
Deep Quantization: Encoding Convolutional Activations
with Deep Generative Model ∗

Zhaofan Qiu, Ting Yao, and Tao Mei
University of Science and Technology of China, Hefei, China

Microsoft Research, Beijing, China

zhaofanqiu@gmail.com, {tiyao, tmei}@microsoft.com

Abstract

Deep convolutional neural networks (CNNs) have
proven highly effective for visual recognition, where learn-
ing a universal representation from activations of convolu-
tional layer plays a fundamental problem. In this paper,
we present Fisher Vector encoding with Variational Auto-
Encoder (FV-VAE), a novel deep architecture that quan-
tizes the local activations of convolutional layer in a deep
generative model, by training them in an end-to-end man-
ner. To incorporate FV encoding strategy into deep genera-
tive models, we introduce Variational Auto-Encoder model,
which steers a variational inference and learning in a neu-
ral network which can be straightforwardly optimized us-
ing standard stochastic gradient method. Different from the
FV characterized by conventional generative models (e.g.,
Gaussian Mixture Model) which parsimoniously fit a dis-
crete mixture model to data distribution, the proposed FV-
VAE is more flexible to represent the natural property of da-
ta for better generalization. Extensive experiments are con-
ducted on three public datasets, i.e., UCF101, ActivityNet,
and CUB-200-2011 in the context of video action recogni-
tion and fine-grained image classification, respectively. Su-
perior results are reported when compared to state-of-the-
art representations. Most remarkably, our proposed FV-
VAE achieves to-date the best published accuracy of 94.2%
on UCF101.

1. Introduction
The recent advances in deep convolutional neural net-

works (CNNs) have demonstrated high capability in visu-
al recognition. For instance, an ensemble of residual net-
s [7] achieves 3.57% in terms of top-5 error on the Ima-
geNet dataset [26]. More importantly, when utilizing the
activations of either a fully-connected layer or a convolu-

∗This work was performed when Zhaofan Qiu was visiting Mi-
crosoft Research as a research intern.

......

...

...

Global Activations

Convolutional
Activations

FV Encoding

FV-VAE Encoding

Convolutional
Activations

Figure 1. Visual representations derived from activations of dif-
ferent layers in CNNs (upper row: global activations of the fully-
connected layer; middle row: convolutional activations with Fish-
er Vector encoding; bottom row: convolutional activations with
our FV-VAE encoding).

tional layer in a pre-trained CNN as a universal visual rep-
resentation and applying this representation to other visu-
al recognition tasks (e.g., scene understanding and seman-
tic segmentation), CNNs also manifest impressive perfor-
mances. The improvements are expected when CNNs are
further fine-tuned with only amount of task-specific data.

The activations of different layers in CNNs are generally
grouped into two dimensions: global activations and con-
volutional activations. The former directly takes the activa-
tions of the fully-connected layer as visual representations,
which are holistic over the entire image, as shown in the
upper row of Figure 1. The latter, in contrast, creates vi-
sual representations by encoding a set of regional and local
activations from a convolutional layer to a vectorial repre-
sentation using quantization strategies. For example, Fisher
Vector (FV) [23] is one of the most successful quantization
approaches, as shown in the middle row of Figure 1. While
superior results by aggregating convolutional activations are
reported in most recent studies [3, 44], convolutional acti-
vations are first extracted as local descriptors followed by
another separate quantization step. Thus such descriptors
may not be optimally compatible with the encoding pro-
cess, making the quantization sub-optimal. Furthermore, as

discussed in [13], the generative model behind FV, i.e., the
Gaussian Mixture Model (GMM), cannot always represen-
t the natural clustering of the descriptors and its inflexible
Gaussian observation model limits its generalization ability.

We show in this paper that these two limitations can be
mitigated by designing a deep architecture for representa-
tion learning that combines convolutional activations ex-
traction and quantization into a one-stage learning. Specif-
ically, we present a novel Fisher Vector encoding with
Variational Auto-Encoder (FV-VAE) framework to encode
convolutional activations with deep generative model (i.e.,
VAE), as shown in the bottom row of Figure 1. The pipeline
of the proposed deep architecture generally consists of two
components: a sub-network with a stack of convolution lay-
ers to produce convolutional activations followed by a VAE
structure aggregating the regional convolutional descriptors
to a FV. VAE consists of hierarchies of conditional stochas-
tic variables and is a highly expressive model by optimizing
a variational approximation (an inference/recognition mod-
el) to the intractable posterior for the generative distribution.
Compared to traditional GMM model which has the form of
a mixture of fixed Gaussian components, the inference mod-
el here can be regarded as an alternative to predict specific
Gaussian components to different inputs by a single neural
network, making it more flexible. It is also worth noting that
a classification loss is additionally considered to preserve
the semantic information in the training stage. The entire
architecture is trainable in an end-to-end fashion. Further-
more, in the feature extraction stage, we theoretically prove
that the FV of input descriptors can be directly computed
by accumulating the gradient vector of reconstruction loss
in the VAE through back-propagation.

The main contribution of this work is the proposal of FV-
VAE architecture to encode convolutional descriptors with
Variational Auto-Encoder. We theoretically formulate the
computation of FV in VAE and substantiate an implemen-
tation of FV-VAE for visual representation learning.

