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Abstract—This paper focuses on “how to design and develop a
dialogue system with a minimal effort”. It presents a novel model
for automatic generation of dialogue systems built from contents.
This approach is similar to and relies on a search engine, but with
augmented dialogue capabilities: at each dialogue turn, the system
propose n keywords, in order to optimise the information gain
expectation. Its implementation, CFAsT, endeavours to keep the
best from both worlds: the universality and automatic generation

from search engines, and the usability, the assistance and the
self optimisation provided by the dialogue systems. Thus, a beta
dialogue application can be generated with no effort. It may serve
to gather a dialogue corpus, or to gain a first return of experience.
It can also be used as a low cost service. Afterwards, it can be
improved with dedicated dialogue strategies.

Keywords—Dialogue systems, Information retrieval

I. INTRODUCTION

Research on dialogue systems often focuses on “how to
design and develop a system with a minimal effort”. It appears
that models that made their way to the industry are the ones
that can be represented, shared, built, modified, and maintained
easily. The big winners are indeed the automata-based dialogue
systems [14], partly because it is a friendly way to display the
dialogue flow [1], [30], and thus to conceive. The fully data-
driven approach [15], [31], based on reinforcement learning
[27], was presented as the next generation of dialogue systems
(automatic design and optimisation). Over the years, this
approach knew a lot of improvement, both in reinforcement
learning techniques [29], [22], and in methodology [3], [6].
And yet, reinforcement learning has only been applied in
industrial spoken dialogue systems when it was marginally
projected into conventional systems [28], [23], [21], and many
reservations expressed by the industrial branch of dialogue
research [19], [20] are still topical.

This article proposes a novel data-driven model for dia-
logue systems that alleviates most of those reservations (see
Section VII). Indeed, we propose to learn the dialogue strategy
from contents, instead of doing so from the interaction with
users. This behaviour constitutes a baseline which can be over-
ridden with handcrafted rules, and/or online learnt strategies.

In this paper, we consider an information retrieval task, that
is achieved through dialogue led from the contents themselves.
The so-built dialogue systems can easily be compared to search
engines [2], [16], and the model is actually built up on a search
engine. But a content-based dialogue system and conventional
search engines have different goals: search engines look for the
best contents regarding a query while a dialogue system has the
secondary task to help the user to formulate more accurately
her/his query, accordingly to the content base. Query auto

completion [18] and suggestions [8] are very rudimentary [25],
as they are unable to recommend words that are several words
distant despite being strongly associated with the query.

We aim to go one step further by analysing contents and
by proposing a set of keywords that partition in an optimal
way the relevant contents given a user query. It also involves
the user in a dialogue that incites her/him to give a feedback
on the dialogue success. This information is further used as
an evaluation for optimising the underlying algorithms online.
Moreover, the automatically generated application can easily
be enhanced with handcrafted dialogue branches, disambigua-
tion strategies and reusable behaviour on outside perimeter
queries such as chatting about weather forecast or asking for
a joke.

This model has been implemented as Content-Finder As-
sistanT (CFAsT). Currently, CFAsT is limited to text-based
dialogue applications. It constitutes a first step, useful on
web portals. It already goes further than performing question
answering like Watson [7], but our ultimate goal is to generate
low-cost spoken dialogue systems automatically that can be
easily upgraded with applicative development.

The dialogue model is presented in Section II. The indexa-
tion and information retrieval are exposed in Section III. Then,
Section IV describes the theory behind the keywords selection,
which constitutes the main novelty of this article. Afterwards,
we discuss the computational complexity of our algorithms in
Section V and find a solution to deal with large databases of
documents. Next, our implementation is described in section
VI. And finally, Section VII discusses the results and the next
steps.

