

O
(
n log

1

ε
+

(L2σ)1/3n2/3

ε2
· (F (x∅)− F ∗)

)
.

In the above theorem, we have assumed σ ≤ L without loss of generality because any L-smooth
function is also L-strongly nonconvex. Also, we have assumed L2

σ2 ≤ n and if this inequality does
not hold, then one should apply repeatSVRG for a faster running time (see Figure 1).

Proof of Theorem 1. We choose p =
(
σ2

24L2n
)1/3

, m = n/p, and α = 4
σm = σ

6p2L2 ≤ 1
2L+4σ , so we can

apply Lemma 5.4. If we telescope Lemma 5.4 for the entire algorithm (which has T ′ full epochs),
and use the fact that x̂p of the previous epoch equals x̂0 of the next epoch, we conclude that if we
choose a random epoch and a random subepoch s, we will have

E[F s(x̂s)− F s(xs∗)] ≤
2

pT ′
(F (x∅)− F ∗) .

By the σ-strong convexity of F s(·), we have E[σ‖x̂s − xs∗‖2] ≤ 4
pT ′ (F (x∅)− F ∗).

Now, F s(x) = F (x) + σ‖x− x̂s‖2 satisfies the assumption of G(x) in Lemma 4.1. If we use the
SVRG method (see Theorem 2.3) to minimize the convex function F s(x), we get an output xout

satisfying F s(xout)− F s(xs∗) ≤ ε2σ in gradient complexity O
(
(n+ L2

σ2) log 1
ε

)
≤ O(n log 1

ε).
We can therefore apply Lemma 4.1 and conclude that this output xout satisfies

E[‖Gη(xout)‖2] ≤ O
(σ

pT ′

)
· (F (x∅)− F ∗) = O

((L2σ)1/3n2/3

T ′n

)
· (F (x∅)− F ∗) .

In other words, we obtain E[‖Gη(xout)‖2] ≤ ε2 using

T ′n = O
(
n+ (L2σ)1/3n2/3

ε2
· (F (x∅)− F ∗)

)

computations of the stochastic gradients. Here, the additive term n is because T ′ ≥ 1.
Finally, adding this with O(n log 1

ε), the gradient complexity for the application of SVRG in
the last line of Natasha, we finish the proof of the total gradient complexity. �

7 Full Method: Analysis for One Full Epoch

In this section, we study a more refined version of problem (1.1), where f(x) is L-smooth, each
fi(x) is (`1, `2)-smooth, and F (x) is σ-approximate-convex. As later argued in Remark 8.1, we can
assume σ ≤ min{`1, `2, L} almost without loss of generality.

We use our full method Natashafull to minimize F (x), and analyze its behavior for one full
epoch in this section. Note that parameter L is not needed in the specification of Natashafull, but
used only for analysis purpose.

Notations. We use the same notations as in Section 5, with an additional one highlighted here:

• Let x̂s be the vector x̂ at the beginning of sub-epoch s.

13

• Let xst be the vector xt in sub-epoch s.

• Let ist be the index i ∈ [n] in sub-epoch s at iteration t.

• Let F s(x)
def
= F (x) + σ‖x− x̂s‖2 and xs∗

def
= arg minx{F s(x)}.

• Let fs(x)
def
= f(x) + σ‖x− x̂s‖2 and fsi (x)

def
= fi(x) + σ‖x− x̂s‖2 .

• Let ∇̃fs(xst)
def
= ∇fi(xst)−∇fi(x̃) +∇f(x̃) + 2σ(xt − x̂) where i = ist .

• Let ∇̃f(xst)
def
= ∇fi(xst)−∇fi(x̃) +∇f(x̃) where i = ist .

We obviously have that fs(x) and F s(x) are σ-strongly convex, and fs(x) is (L+ 2σ)-smooth.

