
Generalized Mixed E�ect Models for Personalizing Job Search
Ankan Saha

Linkedin Corporation
asaha@linkedin.com

Dhruv Arya
Linkedin Corporation
darya@linkedin.com

ABSTRACT
Job Search is a core product at LinkedIn which makes it essential
to generate highly relevant search results when a user searches
for jobs on Linkedin. Historically job results were ranked using
linear models consisting of a combination of user, job and query
features. �is paper talks about a new generalized mixed e�ect
models introduced in the context of ranking candidate job results
for a job search performed on LinkedIn. We build a per-query model
which is populated with coe�cients corresponding to job-features
in addition to the existing global model features. We describe
the details of the new method along with the challenges faced in
launching such a model into production and making it e�cient
at a very large scale. Our experiments show improvement over
previous baseline ranking models, in terms of o�ine metrics (both
AUC and NDCG@Kmetrics) as well as online metrics in production
(Job Applies) which are of interest to us. �e resulting method is
more powerful and has also been adopted in other applications at
LinkedIn successfully.

CCS CONCEPTS
•Statistical Machine Learning →Generalized Linear Models;
•Information Retrieval and Data Mining →Web Search and
Ranking;

KEYWORDS
Generalized Linear Mixed E�ect Models; Information Retrieval and
Search Ranking
ACM Reference format:
Ankan Saha and Dhruv Arya. 2017. Generalized Mixed E�ect Models for
Personalizing Job Search. In Proceedings of SIGIR ’17, Shinjuku, Tokyo, Japan,
August 07-11, 2017, 4 pages.
DOI: h�p://dx.doi.org/10.1145/3077136.3080739

1 INTRODUCTION
LinkedIn has been a continuously developing and evolving ecosys-
tem over the last decade, now encompassing more than 467 million
members [6] and 7M+ active jobs. Job search, in particular, has
been one of the principle product o�erings at LinkedIn. With an
unprecedented increase in the number of sources and volumes of
job opportunities available via Linkedin, the problem of serving the
most appropriate and relevant jobs with minimal delay becomes
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’17, Shinjuku, Tokyo, Japan
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5022-8/17/08. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3077136.3080739

Figure 1: Example of a job search at LinkedIn

signi�cantly challenging. Given a search query provided by a user,
we try to o�er the most relevant and personalized ranking of jobs
that best �t the combination of the user and the query. LinkedIn’s
importance as one of the premier global professional networks
makes it essential to generate results that are highly relevant and
capture the most appropriate interests of the job-seeker. One of the
standard examples where personalization makes a huge di�erence
is when a user searches for a query like so�ware engineer. Depend-
ing on the skills, background, experience, location and other factors
available to LinkedIn, the ranked list of results can be drastically dif-
ferent. �us a person skilled in machine learning would see a very
di�erent set of jobs compared to someone specializing in hardware
or computer networks.

In order to further expand personalization beyond initial job-
search approaches at LinkedIn [2, 3, 7], we introduce a new kind
of model in the job search ecosystem called Generalized Linear
Mixed e�ect modeling, GLMix [9]. We introduce a per-query model
which is trained on the space of job-features in addition to the
global model. As a result, we are able to capture �ner signals in
the training data thus allowing us to be�er di�erentiate how the
presence of a job skill like Hadoop should generate ranking results
for a query like so�ware engineer as opposed to a skill like IPV6.

Introducing the per-query coe�cients on top of the global fea-
tures gives us signi�cant improvement in o�ine metrics including
ROC-AUC on the test dataset and o�ine NDCG, which is the key
metric of interest for ranking applications. We launched an A/B
test to compare this model over the previously existing model with
global features and got healthy improvements in job application
rates and total job applies which are the foremost metrics in job-
search.

SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan A. Saha et al.