II. DIALOGUE MODEL

A. Main dialogue flow

The basic dialogue flow is rather simple and is sketched in
Figure 1. The dialogue begins at the black circle location. First,
query and the list of forbidden contents (fdbCont) are set to
empty. Then, it relies on a loop over a search engine returning
the number of full match (result information) and the five best
contents (result list). Then, the user has the choice between
selecting one of the contents or to carry on refining her/his
query. If a content is selected, it is (dis)played to the user and
a question about the usefulness of the content is asked. This
evaluation enables to learn from experience that have been
validated by the user (see Subsection III-C). If the content is
rejected, it is added to the forbidden content list and it will
not be proposed again without restarting the dialogue from
the beginning. Alternatively, there are two ways of refining



Fig. 1: Basic call flow in the content-based dialogue model.

the query: free input (voice or keyboard) or keyword selection
(mouse or touch). The purpose of such a simple structure is to
offer a beta version of any content-finder assistant at no cost.

B. Ways to manually improve the generated system

In addition to the dialogue flow, the generated system can
be improved with expert knowledge by different means:

1) by using template-based dialogue rules overriding the
default search engine strategy of the system:

• to present directly a result if the query
matches exactly the title of a content,

• to clarify spotted ambiguities,

2) by designing full dialogue branches/scripts1,
3) by adding domain knowledge with stop words and

synonyms,
4) by overriding the keyword selection for given re-

quests

III. INDEXATION AND INFORMATION RETRIEVAL

A. Indexation

In order to work efficiently, the search engine and the key-
word selection need a pre-processing. The same pre-processing
is applied to both contents and user queries. It comprises two
steps: text pre-processing and numerical pre-processing.

A stemming algorithm is applied in order to avoid to
consider different inflections as distinct words. As well, a
stop word dictionary is used in order to remove all the words
that do not convey meaning such as articles, prepositions or
auxiliary/modal verbs. In the end of the text pre-processing,

1Contrarily to the others which are based on templates, this free way to
improve the system requires software development.

the output is a list of stems, also called keywords or terms in
this paper.

The text pre-processing is followed with a numerical pre-
processing in order to assign a weight to each term (keyword)
for a given document (content). The weight wt,d of each term
t in a document d is assessed thanks to the tf-idf formula with
logarithmically scaled augmented frequency [9]:

(1a)wt,d = atf(t, d)× idf(t,D)

(1b)atf(t, d) =
logf(t, d)

maxt′∈d logf(t′, d)

(1c)logf(t, d) = ln(1 + f(t, d))

(1d)idf(t,D) = ln
|D|

|d ∈ D : t ∈ d|

Where f(t, d) is the frequency (number of occurrences) of
term t in document d, logf(t, d) is the logarithmic frequency,
idf(t,D) is the inverse document frequency of t inside the
whole document database D, atf(t, d) is the augmented term
frequency, wt,d is the weight of t in d, and |X | is the
cardinality of set X . For keyword selection (see Subsection
IV), we also compute a relevance coefficient 1t,d in order to
denote the probability that t is a relevant term in document d.
It is a thresholded linear function of wt,d parametered with a
constant α:

(2)1t,d = min(1, αwt,d)



B. Information Retrieval

The information retrieval relies on a Vector Space Model
[24] and the relevance to a query q of any document d is given
by the cosine similarity. But in our case, the normalisation
by

√
∑

t wt,d

√
∑

t wt,q is abandoned because its first part is
already included in the augmented term frequency, and its sec-
ond part is constant over the documents. As a consequence, the
similarity function follows the following parametric Euclidean
dot product formula:

(3)µ(q, d) =
∑

t∈q

ξtwt,dwt,q

Where ξ = {ξt > 0}t∈T is a weighting parameters
associated to each term t, and T is the set of all terms
encountered at least once in D.

C. ξ optimisation

To train ξ, the method is to consider that, given a user
query, a click on a document among n presented to the user,
and the information that the document has been useful, it
means that the clicked document d∗ is more relevant than the
n− 1 others:

(4a)µ(q, d∗)− µ(q, d) ≥ ǫ

(4b)
∑

t ∈q

ξtwt,q(wt,d∗ − wt,d) ≥ ǫ

Then, we use a Support Vector Machine [4] to define ξ to
satisfy those inequalities.

IV. KEYWORD SELECTION ALGORITHM

A. General Intuition

The novelty of this paper consists in creating automatically
a dialogue structure from the data. Since we are limited
by the capability to automatically generate a well-formed
natural language question, the method we followed consists
in proposing the most discriminative terms given the current
request and the document basis.