7.1 Variance Upper Bound

In this subsection we derive a new upper bound on the variance of the gradient estimator ∇̃. This
bound will be tighter than Lemma 5.1, and will make use of the asymmetry between parameters
`1 and `2. To achieve so, we first need to introduce the following lemma:

Lemma 7.1. If g(y) = 1
n

∑n
i=1 gi(y) is convex, and if each gi is (`1, `2)-smooth, then we have

Ei∈R[n]
[
‖∇gi(y1)−∇gi(y2)‖2

]

≤ 2(`1 + `2)(g(y2)− g(y1)− 〈∇g(y1), y2 − y1〉)
]

+ 6`1`2‖y2 − y1‖2 .

Proof. We consider two cases: `2 ≤ `1 and `2 ≥ `1.

• In the first case, we define φi(z)
def
= gi(z) − 〈∇gi(y1), z〉 + `2

2 ‖z − y1‖2 for each i ∈ [n]. This
function φi(z) is a convex, (`1 + `2)-smooth function that has a minimizer z = y1 (which can
be seen by taking the derivative). For this reason, we claim that

∀z : φi(y1) ≤ φi(z)−
1

`1 + `2
‖∇φi(z)‖2 , (7.1)

and this inequality is classical for smooth functions (see for instance Theorem 2.1.5 in text-
book [17]). By expanding out the definition of φi(·) in (7.1), we immediately have

gi(y1)− 〈∇gi(y1), y1〉 ≤ gi(z)− 〈∇gi(y1), z〉+
`2
2
‖z − y1‖2

− 1

2(`1 + `2)
‖∇gi(z)−∇gi(y1) + `2(z − y1)‖2

which then implies

‖∇gi(z)−∇gi(y1)‖2 ≤ 2‖∇gi(z)−∇gi(y1) + `2(z − y1)‖2 + 2‖`2(z − y1)‖2

≤ 2(`1 + `2)(gi(z)− gi(y1)− 〈∇gi(y1), z − y1〉) + (4`22 + 2`1`2)‖z − y1‖2 .
(7.2)

Now, by choosing z = y2 and taking expectation with i in (7.2), we have

Ei
[∥∥∇gi(y2)−∇gi(y1)

∥∥2]

≤ 2(`1 + `2)
(
g(y2)− g(y1)− 〈∇g(y1), y2 − y1〉)

)
+ (4`22 + 2`1`2)‖y2 − y1‖2 (7.3)

• In the second case, we define φi(z)
def
= −gi(z) + 〈∇gi(y2), z〉 + `1

2 ‖z − y2‖2 for each i ∈ [n]. It
is clear that φi(z) is a convex, (`1 + `2)-smooth function that has a minimizer z = y2 (which

14

can be seen by taking the derivative). For this reason, we have

∀z : φi(y2) ≤ φi(z)−
1

`1 + `2
‖∇φi(z)‖2 . (7.4)

By expanding out the definition of φi(·) in (7.4), we immediately have

− gi(y2) + 〈∇gi(y2), y2〉 ≤ −gi(z) + 〈∇gi(y2), z〉+
`1
2
‖z − y2‖2

− 1

2(`1 + `2)
‖∇gi(z)−∇gi(y2)− `1(z − y2)‖2

which then implies that

‖∇gi(z)−∇gi(y2)‖2 ≤ 2‖∇gi(z)−∇gi(y2)− `1(z − y2)‖2 + 2‖`2(z − y2)‖2

≤ 2(`1 + `2)(gi(y2)− gi(z) + 〈∇gi(y2), z − y2〉) + (4`21 + 2`1`2)‖z − y2‖2 .
(7.5)

Now by choosing z = y1 and taking expectation over i in (7.5), we have

Ei
[∥∥∇gi(y1)−∇gi(y2)

∥∥2]

≤ 2(`1 + `2)
(
g(y2)− g(y1) + 〈∇g(y2), y1 − y2〉

)
+ (4`21 + 2`1`2)‖y1 − y2‖2

≤ (4`21 + 2`1`2)‖y1 − y2‖2

≤ 2(`1 + `2)
(
g(y2)− g(y1)− 〈∇g(y1), y2 − y1〉)

)
+ (4`22 + 2`1`2)‖y2 − y1‖2 . (7.6)

Above, the second and third inequalities use the convexity of g(·).