2 PROBLEM OVERVIEW
Job search is a very pertinent activity for a job seeker. A job seeker
visits LinkedIn and enters a query expressing an explicit intent
to �nd jobs that match that query. �e search engine provides a
set of results best matching to the query and personalized to the
user if she is logged on Linkedin. For a job seeker the next step
requires reading through the job descriptions, understanding the
job responsibilities, skills required and learning about the company
that has posted the job.

Historically our algorithms would heavily utilize text and entity
based features extracted from the query and jobs to come up with a
global ranking [3]. However learning such a global ranking model
would improve certain queries and degrade others dependent on
the representation of the queries and jobs in the training data. As
an example let’s consider a popular query, namely so�ware engineer.
Given the number of job seekers issuing this querywewould always
want to ensure that we maintain high relevance even if our trained
global ranking model cannot generalize well for this query.
3 MIXED EFFECT MODELS
Generalized Linear Mixed E�ect Models (GLMix) has been success-
fully used on large scale machine learning applications [9] to build
per-user models in the past. In this section, we describe the GLMix
models and how they apply in the context of job-search.

In the context of job-search application, the key is to show the
best jobs to the user based on his query according to some measure.
We quantify this measure in the traditional way as the likelihood
of the memberm to apply for the job j if it is impressed upon her
when she enters the query q, measured by the binary response
ymjq . sj denotes the feature vector of job j , which includes features
extracted from the job post, e.g. the job title, summary, location,
desired skills and experiences while xmjq represents the overall
feature vector for the (m, j,q) triple, which can include member,
job, query and associated context features and any combination
thereof.
3.1 Motivation behind a mixed-e�ect model
�e previous baseline job-search model ranked jobs based on opti-
mization of a Learning To Rank (LTR) metric [1, 4, 8] using a set
of global features similar to xmjq using coordinate ascent. How-
ever these features do not capture relationships between individual
queries and jobs. Consider the following scenario: A member on
LinkedIn searches for jobs with the query “so�ware engineer”. Sup-
pose skill required for the job is one of the job features in sj . Now let
us consider two jobs, Job1, which has skill features corresponding to
“java” and “hadoop” and Job2 which has skill features corresponding
to “capacitors” and “hardware design”. Clearly the nature of the
query should a�ract Job1 at a higher rank than Job2. �is can be
realized by obtaining a notion of a�nity of the query string with
the job-features associated with the job but this kind of signal can-
not be exploited directly by using the model based solely on global
features. Although this purpose can be achieved by introducing
interaction features between each query string and job feature, that
would make the feature space prohibitively expensive and training
a model very di�cult. Instead this can be achieved by introducing
a new class of models called the mixed-e�ect models which can
exploit the interaction of each query with the job features explicitly.

3.2 Generalized Linear Mixed E�ect Models for
Job Search

�e GLMix model that we adopt for predicting the probability
of member m applying for job j based on query q using logistic
regression is

д(E[ymjq]) = x′mjqb + s
′
jβq (1)

where д(E[ymjq]) = log E[ymjq]
1−E[ymjq] is the link function, b is the

global coe�cient vector (also called �xed e�ect coe�cients in the
statistical literature) and βq are the coe�cient vectors speci�c to
query q, called random e�ects coe�cients, which capture query q’s
association or relationship with di�erent job features.

Note that it is also possible to have similar random e�ects co-
e�cients αm or γj on a per-member or per-job basis which can
then be combined with features on the job-query or member-query
spaces respectively. However given that the number of members or
jobs in the LinkedIn ecosystem is of the order of millions (compared
to possibly tens of thousands of popular queries), this can make
such a model prohibitively expensive to be applied in production,
as the �nal model would have a di�erent set of coe�cients for
each member and each job and would incur severe latency while
generating the scores for a (m, j,q) triple at production time. We
notice that applying the random e�ects via a per-query model on
the job-features in conjunction with the global model already al-
lows us to improve upon the baseline model signi�cantly in terms
of both o�ine metrics as well as application rates in production.
�e member features tend to be static and do not contribute much
additionally on being added into the per-query model.