2. Related Work
In the literature, visual representation generation from a

pre-trained CNN model has proceeded along two dimen-
sions: global activations and convolutional activations. The
first is to extract visual representation from global acti-
vations in a CNN directly, e.g., the outputs from fully-
connected layer in VGG [30] or pool5 layer in ResNet [7].
In practice, this scheme often starts by pre-training CNN
model on a large dataset (e.g., ImageNet) and then fine-
tuning the CNN architecture with a small amount of task-
specific data to better characterize the intrinsic informa-
tion in target scenario. The visual representation learnt in
this direction has been exploited in a broad range of com-
puter vision tasks including fine-grained image classifica-
tion [1, 17], video action recognition [18, 19, 24, 29] and

visual captioning [36, 38].
Another alternative scheme is to utilize the activation-

s from convolutional layers in CNN as regional and local
descriptors. Compared to global activations, convolutional
activations from CNN are embedded with rich spatial in-
formation, making them more transferable to different do-
mains and more robust to translation and rotation, which
have shown the effectiveness in several technological ad-
vances, e.g., Spatial Pyramid Pooling (SPP) [6], Fast R-
CNN [5] and Fully Convolutional Networks (FCNs) [22].
Recently, many works attempt to produce visual represen-
tation by encoding convolutional activations with different
quantization strategies. For example, Fisher Vector [23] is
computed on the output of the last convolutional layer of
VGG networks for describing texture in [3]. Similar in spir-
it, Xu et al. utilize VLAD [11] to encode convolutional
descriptors of video frame for multimedia event detection
[44]. In [28] and [43], Sharma et al. and Xu et al. dynam-
ically pool convolutional descriptors with attention models
for action recognition and image captioning, respectively.
Furthermore, convolutional descriptors of one convolution-
al layer are pooled with the guidance of the activations of
the successive convolutional layer in [21]. In [20], convolu-
tional descriptors from two CNNs are multiplied using the
outer product and pooled to obtain the bilinear vector.

In summary, our work belongs to the second dimen-
sion and aims to compute FV on convolutional activations
with deep generative models. We exploit Variational Auto-
Encoder for this purpose, which optimizes an inference
model to the intractable posterior. The high flexibility of
the inference model and efficiency of the structure optimiza-
tion makes VAE more advanced than traditional GMM. Our
work in this paper contributes by studying not only encod-
ing convolutional activations in a deep architecture, but also
theoretically figuring out the computation of FV based on
VAE architecture.

3. Fisher Vector Meets VAE
In this section, we first recall the Fisher Vector theory,

followed by presenting how to estimate the probability den-
sity function in FV through VAE. The optimization of VAE
is then elaborated and how to compute the FV of the input
descriptors will be introduced finally.

3.1. Fisher Vector Theory

Suppose we have two sets of local descriptors X =

{xt}Tx
t=1 and Y = {yt}

Ty

t=1 with Tx and Ty descriptors, re-
spectively. Let xt,yt ∈ Rd denote the d-dimensional fea-
tures of each descriptor. In order to measure the similarity
between the two sets, kernel method is employed by map-
ping them into a hyperspace. Specifically, assuming that
the generation process of descriptors in Rd can be mod-
eled by a probability density function uθ with M param-

...

Reconstruction
Loss

... Regularization
Loss

Classification
Loss

...

...

Encoder Sampling Decoder

(a) VAE Training

... Reconstruction
Loss

...

...

...

Encoder Identity Decoder

Back Propagation

Gradient Vector
Accumulator

(b) FV Extraction

Figure 2. The overview of FV learning with VAE: (a) The training
process of VAE, (b) FV extraction based on VAE.

eters θ = [θ1, ..., θM]′, Fisher Kernel (FK) [9] between the
two sets X and Y is given by

K(X,Y) = GX
θ

′
F−1
θ GY

θ , (1)

where GX
θ = ∇θ log uθ(X) is defined as fisher score

function by computing the gradient of the log-likelihood
of the set based on the generative model, and Fθ =
EX∼uθ

[GX
θ G

X
θ

′
] is the Fisher Information Matrix (FIM) of

uθ which is regarded as statistical feature normalization. S-
ince Fθ is positive semi-definite, the FK in Eq.(1) can be
re-written explicitly as inner product in hyperspace:

K(X,Y) = G X
θ

′
G Y
θ , (2)

where

G X
θ = F

− 1
2

θ GX
θ = F

− 1
2

θ ∇θ log uθ(X) . (3)

Formally, G X
θ is well-known as Fisher Vector (FV). The

dimension of FV is equal to the number of generative pa-
rameters θ, which is often much higher than that of the de-
scriptor, making FV of higher descriptive capability.

3.2. Probability Estimation through VAE

Next, we will discuss how to estimate the probability
density function uθ in FV. In general, uθ is chosen to be
Gaussian Mixture Model (GMM) [27, 40] as one can ap-
proximate any distribution with arbitrary precision by GM-
M, in which θ is composed of mixture weight, mean and co-
variance of Gaussian components. The need of a large num-
ber of mixture components and inefficient optimization of
Expectation Maximization algorithm, however, makes the
parameter learning computationally expensive and difficult
to be applied to large-scale complex data. Inspired by the
idea of deep generative models [16, 25] which enable the
flexible and efficient inference learning in a neural network,

Algorithm 1 Variational Auto-Encoding (VAE) Optimization

1: Input: training set X = {xt}Tx
t=1, corresponding labels L =

{lt}Tx
t=1, loss weights λ1, λ2, λ3.