Combining (7.3) and (7.6) we finish the proof of the lemma. �
We are now ready to state our final variance upper bound:

Lemma 7.2 (variance bound). There exists constant C ≥ 1 such that, if we define

• Φs(y)
def
= C(`1 + `2) · (fs(x̂s)− fs(y)− 〈∇f s(y), x̂s − y〉)

]
+ C(`1`2) · ‖y − x̂s‖2 ≥ 0;

• Φs
t = Φs(xst) and Φs = Φs(x̂s+1),

then, we have Ei
[
‖∇̃fs(xst)−∇fs(xst)‖2

]
≤ pΦs

t + p
∑s−1

k=0 Φk where i = ist .

Before proceeding to the proof, we point out that if `1 = `2 = L like in the base setting, then
we shall have Φs(y) ≤ O(L2)‖y − x̂s‖2 and Lemma 7.2 becomes identical to Lemma 5.1.

Proof. If we plug in g = fs and gi = fsi in Lemma 7.1, we have gi is (`1 + 2σ, `2 − 2σ)-smooth and
thus each gi is also (3`1, `2)-smooth. Therefore, Lemma 7.1 implies there exists constant C ≥ 1
such that

Ei
[∥∥∇fi(y)−∇fi(x̂s)

∥∥2] ≤ 2Ei
[∥∥∇fsi (y)−∇fsi (x̂s)

∥∥2]+ 2
∥∥2σ(y − x̂s)

∥∥2

≤ C(`1 + `2) · (f s(x̂s)− fs(y)− 〈∇fs(y), x̂s − y〉)
]

+ C(`1`2) · ‖y − x̂s‖2
= Φs(y) . (7.7)

15

Therefore, the variance term:

Ei
[
‖∇̃fs(xst)−∇fs(xst)‖2

]
= Ei

[
‖∇̃f(xst)−∇f(xst)‖2

]

= Ei
[∥∥(∇fi(xst)−∇fi(x̃)

)
−
(
∇f(xst)−∇f(x̃))

)∥∥2]

¬
≤ Ei

[∥∥∇fi(xst)−∇fi(x̃)
∥∥2]

≤ pEi

[∥∥∇fi(xst)−∇fi(x̂s)
∥∥2]+ p

∑s−1
k=0 Ei

[∥∥∇fi(x̂k)−∇fi(x̂k+1)
∥∥2]

®
≤ pΦs

t + p
∑s−1

k=0 Φk . (7.8)

Above, inequality ¬ is because for any random vector ζ ∈ Rd, it holds that E‖ζ −Eζ‖2 = E‖ζ‖2 −
‖Eζ‖2; inequality is because x̂0 = x̃ and for any p vectors a1, a2, . . . , ap ∈ Rd, it holds that
‖a1 + · · ·+ ap‖2 ≤ p‖a1‖2 + · · ·+ p‖ap‖2; and inequality ® is from repeatedly applying (7.7). �

7.2 Analysis for One Sub-Epoch

The following fact is analogous to Fact 5.2, and the only difference is that in Natashafull we are
applying proximal updates on the {zst }t sequence.

Fact 7.3. 〈∇̃fs(xst), zst+1−u〉+ψ(zst+1)−ψ(u) ≤ ‖z
s
t−u‖2
2α − ‖z

s
t+1−u‖2
2α − ‖z

s
t+1−zst ‖2

2α for every u ∈ Rd.

Proof. Recall that the minimality of zst+1 = arg miny∈Rd{ 1
2α‖y−zst ‖2 +ψ(y)+〈∇̃fs(xst), y〉} implies

the existence of some subgradient g ∈ ∂ψ(zst+1) which satisfies 1
α(zst+1 − zst) + ∇̃fs(xst) + g = 0.