We first took into consideration a co-clustering [5] of doc-
uments and terms. The problem we faced with this approach is
that a cluster cannot be described by a single term. Actually,
we do not need to cluster documents and we want to avoid
to cluster terms, since we want to use a single keyword by
option, in order to avoid an information overload [12].

We use the information theory [26] to compute the expected
information gain after proposing a set of terms to the user,
which can be reformulated as the document base centric
entropy loss.

B. General formula

Let T be the set of terms encountered at least once
in the documents. T −q is this set minus the the terms of
current request q2. The proposed algorithm scans the set of

2It would be puzzling for the user to be proposed the exact same terms as
the ones he just pronounced or typed.

the terms subsets of cardinality n and maximise the answer
utility expectation. To measure this, we use the information
gain expectation, also called entropy in information theory.
This is formalised as follows:

(5a)T ∗
n = argmax

T⊂T −q :|T |=n

Hq
T

(5b)Hq
T =

∑

t∈T

p
q
T (t)I

q(t)

Where Hq
T reads out entropy over terms in T given query

q ; where p
q
T (t) is the probability that term t is selected

when the set of terms T is proposed ; and where Iq(t) is
the information gain after the selection of term t. Note that
Iq(t) is independent of the other terms in T .

C. Computation of p
q
T (t)

To compute p
q

T (t), we use the current document distri-
bution according to request. To do that, we use the weight
µ(q, d) computed with the similarity Equation 3. The following
formula shows that p

q

T (t) is the weighted average of the
probability pT (t, d) for the user to select the term t if (s)he is
looking for the document d:

(6)p
q

T (t) =

∑

d∈D µ(q, d)pT (t, d)
∑

d∈D µ(q, d)

The probability pT (t, d) is computed from the probability
that term t is relevant in the document d: 1t,d. But several
terms might be completely relevant for a given document. We
need to compute for each possible outcome, how many terms
are relevant, and which ones. To do so, we start with the
computation of the probability that none of them are relevant:

(7)pT (∅, d) =
∏

t∈T

(1− 1t,d)

The probability pT (t, d) to select a term t, given that
document d is targeted is therefore the probability that at least
one term is relevant, times the probability to choose t among
the relevant terms:

(8)pT (t, d) = (1− pT (∅, d))
1t,d

∑

t′∈T 1t′,d

D. Computation of Iq(t)

We consider the entropy reduction definition of the infor-
mation gain:

(9)Iq(t) = Hq
D −Hq+t

D

Where Hq
D is the entropy over the document database D

before proposing the keywords and Hq+t
D , the entropy after

adding the term t to the query (after the user selected it). After
developing Equation 5b, we get:

(10a)Hq
T =

∑

t∈T

p
q
T (t)(H

q
D −Hq+t

D )



(10b)Hq

T = Hq

D −
∑

t∈T

p
q

T (t)H
q+t

D

Hq
D is independent of T . Maximising information expec-

tation E(IT ) is therefore equivalent to minimising the second
term:

(11)T ∗
n = argmin

T⊂T −q :|T |=n

∑

t∈T

p
q
T (t)H

q+t
D

E. Computation of Hq+t
D

Hq+t
D is the measure of uncertainty in the targeted docu-

ment if query q + t is expressed. It is formalised as follows:

(12)Hq+t

D = −
∑

d∈D

pq+t(d) ln pq+t(d)

Probability pq+t(d) is assessed thanks to the search engine
scores:

(13)pq+t(d) =
µ(q + t, d)

∑

d′∈D µ(q + t, d′)

F. What if the user answers “none”?

The user may answer “none” to the n keywords presented
to her/him. The dialogue system developer might want to take
this possibility into consideration and optimise the keyword
accordingly. Equation 11 is therefore updated as below:

(14)T ∗
n = argmin

T⊂T −q :|T |=n

[

∑

t∈T

p
q

T (t)H
q+t

D + p
q

T (∅)H
q−T

D

]

Where p
q
T (∅) is the probability that no term in T matches the

user request, given current query q, and Hq−T

D is the entropy
after observing that none of the terms in T is relevant. p

q
T (∅)

and respectively Hq−T
D can be computed thanks to updates of

Equations 6 and respepectively 12 and 13:

(15a)p
q
T (∅) =

∑

d∈D µ(q, d)pT (∅, d)
∑

d∈D µ(q, d)

(15b)Hq−T
D = −

∑

d∈D

pq−T (d) ln pq−T (d)

(15c)pq−T (d) =
µ(q − T, d)

∑

d′∈D µ(q − T, d′)

Where µ(q − T, d) is also an update from Equation 3:

(16)
µ(q − T, d) = µ(q, d)− µ(T, d)

=
∑

t∈q

ξtwt,dwt,q −
∑

t′∈T

ξt′wt′,dwt′,q

V. COMPLEXITY

A. Complexity computation

The search algorithm complexity is O(|q||D|). The learning
algorithm is performed offline and complexity is not a major
issue. On the opposite, the keyword selection is time consum-
ing and is required real time: we have to consider O(|T |n)
subsets, which means as many information gain expectation
calculation. Fortunately, it is possible to compute in O(|D|)
for each term t their salience in the document database and to
build a subset τ ⊂ T of reasonable cardinality with eligible
keywords (see Subsection V-B for more details). Let us have
a look to each term in Equation 14.

• The n computations of p
q

T (t) are O(n|D|), and are
T -dependent.

• The n computations of Hq+t

D are O(|D|), and are T -
independent.

• The computation of p
q
T (∅) is O(n|D|), and is T -

dependent.

• The computation of Hq−T

D is O(|D|), and is T -
dependent

The global complexity of the keyword selection algorithm
is:

(17)C = O(n2|τ |n|D|+n|D|+n|τ |n|D|+|τ |n|D|)

= O(n2|τ |n|D|)

B. Salience-based construction of τ

To evaluate the salience of a term t in a documents set
D, constrained by a query q, we propose to measure the
information gain expectation for n = 2 and T = {t,¬t}.
This computation complexity is low: O(|D|) and can play the

elimination role: we keep the n

√

|T | highest information gain
expectations. It is still equivalent to minimise the expected
resulting entropy as states Equation 11, which we update here:

(18)Hq

{t,¬t} = p
q

{t,¬t}(t)H
q

{t,¬t}(t)

+ (1 − p
q

{t,¬t}(t))H
q

{t,¬t}(¬t)

This assessment may still be expensive since we have to
make it for every t ∈ T . For very large databases, it is possible
to sample the document base to have an estimation. The
n

√

|T | terms that minimise entropy constitute τ . Therefore, we
guarantee that the global complexity of the keyword selection
algorithm is:

(19a)C = O(|D||T |+n2|τ |n|D|)

(19b)C = O(n2|D||T |)

There remain several computational optimisation tracks to
reduce the complexity such as Latent Semantic Analysis [13]
to reduce the cardinality of T or document sampling to reduce
the |D| factor in Equation 17.



VI. IMPLEMENTATION

The Content Finder AssistanT (CFAsT) implements the
model and the algorithms as described in Section II. It is a
tool for generating text dialogue applications, which relies on
Disserto, the Orange generic spoken and multimodal dialogue
technology. Disserto [14] is a software suite that enables the
creation of automata-based dialogue application.

A. Architecture

The whole CFAsT architecture is sketched in Figure 3.

1) Dialogue system generation: The low part of the graph
describes the generation of the application. The CFAsT config-
uration is the only mandatory design to generate a first baseline
application. It includes the information for the SQL and TiLT
connections, the stop words list and stemming dictionary paths,
and finally the dialogue messages to play to the user (greeting,
search result presentation, content presentation, and validation
question). It is possible to specify handcrafted behaviours at
this step by adding shortcuts and designing semantic analyser
rules. These are templates of improvement 1 in Subsection II-B
list. Afterwards, the CFAsT tool generates a Disserto project
that can be compiled directly into a .war to be deployed on
a Java EE application server. Alternatively, it is possible to
use the Disserto suite to modify the application, for instance
item 2 in Subsection II-B. It is noticeable that the dialogue
application is generated independently from the content base.