2: Initialization: random initialized θ0,φ0.
3: Output: VAE parameters θ∗,φ∗.
4: repeat
5: Sample xt in the minibatch.
6: Encoder: µzt

← fφ(xt).
7: Sampling: zt ← µzt

+ ε� σz, ε ∼ N (0, I).
8: Decoder: µxt

← fθ(zt).
9: Compute reconstruction loss:

Lrec = − log pθ(xt|zt) = − logN (xt;µxt
,σ2

xI).
10: Compute regularization loss:

Lreg = 1
2

∥∥µzt

∥∥+ 1
2
‖σz‖ − 1

2

∑d
k=1(1 + log σ2

z(k)).
11: Compute classification loss:

Lcls = softmax loss(zt, lt).
12: Fuse the three loss:

L(θ,φ) = λ1Lrec(θ,φ) + λ2Lreg(φ) + λ3Lcls(φ).
13: Back-propagate the gradients.
14: until maximum iteration reached.

we develop a Variational Auto-Encoder (VAE) to generate
the probability function uθ.

Following the notations in Section 3.1 and assuming
that all the descriptors in the set are independent, the log-
likelihood of the set can be calculated by the sum over log-
likelihoods of individual descriptor and written as

log uθ(X) =

Tx∑
t=1

log pθ(xt) . (4)

To model the probability of xt generated from parame-
ters θ, an unobserved continuous random variable zt is in-
volved with prior distribution pθ(z) and each xt is generat-
ed from the conditional distribution pθ(x|z). As such, each
log-likelihood log pθ(xt) can be measured using Kullback-
Leibler divergence (DKL) as

log pθ(xt) = DKL(qφ(z|xt)||pθ(z|xt)) + LB(θ,φ;xt)

> LB(θ,φ;xt)
, (5)

where LB(θ,φ;xt) is the variational lower bound on the
likelihood of descriptor xt and can be written as

LB(θ,φ;xt) = −DKL(qφ(z|xt)||pθ(z))+Eqφ(z|xt)[log pθ(xt|z)],
(6)

where qφ(z|x) is a recognition model which is an approxi-
mation to the intractable posterior pθ(z|x). In our proposed
FV-VAE method, we use this lower bound LB(θ,φ;xt) as
an approximation of the log-likelihood. Through this ap-
proximation, the generative model can be divided into t-
wo parts: encoder qφ(z|x) and decoder pθ(x|z), predicting
hidden and visible probability, respectively.

FV-VAE

Gradient
Vector

Visual
Representation

Loss
Function

Ice Dancing/
Albatross

+

Training Epoch

Extraction Epoch

CNN

CNN

Convolutional
Activations

Local
Feature Set

SPP

224x224

448x448

50/frame

Convolutional
Activations

Denser Grid
(28x28)

784/image

Video
Classification

Image
Classification

Figure 3. Visual representation learning framework for image and video recognition including our FV-VAE. Spatial Pyramid Pooling (SPP)
is performed on the last pooling layer of CNN to aggregate the local descriptors of video frame, which applies four different max pooling
operations and obtain (6 × 6), (3 × 3), (2 × 2) and (1 × 1) outputs for each convolutional filter, resulting a total of 50 descriptors. For
image, an input with a higher resolution of (448× 448) is fed into the CNN and the activations of the last convolutional layer conv5 4+relu
in VGG 19 are extracted, leading to dense local descriptors of 28× 28. In training stage, FV-VAE architecture is learnt by minimizing the
overall loss. In extraction epoch, the learnt FV-VAE is to encode the set of local descriptors into a vectorial FV representation.

3.3. Optimization of VAE

The inference model parameter φ and generative mod-
el parameter θ are straightforward to be optimized us-
ing stochastic gradient descend method. More specifical-
ly, let the prior distribution be the standard normal dis-
tribution pθ(z) = N (z; 0, I), and both the conditional
distribution pθ(x|z) and posterior approximation qφ(z|x)
be multivariate Gaussian distributionN (xt;µxt

,σ2
xt
I) and

N (zt;µzt
,σ2

zt
I), respectively. The one-step Monte Carlo

is exploited to estimate the latent variable zt. Hence, the
lower bound in Eq. (6) can be rewritten as

LB(θ,φ;xt) ' log pθ(xt|zt) +
1

2

d∑
k=1

(1 + log σ2
zt(k))

− 1

2

∥∥µzt

∥∥− 1

2
‖σzt‖

, (7)

where zt is generated from N (µzt
,σ2

zt
I) and it is equiva-

lent to zt = µzt
+ ε� σzt

,ε ∼ N (0, I).
Figure 2(a) illustrates an overview of our VAE training

process and Algorithm 1 further details the optimization
steps. It is also worth noting that different from the train-
ing of standard VAE method which estimates σx and σz in
another parallel encoder-decoder structure, we simply learn
the two covariance by gradient descent technique and share
them across all the descriptors, making the number of pa-
rameters learnt in VAE significantly reduced in our case.
In addition to the basic reconstruction loss and regulariza-
tion loss, we further take classification loss into account
in our VAE training to incorporate semantic information,
which has been shown effective in semi-supervised genera-
tive model learning [15]. The overall loss function is then
given by

L(θ,φ) = λ1Lrec(θ,φ) + λ2Lreg(φ) + λ3Lcls(φ) . (8)

We fix λ1 = λ2 = 1 in Eq. (8) and will investigate the ef-
fect of tradeoff parameter λ3 in our experiments. During the
training, the gradients are calculated and back-propagate to
the lower layers so that lower layers can adjust their param-
eters to minimize the loss.