Combining this with ψ(u) − ψ(zst+1) ≥ 〈g, u − zst+1〉, which is due to the convexity of ψ(·), we

immediately have ψ(u)−ψ(zst+1) + 〈 1α(zst+1− zst) + ∇̃fs(xst), u− zst+1〉 ≥ 〈 1α(zst+1− zst) + ∇̃fs(xst) +
g, u− zst+1〉 = 0. Rearranging this inequality we have

〈∇̃fs(xst), zst+1 − u〉+ ψ(zst+1)− ψ(u) ≤ 〈− 1

α
(zst+1 − zst), zst+1 − u〉

=
‖zst − u‖2

2α
− ‖z

s
t+1 − u‖2

2α
− ‖z

s
t+1 − zst ‖2

2α
. �

The following lemma is our technical main contribution for the full method Natashafull.

Lemma 7.4. If α ≤ 1
L+2σ , then we have the following inequality for sub-epoch s:

E
[(
F s(x̂s+1)− F s(xs∗)

)]

≤ E
[F s(x̂s)− F s(xs∗)

σαm/2
+ αp

(s∑

k=0

Φk
)

+ 〈∇fs(x̂s+1), x̂s − x̂s+1〉+
(
ψ(x̂s)− ψ(x̂s+1)

)]
.

Proof. We first compute that

2F s(xst+1)− F s(xst)− F s(u) = 2fs(xst+1)− fs(xst)− fs(u) + 2ψ(xst+1)− ψ(xst)− ψ(u)

¬
≤ fs(xst) + 2〈∇fs(xst), xst+1 − xst 〉+ (L+ 2σ)‖xst − xst+1‖2 − fs(u) + 2ψ(xst+1)− ψ(xst)− ψ(u)

= fs(xst) + 〈∇fs(xst), zst+1 − zst 〉+

L+ 2σ

4
‖zst − zst+1‖2 − fs(u) + 2ψ(xst+1)− ψ(xst)− ψ(u)

®
≤ 〈∇fs(xst), zst+1 − zst 〉+

L+ 2σ

4
‖zst − zst+1‖2 + 〈∇fs(xst), xst − u〉+ ψ(zst+1) + ψ(x̂s)− ψ(xst)− ψ(u)

(7.9)

16

Above, inequality ¬ uses the fact that fs(·) is (L + 2σ)-smooth; equality uses the fact that
zst+1 − zst = 2(xst+1 − xst); inequality ® uses the convexity of fs(·), the convexity of ψ(·), and the
fact xst+1 = 1

2(zst+1 + x̂s).
Now, we take expectation with respect to ist on both sides of (7.9), and derive that:

2Eist
[
F s(xst+1)

]
− F s(xst)− F s(u)

¬
≤ Eist

[
〈∇̃fs(xst)−∇fs(xst), zst − zst+1〉+ 〈∇̃fs(xst), zst+1 − u〉+

L+ 2σ

4
‖zst − zst+1‖2 + ψ(zst+1)− ψ(u)

]

+ 〈∇fs(xst), xst − zst 〉+ ψ(x̂s)− ψ(xst)

≤ Eist

[
〈∇̃fs(xst)−∇fs(xst), zst − zst+1〉+

‖zst − u‖2
2α

− ‖z
s
t+1 − u‖2

2α
−
(1

2α
− L+ 2σ

4

)
‖zst+1 − zst ‖2

]

+ 〈∇fs(xst), xst − zst 〉+ ψ(x̂s)− ψ(xst)

®
≤ Eist

[
α
∥∥∇̃fs(xst)−∇f s(xst)

∥∥2 +
‖zst − u‖2

2α
− ‖z

s
t+1 − u‖2

2α

]
+ 〈∇fs(xst), xst − zst 〉+ ψ(x̂s)− ψ(xst)

¯
≤ Eist

[
αpΦs

t + αp

s−1∑

k=0

Φk +
‖zst − u‖2

2α
− ‖z

s
t+1 − u‖2

2α

]
+ 〈∇fs(xst), x̂s − xst 〉+ ψ(x̂s)− ψ(xst) .