�e corresponding model in equation (1) is optimized via al-
ternating optimization using parallelized coordinate descent. We
alternately optimize for the global features and the per-query fea-
tures for each query while holding all other variables �xed. For
more details about the optimization algorithm, we refer the readers
to [9] as well to the open source implementation of the algorithm
called Photon-ML (link). It was demonstrated in this paper that
GLMix has good scalability properties -scaling up almost linearly
with the number of executors as long as the amount of data pro-
cessed per executor remains consistent.

4 OFFLINE EXPERIMENTS
In this section, we describe the details of the experiments that
were performed to compare the GLMix models with the previous
linear feature based models for information retrieval trained using
coordinate-ascent as part of the RankLib library [4].

4.1 Setup
�ebaselinemodels running RankLibwere performed on the LinkedIn
Hadoop cluster. All the experiments for GLMix models were im-
plemented in Apache Spark. �e experiments were conducted on a
cluster consisting of 135 nodes managed by Apache YARN. Each
node has 24 Intel Xeon(R) CPU E5-2640 processors with 6 cores at
2.50GHz each, and every node has 250GB memory. In the following
experiments, Spark is running on top of YARN as a client, and the
memory for each Spark executor is con�gured to 10GB, where each
executor corresponds to a container (e.g., a core of the node) in
YARN.

https://github.com/linkedin/photon-ml

Generalized Mixed E�ect Models for Personalizing Job Search SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan

Figure 2: Job Search Scoring Infrastructure at LinkedIn

4.2 Data for o�line experiments
Our o�ine experiments are conducted using a sample of six weeks
of data spanning 09/16-10/16 of members’ interactions on the Job
Searchmodule which is navigable from the LinkedIn homepage. We
split the data by time into training (4 weeks), validation (1 week) and
test (1 week). �e positive responses consisted of impressions that
resulted in applications clicks and impressions that did not result
in application clicks provide the negative responses. Note that the
detail job views are not considered as a signal in this experiment
as we don’t explicitly optimize for that metric. We subsample the
negative examples so that the ratio of positive to negative examples
is not too low.

�ere are around 10K job features for sj , e.g. the job title, key
words in the description, required skills and quali�cations, seniority,
experience and functions. �ere are also about 100 global features
consisting of various sort of interactions between member, job,
query, location and industry features - including features like dis-
tance between member and job location, keyword match in job title
and query, skill match between member and query among others.
We compare the following three models:

• Baseline model with about 100 global features (Baseline).
• Baseline model + job position as a feature (Model 2)
• Model 2 + per-query x (job features s) (Model 3).
• Model 2 + per-query x (job features + position features)

(Model 4).
• Model 2 + per-query x (member features + job features +

global features + position features) (Model 5)
Since we wanted to build on top of the baseline model, we kept the
baseline model consistent for all experiments and used the o�set
obtained from this model to train the random e�ect (per-query) part
of themodel. As shown in the results, we noticed that the addition of
global features and member features does not signi�cantly improve
the model performance, while making the model much larger and
more challenging to be pushed into production. As a result, we
decided to proceed with only job features and position features in
the per-query model. �e position features were added to explain
the presentation bias of jobs impressed at a higher position having
a high CTR via their coe�cients from the training model. During
the scoring phase, these features are not available and therefore

Figure 3: Producing results for a query

do not contribute to the �nal score for each candidate job while
ranking.