3.4. FV Extraction

After the optimization of model parameters [θ∗,φ∗],
Figure 2(b) demonstrates how to extract Fisher Vector based
on the learnt VAE architecture.

By replacing the log-likelihood with its approximation,
i.e., lower boundLB(θ,φ;xt), we can obtain FV in Eq. (3):

G X
θ∗ = F

− 1
2

θ∗ ∇θ log uθ∗(X)

= −F−
1
2

θ∗

Tx∑
t=1

[∇θLrec(xt;θ
∗,φ∗)]

, (9)

which is the normalized gradient vector of reconstruction
loss, and can be computed directly though the back propa-
gation operation. It is worth noticing that when extracting
FV representation, we withdraw the sampling operation and
use µzt

as zt directly to avoid stochastic factors.

4. Visual Representation Learning
By utilizing FV-VAE as a deep architecture for quanti-

zation, a general visual representation learning framework
is devised for image and video recognition, respectively, as
illustrated in Figure 3. The basic idea is to construct a set
of convolutional descriptors for image or video frames, fol-
lowed by encoding them into a vectorial FV representation
using FV-VAE architecture. Both the training epoch and
FV extraction epoch are shown in Figure 3 and the entire
framework is trainable in an end-to-end manner.

We exploit different strategies of aggregation to con-
struct the set of convolutional descriptors for video frames
and image, respectively, due to the different property in be-
tween. A video consists of a sequence of frames with large
intra-class variations caused by, e.g., camera motion, illu-
mination conditions and so on, making the scale of an i-
dentical object varying in different frames. Following [44],
we employ Spatial Pyramid Pooling (SPP) [6] on the last
pooling layer to extract scale-invariant local descriptors for
video frames. Instead, we feed a higher resolution (e.g.,
448× 448) input into the CNN to fully utilize image infor-
mation and extract the activations of the last convolutional
layer (e.g., conv5 4+relu in VGG 19), resulting in dense lo-
cal descriptors (e.g., 28× 28) for image as in [20].

In our implementation, Multi-Layer Perceptron (MLP)
is employed as encoder and decoder in FV-VAE and one
layer decoder is developed to reduce the dimension of FV
representation. As such, the functions in Algorithm 1 can
be specified as

Encoder : µzt
←MLPφ(xt)

Decoder : µxt
← ReLU(W ′θzt + bθ)

, (10)

where {Wθ, bθ} are the encoder parameters θ. The gradi-
ent vector of Lrec is calculated as

∇θLrec(xt;θ
∗,φ∗) = flatten

{
[
∂Lrec

∂Wφ
,
∂Lrec

∂bθ
]

}
= flatten

{
[
∂Lrec

∂µxt

· z′t,
∂Lrec

∂µxt

]

}
= flatten

{
∂Lrec

∂µxt

· [z′t, 1]
}

= flatten

{
µxt
− xt

σ2
x

� (µxt
> 0) · [z′t, 1]

}
,

(11)
where “flatten” represents to flatten a matrix to a vector,
and � denotes element-wise multiplication to filter the ac-
tivated elements. Considering it is difficult to obtain an an-
alytic solution of FIM in this case, we make an approxima-
tion by replacing the expectation with the average on the
whole training set:

Fθ∗ = EX∼uθ [G
X
θ G

X
θ

′
] ≈ mean

X
[GX

θ G
X
θ

′
] , (12)

and

G X
θ∗ = flatten

{
−F−

1
2

θ∗ ·
Tx∑
t=1

(
µxt
− xt

σ2
x

� (µxt
> 0) · [z′t, 1])

}
,

(13)
which is the output FV representation in our framework.

To improve the convergence speed and better regularize
the visual representation learning for video, we train this
framework by inputting one single video frame rather than
multiple ones, which is randomly sampled from videos. In
the FV extraction stage, the video-level representation can

Table 1. Methodology comparison of different quantization.
Quantization indicator descriptor
FV [23] Gaussian observation

model
gradient with respect to
GMM parameters

VLAD [11] clustering center difference to the as-
signed center

BP [20] local feature coordinate representa-
tion

FV-VAE VAE hidden variable gradient of reconstruc-
tion loss

be easily obtained by averaging FVs of all the frames sam-
pled from the video since FV in Eq. (13) is linear additive.

5. Experiments
We evaluate the learnt visual representation by FV-VAE

architecture on three popular datasets, i.e., UCF101 [31],
ActivityNet [2] and CUB-200-2011 [39]. The UCF101
dataset is one of the most popular video action recogni-
tion benchmarks. It consists of 13,320 videos from 101
action categories. The action categories are divided into
five groups: human-object interaction, body-motion only,
human-human interaction, playing musical instruments and
sports. Three training/test splits are provided by the dataset
organisers and each split in UCF101 includes about 9.5K
training and 3.7K test videos. The ActivityNet dataset is
a large-scale video benchmark for human activity under-
standing. The latest released version of the dataset (v1.3)
is exploited, which contains 19,994 videos from 200 activ-
ity categories. The 19,994 videos are divided into 10,024,
4,926, 5,044 videos for training, validation and test set, re-
spectively. Note that the labels of test set are not publicly
available and the performances on ActivityNet dataset are
all reported on validation set. Furthermore, we also val-
idate the representation on CUB-200-2011 dataset, which
is widely adopted for fine-grained image classification and
consists of 11,788 images from 200 bird species. We fol-
low the official split on this dataset with 5,994 training and
5,794 test images.