Above, inequality ¬ is from (7.9) together with the fact that Eist [∇̃fs(xst)] = ∇fs(xst) implies

Eist
[
〈∇f s(xst), zst+1 − zst 〉+ 〈∇f s(xst), xst − u〉

]

= Eist
[
〈∇fs(xst), xst − zst 〉+ 〈∇̃fs(xst)−∇fs(xst), zst − zst+1〉+ 〈∇̃fs(xst), zst+1 − u〉

]
;

inequality uses Fact 7.3; inequality ® uses α ≤ 1
L+2σ together with Young’s inequality 〈a, b〉 ≤

1
2‖a‖2 + 1

2‖b‖2; and inequality ¯ uses Lemma 7.2 and the fact that xst = 1
2z
s
t + 1

2 x̂
s.

Finally, choosing u = xs∗ to be the (unique) minimizer of F s(·) = fs(·) + ψ(·), and telescoping
the above inequality for t = 0, 1, . . . ,m− 1, we have

E
[m−1∑

t=1

(
F s(xst)− F s(xs∗)

)]

≤ E
[‖zs0 − xs∗‖2

2α
+

m−1∑

t=0

(
αpΦs

t + αp
s−1∑

k=0

Φk + 〈∇fs(xst), x̂s − xst 〉+ ψ(x̂s)− ψ(xst)
)]

.

Using the fact x̂s+1 is chosen uniformly at random from {xs0, . . . , xsm−1}, and the fact that xs0 = x̂s,
the above inequality implies

E
[
m
(
F s(x̂s+1)− F s(xs∗)

)
−
(
F s(x̂s)− F s(xs∗)

)]

≤ E
[‖zs0 − xs∗‖2

2α
+ αpm

(s∑

k=0

Φk
)

+m〈∇fs(x̂s+1), x̂s − x̂s+1〉+m
(
ψ(x̂s)− ψ(x̂s+1)

)]

≤ E
[F s(x̂s)− F s(xs∗)

σα
+ αpm

(s∑

k=0

Φk
)

+m〈∇f s(x̂s+1), x̂s − x̂s+1〉+m
(
ψ(x̂s)− ψ(x̂s+1)

)]
.

Above, the second inequality uses the fact that zs0 = x̂s and that F s(·) is σ-strongly convex. Dividing

17

both sides by m and rearranging the terms (using 1
σα ≥ 1), we have

E
[(
F s(x̂s+1)− F s(xs∗)

)]

≤ E
[F s(x̂s)− F s(xs∗)

σαm/2
+ αp

(s∑

k=0

Φk
)

+ 〈∇f s(x̂s+1), x̂s − x̂s+1〉+
(
ψ(x̂s)− ψ(x̂s+1)

)]
. �

7.3 Analysis for One Full Epoch

We telescope Lemma 7.4 for an entire epoch and arrive at the following lemma:

Lemma 7.5. If α ≤ O(σ
p2`1`2

) and α ≥ Ω(1
σm), we have

p−1∑

s=0

E
[(
F s(x̂s)− F s(xs∗)

)]
≤ 3E

[
F (x̂0)− F (x̂p)

]
.

Proof. Telescoping Lemma 7.4 for all the subepochs s = 0, 1, . . . , p− 1, we have

p−1∑

s=0

E
[(
F s(x̂s+1)− F s(xs∗)

)]

¬
≤

p−1∑

s=0

E
[F s(x̂s)− F s(xs∗)

σαm/2
+ αp2Φs + 〈∇f s(x̂s+1), x̂s − x̂s+1〉+

(
ψ(x̂s)− ψ(x̂s+1)

)]

≤

p−1∑

s=0

E
[F s(x̂s)− F s(xs∗)

σαm/2
+ 〈∇f s(x̂s+1), x̂s − x̂s+1〉+

(
ψ(x̂s)− ψ(x̂s+1)

)

+ αp2C(`1 + `2) · (fs(x̂s)− f s(x̂s+1)− 〈∇fs(x̂s+1), x̂s − x̂s+1〉)
]

+ αp2C(`1`2) · ‖x̂s+1 − x̂s‖2
]

®
≤

p−1∑

s=0

E
[F s(x̂s)− F s(xs∗)

σαm/2
+ 〈∇f s(x̂s+1), x̂s − x̂s+1〉+

(
ψ(x̂s)− ψ(x̂s+1)