Model O�ine AUC (Test Dataset) O�ine NDCG@25
Baseline 0.55 0.6261
Model 2 0.64 0.6309
Model 3 0.6904 0.6492
Model 4 0.7025 0.6493
Model 5 0.7049 0.6493

Table 1: O�line metrics for the di�erent models

5 ONLINE SCORING TO GENERATE
RANKING RESULTS

In this section, we provide details about howwe deployed the model
online in our job search system. �e search system at LinkedIn is
an in house developed system calledGalene [5]. �e search system
utilizes Lucene to assist in building the index and retrieve matching
entities from the index. �e query begins at the browser/device and
is passed down to our search backend a�er some preprocessing.
Our search backend is a sharded system consisting of a single broker
and multiple searchers (Figure 2). �e role of the broker is to un-
derstand the user query, scoring metadata such as per query model
features and coe�cients, searcher data and build an annotated re-
quest for the searcher to execute. Speci�cally for the per-query
model the broker fetches the model coe�cients and hashed fea-
tures (for compact storage and e�cient matching during retrieval)
from a key-value store with the key being a combination of the
model name and the query. �e annotated request thus built is then
broadcasted to all searcher nodes. �e searchers hold the sharded
index over which the query is executed to get the matched results
(Figure 3).

Searchers have amultipass scoring pipeline. A lightweight model
is �rst used to narrow down the candidate jobs and then the global
and per query model are applied to the set of candidates. �e scorer
at the searcher goes through the per-query coe�cients and for each
job adds the coe�cient weights for the hashed features present.
Each searcher takes a local view and computes the top k jobs as
requested by the broker. �ese jobs are then passed back to the

SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan A. Saha et al.

Figure 4: GLMix(le�) vs BaseModel results for query “Sales”

broker from all the searchers. �e broker merges the set of returned
jobs and may optionally apply a set of re-rankers to improve the
global ranking. �e �nal ranked jobs are then returned back to the
frontend system which are then decorated and shown to the users.

�e candidate selection helps narrow down the jobs to a few
thousand which are then ranked by the per query model. All of this
happens with extremely low latencies and at the current moment
powers all of job search at LinkedIn.

6 ONLINE EXPERIMENTS
A�er launching the GLMix model (Model 4) and ensuring its
healthy performance along with acceptable scoring latency, the
ramp was �nally increased to 30%. �e corresponding results are
illustrated in table 2. For comparison, we illustrate the results

Model CTR@Position1 Total Job Apply Clicks
Model 4 +6.4% +5.8%

Table 2: Li� over baseline model for online metrics

shown by the GLMix model vs the baseline model for the same user
based in Singapore. Note that when we search for “Sales” (Figure
4), the GLMix model is more accurate (the topmost result of the
baseline model is not very relevant) and also stays close to the skill
set of the user, thus showing jobs mainly between “Sales Manager”
and “Sales Consultant”. On the other hand, when we are more
speci�c and provide “Sales Director” as the query (Figure 5), the
results are more similar although the GLMix model stays more
accurate based on the skill-set of the user, which makes the model
understand that (s)he is senior enough and would not want to see
a job-posting about a sales manager (5th result for global model).
�us the GLMix model also helps us address potential mismatch in
seniority/positions if the corresponding information is provided by
the user to Linkedin.
7 CONCLUSION AND FUTUREWORK
�is paper looks at the problem of ranking job search results given
a query entered by the user. By using a new mixed e�ect model, we
can obtain a greater level of personalization by developing a per-
query model over the space of job features. Besides being be�er, our
model can also be scaled to millions of examples and can be trained
in a distributed manner e�ciently. We demonstrate improvements

Figure 5: GLMix(le�) vs Base Model results for query “Sales
Director”

in both o�ine metrics like AUC and NDCG as well as online metrics
of interest via A/B tests.

We can potentially scale this model further to train per-member
and per-job model to obtain further levels of personalization and
capture the signal hidden in these aspects of the data as well. An-
other new line of work involves training latent representations for
entities like jobs, members and queries in a supervised fashion and
train them using deep learning. We are continuing to look into
these areas to further improve the quality of job search at Linkedin.

