Microsoft Research Faculty Summit 2017

Multimodal Machine Learning (or Deep Learning for Multimodal Systems)

Louis-Philippe Morency Carnegie Mellon University

Integrative AI Systems

Ubiquitous

Human Multimodal Behaviors

Microsoft Research

Verbal

- Lexicon
 - Words
- Syntax
 - Part-of-speech
 - Dependencies
- Pragmatics
 - Discourse acts

ocal

- Prosody
 - Intonation
 - Voice quality
- Vocal expressions
 - Laughter, moans

Visual

- Gestures
 - Head gestures
 - Eye gestures
 - Arm gestures
- Body language
 - Body posture
 - Proxemics
- Eye contact
 - Head gaze
 - Eye gaze
- Facial expressions
 - FACS action units
 - Smile, frowning

Multimodal Machine Learning

Prior Research on "Multimodal"

Four eras of multimodal research

- > The "behavioral" era (1970s until late 1980s)
- > The "computational" era (late 1980s until 2000)
- ➤ The "interaction" era (2000 2010)
- The "deep learning" era (2010s until ...)
 Main focus of this presentation

Core Challenges in "Deep" Multimodal ML

Representation

Alignment

Fusion

Translation

Co-Learning

Multimodal Machine Learning: A Survey and Taxonomy

By Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency

https://arxiv.org/abs/1705.09406

✓ 5 core challenges
✓ 37 taxonomic classes
✓ 253 referenced citations

Core Challenge 1: Representation

Definition: Learning how to represent and summarize multimodal data in away that exploits the complementarity and redundancy.

Joint Multimodal Representation

Joint Multimodal Representations

Audio-visual speech recognition [Ngiam et al., ICML 2011]

• Bimodal Deep Belief Network

Image captioning

Microsoft Research

Faculty Summit

2017

[Srivastava and Salahutdinov, NIPS 2012]

• Multimodal Deep Boltzmann Machine

Audio-visual emotion recognition [Kim et al., ICASSP 2013]

The Edge of Al

• Deep Boltzmann Machine

Multimodal Vector Space Arithmetic

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]

Core Challenge 1: Representation

Definition: Learning how to represent and summarize multimodal data in away that exploits the complementarity and redundancy.

Coordinated Representation: Deep CCA

Learn linear projections that are maximally correlated:

Andrew et al., ICML 2013

Microsoft Research The Edge of Al Faculty Summit 2017

Core Challenge 2: Alignment

Definition: Identify the direct relations between (sub)elements from two or more different modalities.

Microsoft Research

2017

Explicit Alignment

The goal is to directly find correspondences between elements of different modalities

Implicit Alignment

Uses internally latent alignment of modalities in order to better solve a different problem

The Edge of Al Faculty Summit

Implicit Alignment

Karpathy et al., Deep Fragment Embeddings for Bidirectional Image Sentence Mapping, https://arxiv.org/pdf/1406.5679.pdf

Attention Models for Image Captioning

Core Challenge 3: Fusion

Definition: To join information from two or more modalities to perform a prediction task.

2) Late Fusion

Core Challenge 3: Fusion

Definition: To join information from two or more modalities to perform a prediction task.

- 1) Deep neural networks
- 2) Kernel-based methods
- 3) Graphical models

Multiple kernel learning

Multi-View Hidden CRF

Core Challenge 4: Translation

Definition: Process of changing data from one modality to another, where the translation relationship can often be open-ended or subjective.

Core Challenge 4: Translation

Visual gestures (both speaker and listener gestures)

Transcriptions + Audio streams

Marsella et al., Virtual character performance from speech, SIGGRAPH/Eurographics Symposium on Computer Animation, 2013

Core Challenge 5: Co-Learning

Definition: Transfer knowledge between modalities, including their representations and predictive models.

Core Challenge 5: Co-Learning

Taxonomy of Multimodal Research

Representation

Joint

- Neural networks
- o Graphical models
- Sequential

Coordinated

- Similarity
- Structured

Translation

Example-based

- o Retrieval
- Combination

Model-based

o Grammar-based

- Encoder-decoder
- Online prediction

Alignment

Explicit

- Unsupervised
- Supervised

Implicit

- Graphical models
- Neural networks

Fusion

Model agnostic

- Early fusion
- Late fusion
- Hybrid fusion

Model-based

- Kernel-based
- Graphical models
- Neural networks

Co-learning

Parallel data

- Co-training
- Transfer learning

Non-parallel data

- Zero-shot learning
- Concept grounding
- Transfer learning
- Hybrid data
 - Bridging

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy, <u>https://arxiv.org/abs/1705.09406</u>

Recent Progress in Multimodal ML

Representation

Alignment

Fusion

Translation

Co-Learning

Faculty Summit The Edge of Al

Multimodal Tensor Representation [ACL 2017, EMNLP 2017]

Temporal Attention-Gated [CVPR 2017, ACM MM 2017]

Multi-View Coupled LSTM
[ECCV 2016]

Multimodal Sentiment Analysis

MOSI dataset (Zadeh et al, 2016)