5.1. Compared Approaches

To empirically verify the merit of visual representation
learnt by FV-VAE, we compare the following quantization
methods: Global Activations (GA) directly utilizes the
outputs of fully-connected/pooling layer as visual represen-
tation. Fisher Vector (FV) [23] produces the visual repre-
sentation by concatenating the gradients with respect to the
parameters of GMM, which is trained on local descriptors.
Vector of Locally Aggregated Descriptors (VLAD) [11]
is to accumulate, for each clustering center learnt with K-
means, the differences between the clustering center and the
descriptors assigned to it, and then concatenates the accu-
mulated vector of each center as quantized representation.

Bilinear Pooling (BP) [20] pools local descriptors in a pair-
wise manner by outer product. In our case, one local de-
scriptor pairs with itself. To better illustrate the difference
between the compared approaches, we details the methodol-
ogy in Table 1. In particular, we decouple the quantization
process into two parts: indicator and descriptor. Indicator
refers to observations/distributions estimated on the whole
set of local descriptors and descriptor is to represent the set
with respect to the indicator.

5.2. Experimental Settings

Convolutional activations. On video action recognition
task, we extract two widely adopted convolutional activa-
tions, i.e., activations of pool5 layer in VGG 19 [30] and
res5c layer in ResNet 152 [7]. Given a 224 × 224 video
frame as input, the outputs of the two layers are both 7× 7
and the dimension of each activation is 512 and 2,048, re-
spectively. For each video, 25 frames are uniformly sam-
pled for representation extraction. On image classification
problem, we feed 448×448 image into VGG 19 and the ac-
tivations of conv5 4+relu layer are exploited, which produce
28× 28 convolutional descriptors.

VAE optimization. To make the training process of
VAE stable, we first exploit L2 normalization on each con-
volutional activation to make the input to VAE in a com-
mon scale. Following [8, 37], dropout is then employed to
randomly drop out units input to the encoder but the auto-
encoder is optimized to reconstruct a complete “repaired”
input. The dropout rate is fixed to 0.5. Furthermore, we
utilize AdaDelta [46] optimization method implemented in
Caffe [12] to normalize the gradient of each parameters for
balancing their converge speed. The base learning rate is set
to 1 and the size of mini-batch is 128 images/frames. The
optimization will be complete after 5,000 batches.

Quantization settings. For our FV-VAE, given the lo-
cal descriptor with dimension C (C ∈ {512, 2048}), we
design a two-layer encoder (C → C → 255) to reduce
the dimension to 255, coupled with a single layer decoder
(255 → C). The dimension of the final quantized repre-
sentation is 256 × C. For FV and VLAD, we follow the
settings in [3] and [44]. Specifically, 128 Gaussian com-
ponents for FV and 256 clustering centers for VLAD are
exploited. As such, the dimension of representations en-
coded by FV and VLAD will also be 256 × C. The two
quantization approaches are implemented by VLFeat [35].

Classifier training. After representation learning by all
the methods in our experiments, we apply signed square-
root step (sign(x)

√
|x|) and L2 normalization (x/‖x‖2) as

in [3, 20, 23, 44], and then train a one-vs-all linear SVM
with a fixed hyperparameter Csvm = 100.

Table 2. Performance comparisons of different quantization meth-
ods on UCF101 split1 with default VGG 19 network.

Feature Dimension Accuracy
GA 4096 74.91%
Concatenation 25088 75.89%
AVE 512 73.25%
FV 131072 78.85%
VLAD 131072 80.67%
BP 262144 81.39%
FV-VAE− 131072 81.91%
FV-VAE 131072 83.45%

5.3. Performance

Comparison with different quantization methods. We
first examine our FV-VAE and compare with other quanti-
zation methods. In addition to the four mentioned quan-
tization methods, we also include three runs: Concatena-
tion, AVE and FV-VAE−. Concatenation is to flatten the
activations of pool5 layer and concatenate into a super vec-
tor, whose dimension is 25088 (7 × 7 × 512). The rep-
resentation in AVE is produced by average fusing the 49
512-dimensional convolutional activations in pool5 layer.
A slightly different setting of our FV-VAE is named as FV-
VAE−, in which the classification loss in Eq.(8) is excluded
or λ3 is set to 0.

The performances and comparisons with default VG-
G 19 network on UCF101 (split 1) are summarized in Ta-
ble 2. Overall, the results indicate that our FV-VAE lead-
s to a performance boost against others. In particular, the
accuracy of FV-VAE can achieve 83.45%, which makes
the relative improvement over the best competitor BP by
2.5%. Meanwhile, the dimension of representation learnt
by FV-VAE is only half of that of BP. There is a perfor-
mance gap among three runs GA, Concatenation and AVE.
Though three runs all directly originate from pool5 layer,
they are fundamentally different in the way of generating
frame representation. The representation of GA is as a re-
sult of flatting all kernel maps in pool5 to the neurons in
a fully-connected layer, while Concatenation and AVE is
by directly concatenating convolutional descriptors or aver-
age fusing them in pool5 layer. As indicated by our results,
Concatenation can lead to better performance than GA and
AVE. VLAD outperforms FV on UCF101, but the perfor-
mance is still lower than BP. Compared to FV which pro-
duces representation with respect to a number of Gaussian
mixture components, FV-VAE will learn which Gaussian
distribution is needed for the input specific descriptor by
an inference neural network, making FV-VAE more flexi-
ble. Therefore, FV-VAE performs significantly better than
FV. More importantly, FV-VAE is trainable in an end-to-end
fashion. By additionally incorporating semantic informa-
tion, FV-VAE leads to apparent improvement against FV-
VAE−. Furthermore, by reducing the dimension of latent
variable to 7, the visual representations produced by FV-

Table 3. Performance comparisons of FV-VAE with local activa-
tions from different networks on UCF101 split1.