REFERENCES
[1] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Ma� Deeds, Nicole Hamilton,

and Greg Hullender. 2005. Learning to Rank Using Gradient Descent. In Proceed-
ings of the 22nd International Conference on Machine Learning (ICML ’05). ACM,
New York, NY, USA, 89–96. DOI:h�p://dx.doi.org/10.1145/1102351.1102363

[2] Viet Ha-�uc and Shakti Sinha. 2016. Learning to Rank Personalized Search
Results in Professional Networks. In Proceedings of the 39th International ACM
SIGIR conference on Research and Development in Information Retrieval, SIGIR
2016, Pisa, Italy, July 17-21, 2016. 461–462. DOI:h�p://dx.doi.org/10.1145/2911451.
2927018

[3] Jia Li, Dhruv Arya, Viet Ha-�uc, and Shakti Sinha. 2016. How to Get �em
a Dream Job?: Entity-Aware Features for Personalized Job Search Ranking. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. 501–510.
DOI:h�p://dx.doi.org/10.1145/2939672.2939721

[4] Donald Metzler and W. Bruce Cro�. 2007. Linear Feature-based Models for
Information Retrieval. Inf. Retr. 10, 3 (June 2007), 257–274. DOI:h�p://dx.doi.
org/10.1007/s10791-006-9019-z

[5] Sriram Shankar. 2014. Did you mean ”Galene”? h�ps://engineering.linkedin.
com/search/did-you-mean-galene. (2014).

[6] LinkedIn Corporate Communications Team. 2016. LinkedIn Announces �ird
�arter 2016 Results. h�ps://press.linkedin.com/site-resources/news-releases/
2016/linkedin-announces-third-quarter-2016-results. (2016).

[7] Ganesh Venkataraman, Abhimanyu Lad, Lin Guo, and Shakti Sinha. 2016. Fast,
lenient and accurate: Building personalized instant search experience at LinkedIn.
In 2016 IEEE International Conference on Big Data, BigData 2016, Washington DC,
USA, December 5-8, 2016. 1502–1511. DOI:h�p://dx.doi.org/10.1109/BigData.2016.
7840758

[8] Qiang Wu, Christopher J. Burges, Krysta M. Svore, and Jianfeng Gao. 2010.
Adapting Boosting for Information Retrieval Measures. Inf. Retr. 13, 3 (June
2010), 254–270. DOI:h�p://dx.doi.org/10.1007/s10791-009-9112-1

[9] XianXing Zhang, Yitong Zhou, Yiming Ma, Bee-Chung Chen, Liang Zhang, and
Deepak Agarwal. 2016. GLMix: Generalized Linear Mixed Models For Large-
Scale Response Prediction. In Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’16). ACM, New York,
NY, USA, 363–372. DOI:h�p://dx.doi.org/10.1145/2939672.2939684

http://dx.doi.org/10.1145/1102351.1102363
http://dx.doi.org/10.1145/2911451.2927018
http://dx.doi.org/10.1145/2911451.2927018
http://dx.doi.org/10.1145/2939672.2939721
http://dx.doi.org/10.1007/s10791-006-9019-z
http://dx.doi.org/10.1007/s10791-006-9019-z
https://engineering.linkedin.com/search/did-you-mean-galene
https://engineering.linkedin.com/search/did-you-mean-galene
https://press.linkedin.com/site-resources/news-releases/2016/linkedin-announces-third-quarter-2016-results
https://press.linkedin.com/site-resources/news-releases/2016/linkedin-announces-third-quarter-2016-results
http://dx.doi.org/10.1109/BigData.2016.7840758
http://dx.doi.org/10.1109/BigData.2016.7840758
http://dx.doi.org/10.1007/s10791-009-9112-1
http://dx.doi.org/10.1145/2939672.2939684

	Abstract
	1 Introduction
	2 Problem Overview
	3 Mixed Effect Models
	3.1 Motivation behind a mixed-effect model
	3.2 Generalized Linear Mixed Effect Models for Job Search

	4 Offline Experiments
	4.1 Setup
	4.2 Data for offline experiments

	5 Online Scoring to generate ranking results
	6 Online Experiments
	7 Conclusion and Future Work
	References