- 2199 subjective video segments
- Sentiment intensity annotations
- 3 modalities: text, video, audio

Multimodal joint representation:

 $\boldsymbol{h}_{m} = \boldsymbol{f} \big(\boldsymbol{W} \cdot \big[\boldsymbol{h}_{x}, \boldsymbol{h}_{y}, \boldsymbol{h}_{z} \big] \big)$

Multimodal Tensor Fusion Network (TFN)

Models both unimodal and bimodal interactions:

$$h_{m} = \begin{bmatrix} h_{x} \\ 1 \end{bmatrix} \otimes \begin{bmatrix} h_{y} \\ 1 \end{bmatrix} = \begin{bmatrix} h_{x} & h_{x} \otimes h_{y} \\ 1 & h_{y} \end{bmatrix}$$

$$Important !$$

[Zadeh, Jones and Morency, EMNLP 2017]

Multimodal Tensor Fusion Network (TFN)

Can be extended to three modalities:

 $\boldsymbol{h}_{m} = \begin{bmatrix} \boldsymbol{h}_{x} \\ 1 \end{bmatrix} \otimes \begin{bmatrix} \boldsymbol{h}_{y} \\ 1 \end{bmatrix} \otimes \begin{bmatrix} \boldsymbol{h}_{z} \\ 1 \end{bmatrix}$

Explicitly models unimodal, bimodal and trimodal interactions !

 $h_x \otimes h_z$ $h_x \otimes h_v$ h_{v} $h_z \otimes h_v$ $h_x \otimes h_v \otimes h_z$ $h_{\mathbf{r}}$ Audio Text Image X Y Ζ

[Zadeh, Jones and Morency, EMNLP 2017]

Experimental Results – MOSI Dataset

Multimodal Baseline	Binary		5-class	Regre	ssion
	Acc(%)	F1	Acc(%)	MAE	r
Random	50.2	48.7	23.9	1.88	-
C-MKL	73.1	75.2	35.3	-	-
SAL-CNN	73.0	-	-	-	-
SVM-MD	71.6	72.3	32.0	1.10	0.53
RF	71.4	72.1	31.9	1.11	0.51
TFN	77.1	77.9	42.0	0.87	0.70
Human	85.7	87.5	53.9	0.71	0.82
Δ^{SOTA}	↑ 4.0	† 2.7	† 6.7	$\downarrow 0.23$	↑ 0.17

Improvement over State-Of-The-Art

The Edge of Al

Microsoft Research

Faculty Summit

2017

Baseline	Binary		5-class	Regression	
	Acc(%)	F1	$\overline{\operatorname{Acc}(\%)}$	MAE	r
$\mathrm{TFN}_{language}$	74.8	75.6	38.5	0.99	0.61
TFN_{visual}	66.8	70.4	30.4	1.13	0.48
$\mathrm{TFN}_{a coustic}$	65.1	67.3	27.5	1.23	0.36
TFN _{bimodal}	75.2	76.0	39.6	0.92	0.65
$\mathrm{TFN}_{trimodal}$	74.5	75.0	38.9	0.93	0.65
$\mathrm{TFN}_{notrimodal}$	75.3	76.2	39.7	0.919	0.66
TFN	77.1	77.9	42.0	0.87	0.70
TFN_{early}	75.2	76.2	39.0	0.96	0.63

Hicrosoft

Temporal Attention in Videos

Pei, Baltrušaitis, Tax and Morency. Temporal Attention-Gated Model for Robust Sequence Classification, CVPR, 2017

Temporal Attention-Gated Model (TAGM)

Experimental Results – CCV Dataset

Pei, Baltrušaitis, Tax and Morency. Temporal Attention-Gated Model for Robust Sequence Classification, CVPR, 2017

Sequence Modeling with LSTM

Multimodal Sequence Modeling – Early Fusion

The Edge of Al

Microsoft Research

Faculty Summit

2017

Microsoft

Multi-View Long Short-Term Memory

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]

Multi-View Long Short-Term Memory

Topologies for Multi-View LSTM

Experimental Results

Multimodal prediction of children engagement

Class labels	Model	Precision	Recall	F1
Easy to engage	LSTM (Early fusion)	0.75	0.81	0.78
	MV-LSTM Full	0.81	0.81	0.81
	MV-LSTM Coupled	0.79	0.81	0.80
	MV-LSTM Hybrid	0.80	0.86	0.83
Difficult to engage	LSTM (Early fusion)	0.63	0.55	0.59
	MV-LSTM Full	0.68	0.68	0.68
	MV-LSTM Coupled	0.67	0.64	0.65
	MV-LSTM Hybrid	0.74	0.64	0.68

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]

Multimodal Machine Learning

Representation

Alignment

Fusion

Translation

Co-Learning

Multimodal Machine Learning: A Survey and Taxonomy

https://arxiv.org/abs/1705.09406

Multimodal Tensor Representation
[ACL 2017, EMNLP 2017]

Temporal Attention-Gated [CVPR 2017, ACM MM 2017]

Multi-View LSTM [ECCV 2016]