Network GA FV-VAE− FV-VAE
pool5 74.91% 81.91% 83.45%
pool5 fine-tuned 79.06% 82.05% 82.13%
res5c 81.57% 85.05% 86.33%

Table 4. Performance comparisons with the state-of-the-art meth-
ods on UCF101 (3 splits, ×10 augmentation). C3D: Convolution-
al 3D [33]; TSN: Temporal Segment Networks; TDD: Trajectory-
pooled Deep-convolutional Descriptor [41]; IDT: Improved Dense
Trajectory [40].

Method Accuracy
Two-stream ConvNet [29] 88.1%
C3D (3 nets) [33] 85.2%
Factorized ST-ConvNet [32] 88.1%
Two-stream + LSTM [45] 88.6%
Two-stream fusion [4] 92.5%
Long-term temporal ConvNet [34] 91.7%
Key-volume mining CNN [49] 93.1%
TSN (3 modalities) [42] 94.2%
IDT [40] 85.9%
C3D + IDT [33] 90.4%
TDD + IDT [41] 91.5%
Long-term temporal ConvNet + IDT [34] 92.7%
FV-VAE-pool5 83.9%
FV-VAE-pool5 optical flow 89.5%
FV-VAE-res5c 86.6%
FV-VAE-(pool5 + pool5 optical flow) 93.7%
FV-VAE-(res5c + pool5 optical flow) 94.2%
FV-VAE-(res5c + pool5 optical flow) + IDT 95.2%

VAE and GA are then with the same dimension of 4,096. In
this case, the accuracy of FV-VAE can still achieve 78.37%
which is higher than 74.91% by GA, again demonstrating
the effectiveness of our FV-VAE. In addition, similar per-
formance trends are observed at CUB-200-2011 dataset, as
shown in the upper rows of Table 6, in two protocols of
where the object bounding boxes are provided or not.

Comparison with different networks. Next, we turn
to measure the performances on UCF101 split1 of our FV-
VAE with local activations from different networks, includ-
ing pool5 layer in VGG 19 and fine-tuned VGG 19 using
video frames respectively, and res5c layer in ResNet 152.
As shown in Table 3, compared to pool5 in VGG 19, FV-
VAE on the outputs of res5c layer in ResNet 152 with a
deeper CNN exhibits better performance. An interesting
observation is that GA and FV-VAE− performs better on
the outputs of pool5 layer in fine-tuned VGG 19 than that
in VGG 19, while reverse trend is indicated by using FV-
VAE. We speculate that this may be the result of overfitting
in fine-tuning with UCF101, which in particular affects the
descriptive ability of convolutional layers. This result also
indicates the advantage of exploring semantic information
in FV-VAE training based on the outputs of a general net-
work than a fine-tuned one.

Table 5. Performance comparisons in terms of Top-1&Top-3 clas-
sification accuracy, and mean AP on ActivityNet validation set.

Methods Top-1 Top-3 MAP
VGG 19-GA [30] 66.59% 82.70% 70.22%
ResNet 152-GA [7] 71.43% 86.45% 76.56%
C3D-GA [33] 65.80% 81.16% 67.68%
IDT [40] 64.70% 77.98% 68.69%
FV-VAE-pool5 72.51% 85.68% 77.25%
FV-VAE-res5c 78.55% 91.16% 84.09%

Table 6. Performance comparisons on CUB-200-2011 in two sce-
narios: where the object bounding boxes are provided at training
and test time or not. ft: fine-tuning.
Methods Dim w/o ft w/ ft +box w/o ft +box w/ ft
GA 4k 61.0% 70.4% 65.3% 76.4%
FV 128k 70.8% 74.0% 73.6% 77.1%
VLAD 128k 73.5% 76.5% 75.1% 79.8%
BP 256k 75.2% 78.0% 76.9% 80.8%
FV-VAE 128k 79.3% 82.4% 79.5% 83.6%
Previous
works

84.5%[48] 84.1%[20]
84.1%[10] 82.0%[17]
75.7%[1] 73.9%[47]

85.1%[20] 82.8%[17]
76.4%[47] 73.0%[3]

Comparison with the state-of-the-art. We compare
with several state-of-the-art techniques on three splits of
UCF101, ActivityNet validation set and CUB-200-2011.
The performance comparisons are summarized in Table 4,
5 and 6, respectively. It is worth noting that most recent
works on UCF101 employ and fuse two or multiple modal-
ities. For fair comparison, two basic and widely adopted
modalities, i.e., video frame and optical flow “image,” are
considered as inputs to our visual representation framework
and late fusion is used to combine classifier scores on the
two modalities. As shown in Table 4, FV-VAE on activa-
tions from pool5 layer in VGG 19 with image and optical
flow inputs can achieve 93.7%, which makes the relative
improvement over two-stream networks [29], [45] and [4]
by 6.3%, 5.7% and 1.3%, respectively. When exploiting the
outputs of res5c layer in ResNet 152 on image inputs as in-
stead, the accuracy will be further improved to 94.2%. By
combining with IDT which are hand-crafted features, our
final performance will boost up to 95.2%, which is to-date
the best published performance on UCF101.