)

+ (fs(x̂s)− fs(x̂s+1)− 〈∇fs(x̂s+1), x̂s − x̂s+1〉)
]

+ 2σ · ‖x̂s+1 − x̂s‖2
]

=

p−1∑

s=0

E
[F s(x̂s)− F s(xs∗)

σαm/2
+
(
F s(x̂s)− F s(x̂s+1)

)
+ 2σ · ‖x̂s+1 − x̂s‖2

]

¯
=

p−1∑

s=0

E
[F s(x̂s)− F s(xs∗)

σαm/2
+
(
F s(x̂s+1)− F s(x̂s)

)
− 2
(
F (x̂s+1)− F (x̂s)

)]

Above, inequality ¬ uses Lemma 7.4 and Φs ≥ 0; inequality uses the definition of Φs from
Lemma 7.2; inequality ® uses αp2C(`1 + `2) ≤ 1 and αp2C(`1`2) ≤ 2σ; and equality ¯ uses the
definition F s(y) = F (y) + σ‖y − x̂s‖2.

Finally, rearranging both sides, and using the fact that 1
σαm ≤ 1

6 , we have

p−1∑

s=0

E
[(
F s(x̂s)− F s(xs∗)

)]
≤ 3E

[
F (x̂0)− F (x̂p)

]
. �

8 Full Method: Final Theorem

We are now ready to state and prove our main convergence theorem for Natashafull:

18

Theorem 2. Suppose f(x) is L-smooth, each fi(x) is (`1, `2)-smooth, F (x) is σ-strongly noncon-

vex, and σ ≤ min{`1, `2, L}. If `1`2
σ2 ≤ n, p = Θ

(
(σ2

`1`2
n)1/3

)
and Θ(σ

p2`1`2
), Natashafull outputs a

point xout satisfying

E[‖Gη(xout)‖2] ≤ O
(
(`1`2σ)1/3n2/3

T ′n

)
· (F (x∅)− F ∗)

for every η ∈
(
0, 1

max{L,4σ}
]
. In other words, to obtain E[‖Gη(xout)‖2] ≤ ε2, we need gradient

complexity

O
(
n log

1

ε
+

(`1`2σ)1/3n2/3

ε2
· (F (x∅)− F ∗)

)
.

Remark 8.1. One can assume σ ≤ L without loss of generality because any L-smooth function
is also L-strongly nonconvex. One can assume σ ≤ `2 without loss of generality because f(x) is
`2-strongly nonconvex if each fi(x) is (`1, `2)-smooth. Only σ ≤ `1 is a minor requirement for
Theorem 2, but if this is not true, one can replace `1 with σ before applying Theorem 2.

Remark 8.2. In Theorem 2 we have assumed `1`2
σ2 ≤ n2. If this inequality does not hold, one

should apply repeatSVRG instead and it gives faster running time (see Figure 1). More specifically,

repeatSVRG gives a complexity of Õ
(nσ+n3/4(`1`2σ2)1/4

ε2

)
under a mild assumption of σ ≥ ε2 in this

more refined (`1, `2)-smoothness setting.

Proof of Theorem 2. One can verify that our choices of p and α satisfy p ∈ [n], α ≤ O(σ
p2`1`2

) and

α ≥ Ω(1
σm), so we can apply Lemma 7.5 and telescope it for the entire algorithm (which has T ′ full

epochs). Use the fact that x̂p of the previous epoch equals x̂0 of the next epoch, we conclude that
if we choose a random epoch and a random subepoch s, we will have

E[F s(x̂s)− F s(xs∗)] ≤
3

pT ′
(F (x∅)− F ∗) .

By the σ-strong convexity of F s(·), we have E[σ‖x̂s − xs∗‖2] ≤ 6
pT ′ (F (x∅)− F ∗).

Now, F s(x) = F (x) + σ‖x− x̂s‖2 satisfies the assumption of G(x) in Lemma 4.1. If we use the
SVRG method (see Theorem 2.3) to minimize the convex function F s(x), we get an output xout

satisfying F s(xout)− F s(xs∗) ≤ ε2σ in gradient complexity O
(
(n+ `1`2

σ2) log 1
ε

)
≤ O(n log 1

ε).
We can therefore apply Lemma 4.1 and conclude that this output xout satisfies

E[‖Gη(xout)‖2] ≤ O
(σ

pT ′

)
· (F (x∅)− F ∗) = O

((`1`2σ)1/3n2/3

T ′n

)
· (F (x∅)− F ∗) .

In other words, we obtain E[‖Gη(xout)‖2] ≤ ε2 using

T ′n = O
(
n+

(`1`2σ)1/3n2/3

ε2
· (F (x∅)− F ∗)

)

computations of the stochastic gradients. Here, the additive term n is because T ′ ≥ 1.
Finally, adding this with O(n log 1

ε), the gradient complexity for the application of SVRG in
the last line of Natashafull, we finish the proof of the total gradient complexity. �

9 Conclusion

Stochastic gradient descent and gradient descent (including alternating minimization) have become
the canonical methods for solving non-convex machine learning tasks. However, can we design new
non-convex methods to run even faster than SGD or GD?

19

This present paper tries to tackle this general question, by providing a new Natasha method
which is intrinsically different from GD or SGD. It runs faster than GD and SVRG-based methods at
least in theory. We hope that this could be a non-negligible step towards our better understanding
of non-convex optimization.

Finally, our results give rise to an interesting dichotomy in the complexity of first-order non-
convex optimization: the complexity scales with n3/4 for σ < L/

√
n and with n2/3 for σ > L/

√
n.

It remains open to investigate whether this dichotomy is intrinsic, or we can design a more efficient
algorithm that outperforms both.

Acknowledgements

This paper is partially supported by a Microsoft Research Award, no. 0518584, and an NSF grant,
no. CCF-1412958. We thank Yuanzhi Li for enlightening conversations. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the authors and do not
reflect the views of the National Science Foundation and Microsoft Corporation.

Appendix

A From Stationary Points to Local Minima

Recently, researchers have shown that the general problem of finding (ε, ρ)-approximate local min-
ima, under mild conditions, reduces to (repeatedly) finding ε-approximate stationary points for an
O(ρ)-strongly nonconvex function [1, 9]. We sketch the details here for the sake of completeness,
in the special case of ψ(x) ≡ 0.11

We say that a point x is (ε, δ)-approximate local minimum, if ‖∇f(x)‖ ≤ ε and ∇2f(x) � −δI.
Carmon et al. [9] showed that an (ε, δ)-approximate minimum for the general problem (1.1) can

be solved via the following iterative procedure. In every iteration at point xt, detect whether the
smallest eigenvalue of ∇2f(xt) is below −δ:
• if yes, find the smallest eigenvector of ∇2f(xt) approximately and move in this direction. (One

can use for instance the shift-and-invert method [12].)

• if no, define ft(x) = f(x)+L
(

max
{

0, ‖x−xt‖− δ
L2

})2
where L2 is the second-order smoothness

of f(x) and ft(x) can be proven as 5L-smooth and 3δ-strongly nonconvex; we then find an
ε-approximate stationary point of f ′(x) and move there.

The Trade-Off on δ. The final running time of the above algorithm depends on the maximum
between (1) the eigenvector computation and (2) the stationary-point computation. The larger δ
is, the faster (1) becomes and the slower (2) becomes; the smaller δ is, the faster (2) becomes and
the slower (1) becomes.

As argued in [1, 9], if the Hessian-vector multiplication
(
∇2fi(x)

)
v for an arbitrary vector

runs in the same time as computing ∇fi(x) —which is the case for training neural nets and other
machine learning tasks— the optimum trade-off is δ =

√
L2ε. This again confirms that in strongly

non-convex optimization, the parameter δ can usually be much smaller than L.

11This reduction was only proved in the literature for ψ(x) ≡ 0; it is a simple exercise to generalize it to the
proximal setting. Also, this reduction was explicitly given in [9] but only implicitly in [1].