The results across different evaluation metrics consis-
tently indicate that visual representation produced by our
FV-VAE leads to a performance boost against baselines
on ActivityNet validation set, as shown in Table 5. More
specifically, FV-VAE on the outputs of pool5 in VGG 19
and res5c in ResNet 152 outperforms GA from VGG 19
and ResNet 152 by 10.0% and 9.8% in terms of mAP, re-
spectively. Furthermore, the representation learnt by FV-
VAE only on visual appearance of video frame also exhibits
better performance than GA representation from C3D and
IDT motion features which additionally explore temporal
information in videos.

12 13 14 15 16 17

Feature dimension (log2)

72

74

76

78

80

82

84

P
e
rc

e
n
ta

g
e
 o

n
 a

cc
u
ra

cy

VLAD

FV

FV-VAE¡

FV-VAE

(a)

0 1 2 3 4 5

¸3 in Eq. (8) (log10)

81

82

83

84

85

86

87

88

P
e
rc

e
n
ta

g
e
 o

n
 a

cc
u
ra

cy

pool5

pool5 fine-tuned

res5c

(b)

1213141516

Feature dimension (log2)

77

78

79

80

81

82

83

84

85

P
e
rc

e
n
ta

g
e
 o

n
 a

cc
u
ra

cy

RM

Latent Variable Reduction

PCA

(c)

Figure 4. Experimental analysis: (a) The accuracy of visual representation with different dimensions learnt by different quantization
methods. (b) The accuracy curve of FV-VAE on activations from different networks with different λ3 in Eq.(8). (c) The accuracy of
different feature compression methods on representation learnt by FV-VAE. Note that all the performances reported in this figure are on
UCF101 split1 and similar performance trends are observed at the other two datasets.

Fine-tuning VGG 19 on CUB-200-2011 for FV-VAE
generally performs better than original VGG 19 on both
protocols of where the object bounding boxes are given or
not, as shown in Table 6. Overall, the representation learn-
t by FV-VAE leads to a performance boost against some
baselines, e.g., [17] which extracts representation on local
regions learnt by co-segmentation and [1] which combines
the representations from three networks fed by warped bird
head, warped body and entire image, respectively. It is not
surprise that FV-VAE yields inferior performance to the oth-
er baselines, as the representation learnt by our FV-VAE is
for general purpose while contributions of different region-
s in particular for fine-grained classification are taken into
account in these methods. For instance, a saliency weight
is learnt and assigned to each local region in [48], and a
spatial transformer is trained to reduce the effect of transla-
tion and rotation as preprocess in [10]. More importantly,
the importance estimation of each local region can be easily
integrated into our framework as spatial attention.

5.4. Analysis

The effect of representation dimension. Figure 4(a)
compares the accuracy of learnt representations with differ-
ent dimensions by changing the number of latent variable
in FV-VAE, the number of centroids in VLAD and mixture
components in FV. Overall, visual representation learnt by
FV-VAE consistently outperforms others at each dimension
from 212 to 217. In general, higher dimensional represen-
tations provide better accuracy, except that the accuracy of
representation learnt by FV will decrease when the dimen-
sion is higher than 215, which may caused by overfitting.
The result basically indicates the advantage of predicting
Gaussian parameters by a neural network in our FV-VAE.

The effect of tradeoff parameter λ3. A common prob-
lem with combination of multiple loss is the need to set the
tradeoff parameters in between. Figure 4(b) shows the ac-
curacy of FV-VAE with respect to different λ3 in Eq.(8),

which reflects the contribution of leveraging semantic in-
formation. As expected, the accuracy curves are all like the
“∧” shapes when λ3 varies from 100 to 105.

Feature compression. Figure 4(c) compares the perfor-
mance obtained by applying different representation com-
pression methods: (1) Random Maclaurin (RM) [14], (2)
PCA dimension reduction and (3) reducing the number of
latent variable in VAE. Compared to RM and PCA which
separately learn a transformation for feature compression,
we can reduce the dimension of the learnt FV in VAE frame-
work by decreasing the number of latent variable. As indi-
cated by our results, reducing the number of latent variable
always achieves the best accuracy, which again confirms the
high flexibility of VAE.

6. Conclusion
We have presented Fisher Vector with Variational Auto-

Encoder (FV-VAE) architecture which aims to quantize the
convolutional activations in a deep generative model. Par-
ticularly, we theoretically formulate the computation of FV
in VAE architecture. To verify our claim, a general vi-
sual representation learning framework is devised by inte-
grating our FV-VAE architecture and an implementation of
FV-VAE is also substantiated for image and video recogni-
tion. Experiments conducted on on three public datasets,
i.e., UCF101, ActivityNet, and CUB-200-2011 in the con-
text of video action recognition and fine-grained image clas-
sification validate our proposal and analysis. Performance
improvements are clearly observed when comparing to oth-
er quantization techniques.

Our future works are as follows. First, a deeper auto-
encoder architecture will be explored in our FV-VAE ar-
chitecture. Second, attention mechanism will be explicit-
ly incorporated into our FV-VAE for further enhancing vi-
sual recognition. Third, Generative Adversarial Networks
(GAN) will be investigated to better learn a generative mod-
el and integrated into representation learning.

References
[1] S. Branson, G. Van Horn, S. Belongie, and P. Perona. Bird

species categorization using pose normalized deep convolu-
tional nets. In BMVC, 2014.