20

References

[1] Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding Approximate
Local Minima for Nonconvex Optimization in Linear Time. In STOC, 2017. Full version available at
http://arxiv.org/abs/1611.01146.

[2] Zeyuan Allen-Zhu. Katyusha: The First Direct Acceleration of Stochastic Gradient Methods. In STOC,
2017. Full version available at http://arxiv.org/abs/1603.05953.

[3] Zeyuan Allen-Zhu and Elad Hazan. Variance Reduction for Faster Non-Convex Optimization. In NIPS,
2016.

[4] Zeyuan Allen-Zhu and Yuanzhi Li. Doubly Accelerated Methods for Faster CCA and Generalized
Eigendecomposition. ArXiv e-prints, abs/1607.06017, July 2016.

[5] Zeyuan Allen-Zhu and Yuanzhi Li. LazySVD: Even Faster SVD Decomposition Yet Without Agonizing
Pain. In NIPS, 2016.

[6] Zeyuan Allen-Zhu and Yuanzhi Li. Follow the Compressed Leader: Faster Algorithm for Matrix Mul-
tiplicative Weight Updates. ArXiv e-prints, abs/1701.01722, January 2017.

[7] Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear Coupling: An Ultimate Unification of Gradient and
Mirror Descent. In Proceedings of the 8th Innovations in Theoretical Computer Science, ITCS ’17, 2017.
Full version available at http://arxiv.org/abs/1407.1537.

[8] Zeyuan Allen-Zhu and Yang Yuan. Improved SVRG for Non-Strongly-Convex or Sum-of-Non-Convex
Objectives. In ICML, 2016.

[9] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Accelerated Methods for Non-Convex
Optimization. ArXiv e-prints, abs/1611.00756, November 2016.

[10] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A Fast Incremental Gradient Method
With Support for Non-Strongly Convex Composite Objectives. In NIPS, 2014.

[11] Roy Frostig, Rong Ge, Sham M. Kakade, and Aaron Sidford. Un-regularizing: approximate proximal
point and faster stochastic algorithms for empirical risk minimization. In ICML, volume 37, pages 1–28,
2015.

[12] Dan Garber, Elad Hazan, Chi Jin, Sham M. Kakade, Cameron Musco, Praneeth Netrapalli, and Aaron
Sidford. Robust shift-and-invert preconditioning: Faster and more sample efficient algorithms for eigen-
vector computation. In ICML, 2016.

[13] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online stochastic
gradient for tensor decomposition. In Proceedings of the 28th Annual Conference on Learning Theory,
COLT 2015, 2015.

[14] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduc-
tion. In Advances in Neural Information Processing Systems, NIPS 2013, pages 315–323, 2013.

[15] Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient descent only converges
to minimizers. In Proceedings of the 29th Conference on Learning Theory, COLT 2016, New York, USA,
June 23-26, 2016, pages 1246–1257, 2016.

[16] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A Universal Catalyst for First-Order Optimization.
In NIPS, 2015.

[17] Yurii Nesterov. Introductory Lectures on Convex Programming Volume: A Basic course, volume I.
Kluwer Academic Publishers, 2004.

[18] Yurii Nesterov. Accelerating the cubic regularization of newton’s method on convex problems. Mathe-
matical Programming, 112(1):159–181, 2008.

[19] Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance
reduction for nonconvex optimization. ArXiv e-prints, abs/1603.06160, March 2016.

[20] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic average
gradient. arXiv preprint arXiv:1309.2388, pages 1–45, 2013. Preliminary version appeared in NIPS

21

http://arxiv.org/abs/1611.01146
http://arxiv.org/abs/1603.05953
http://arxiv.org/abs/1407.1537

2012.

[21] Shai Shalev-Shwartz. SDCA without Duality, Regularization, and Individual Convexity. In ICML,
2016.

[22] Lijun Zhang, Mehrdad Mahdavi, and Rong Jin. Linear convergence with condition number independent
access of full gradients. In Advances in Neural Information Processing Systems, pages 980–988, 2013.

22