[2] F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Car-
los Niebles. Activitynet: A large-scale video benchmark for
human activity understanding. In CVPR, 2015.

[3] M. Cimpoi, S. Maji, I. Kokkinos, and A. Vedaldi. Deep filter
banks for texture recognition, description, and segmentation.
IJCV, 118(1):65–94, 2016.

[4] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional
two-stream network fusion for video action recognition. In
CVPR, 2016.

[5] R. Girshick. Fast r-cnn. In ICCV, 2015.
[6] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. In
ECCV, 2014.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016.

[8] D. J. Im, S. Ahn, R. Memisevic, and Y. Bengio. Denoising
criterion for variational framework. In AAAI, 2017.

[9] T. S. Jaakkola, D. Haussler, et al. Exploiting generative mod-
els in discriminative classifiers. In NIPS, 1998.

[10] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial
transformer networks. In NIPS, 2015.

[11] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating
local descriptors into a compact image representation. In
CVPR, 2010.

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. In ACM MM, 2014.

[13] M. J. Johnson, D. Duvenaud, A. B. Wiltschko, S. R. Datta,
and R. P. Adams. Composing graphical models with neural
networks for structured representations and fast inference. In
NIPS, 2016.

[14] P. Kar and H. Karnick. Random feature maps for dot product
kernels. In AISTATS, 2012.

[15] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling.
Semi-supervised learning with deep generative models. In
NIPS, 2014.

[16] D. P. Kingma and M. Welling. Auto-encoding variational
bayes. In ICLR, 2013.

[17] J. Krause, H. Jin, J. Yang, and L. Fei-Fei. Fine-grained
recognition without part annotations. In CVPR, 2015.

[18] Q. Li, Z. Qiu, T. Yao, T. Mei, Y. Rui, and J. Luo. Action
recognition by learning deep multi-granular spatio-temporal
video representation. In ICMR, 2016.

[19] Q. Li, Z. Qiu, T. Yao, T. Mei, Y. Rui, and J. Luo. Learn-
ing hierarchical video representation for action recognition.
IJMIR, pages 1–14, 2017.

[20] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear cnn mod-
els for fine-grained visual recognition. In ICCV, 2015.

[21] L. Liu, C. Shen, and A. van den Hengel. The treasure beneath
convolutional layers: Cross-convolutional-layer pooling for
image classification. In CVPR, 2015.

[22] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015.

[23] F. Perronnin, J. Sánchez, and T. Mensink. Improving the
fisher kernel for large-scale image classification. In ECCV,
2010.

[24] Z. Qiu, Q. Li, T. Yao, T. Mei, and Y. Rui. MRA Asia MSM
at Thumos Challenge 2015. In CVPR workshop, 2015.

[25] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic
backpropagation and approximate inference in deep genera-
tive models. In ICML, 2014.

[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge. I-
JCV, 115(3):211–252, 2015.

[27] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image
classification with the fisher vector: Theory and practice. I-
JCV, 105(3):222–245, 2013.

[28] S. Sharma, R. Kiros, and R. Salakhutdinov. Action recogni-
tion using visual attention. In ICLR Workshop, 2016.

[29] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In NIPS, 2014.

[30] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.

[31] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset
of 101 human action classes from videos in the wild. CRCV-
TR-12-01, 2012.

[32] L. Sun, K. Jia, D.-Y. Yeung, and B. E. Shi. Human action
recognition using factorized spatio-temporal convolutional
networks. In ICCV, 2015.

[33] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.
Learning spatiotemporal features with 3d convolutional net-
works. In ICCV, 2015.

[34] G. Varol, I. Laptev, and C. Schmid. Long-term temporal
convolutions for action recognition. arXiv preprint arX-
iv:1604.04494, 2016.

[35] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable
library of computer vision algorithms. http://www.
vlfeat.org/, 2008.

[36] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney,
T. Darrell, and K. Saenko. Sequence to sequence-video to
text. In ICCV, 2015.

[37] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol.
Extracting and composing robust features with denoising au-
toencoders. In ICML, 2008.

[38] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and
tell: A neural image caption generator. In CVPR, 2015.

[39] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical re-
port, 2011.

[40] H. Wang and C. Schmid. Action recognition with improved
trajectories. In ICCV, 2013.

[41] L. Wang, Y. Qiao, and X. Tang. Action recognition with
trajectory-pooled deep-convolutional descriptors. In CVPR,
2015.

[42] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and
L. Van Gool. Temporal segment networks: towards good
practices for deep action recognition. In ECCV, 2016.

http://www.vlfeat.org/
http://www.vlfeat.org/

[43] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudi-
nov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In ICML,
2015.

[44] Z. Xu, Y. Yang, and A. G. Hauptmann. A discriminative cnn
video representation for event detection. In CVPR, 2015.

[45] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan,
O. Vinyals, R. Monga, and G. Toderici. Beyond short s-
nippets: Deep networks for video classification. In CVPR,
2015.

[46] M. D. Zeiler. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

[47] N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Part-
based r-cnns for fine-grained category detection. In ECCV,
2014.

[48] X. Zhang, H. Xiong, W. Zhou, W. Lin, and Q. Tian. Picking
deep filter responses for fine-grained image recognition. In
CVPR, pages 1134–1142, 2016.

[49] W. Zhu, J. Hu, G. Sun, X. Cao, and Y. Qiao. A key volume
mining deep framework for action recognition. In CVPR,
2016.