2) The indexation architecture: The CFAsT tool is also
used to build the SQL database (upper part of Figure 3).
It takes the already parsed contents, builds the normaliser
and indexes the contents in a PostgreSQL database3. The
independence between the application and the content is what
guarantees its dynamics (addition, substitution and deletion of
contents).

The parsing cannot be made automatically: sometimes, we
need to parse only designated sections of a document, or a
specific text in a web page. The parsing part is thus included
in the CFAsT tool. It has to be developed and performed
separately. The parsing relies on several free libraries: Apache
POI4 for Microsoft Office documents, Apache PDFBox5 for
PDF documents, java-libpst6 for Outlook email storage, JSoup7

for html parsing, and Java MHT Unpack8 to unpack MHT files.

The following step in indexation is the normalisation. As
introduced in Subsection III-A, it relies on different sources,
that are mostly language dependent, but can also be optimised
accordingly to the application domain.

The spell checker performs a syntactic analysis and corrects
any kind of spelling mistake: typo, grammatical error, lexical
error, space correction, SMS language, . . . In CFAsT, the
text input’s spelling is corrected by TiLT [10], through http
requests. Our first prototypes revealed that some domains used
acronyms that were improperly and intermittently corrected by

3http://www.postgresql.org/
4http://poi.apache.org/
5http://pdfbox.apache.org/
6https://code.google.com/p/java-libpst/
7http://jsoup.org/
8http://www.chembal.com/java-applications/java-mht-unpack-library

TiLT. It is possible to tune TiLT to correct those unexpected
behaviours. CFAsT tools include .

The stemming dictionary regroups word inflexions (such
as plural or conjugation) in a common stem. It can also be
used as a dictionary for synonyms, simply by designing a
common stem for two synonyms. Therefore, its tuning enables
improvements 3 and 4 in Subsection II-B list. This dictionary
is .csv file with two columns, the first with the inflexion and
the second with the stem.

The stop words list gathers utility stems of the language
and the domain that should be ignored. The stop words list is
loaded from a 1-column .csv file. As the stemming dictionary,
it contributes to improvement 3.

The normaliser object is shaded half yellow and orange
because, as we have just seen, it is required offline to index the
contents, but also online to normalise the use queries according
to the same pattern. The normaliser can be updated offline
since stemming dictionary and stop words are compiled in an
SQL base as well.

3) The artificial intelligence implementations: This subsec-
tion deals with the implementation of the algorithms described
in Subsections III-B and IV.

The other yellow/orange shaded object is the discriminative
keyword selection which embeds the algorithm described in
Subsection IV. Indeed, in order to limit computational load on
the server, discriminative keywords for a large range of the
most common queries are preprocessed offline and stored in
an SQL base. The discriminative keywords for new queries,
that are computed online, are also saved into the keywords
memory SQL table. There is also the possibility to override
the keyword selection with predefined keywords. This answers
item 5 in the improvement list of Subsection II-B.

The search engine module simply applies Formula 3 using
ξt that are stored in the search engine parameters table and the
tf-idf weights wt,d that are stored in the reverse index table.

And finally, the learning algorithm (SVM) module uses the
user clicks to optimise the search engine parameters thanks to
Java Native Interface SVMlight library9 [11].

B. Prototypes

A wide range of prototypes have been automatically gener-
ated with the CFAsT tools. Table I takes an inventory of them
and presents their main characteristics: number of contents,
numbers of terms, average number and standard deviation of
different terms in a content. Six of them are made available
for a limited lapse of time. Not a lot of effort has been made
to design the assistant presentation for the moment. It is worth
noticing that it works exclusively on Mozilla Firefox.

The choice of domain, content type and size are completely
fortuitous. In fact, the prototypes have been built according to
cooperation opportunities. This explains that they are all in
French. Luckily, except for the language, they are diverse and
enable to emphasise various aspects.

Forum Orange is the biggest content base we had to deal
with. The keyword selection algorithm is still fast enough, but

9http://svmlight.joachims.org/



Name Link Content type Topic
Size Contents length

Contents Terms Average STD

FAQ ANPE http://dialogue.orange-labs.fr/ANPEG1R2C2/webClient.html Q/A Job Search 160 2368 63 33

Orange Forum http://dialogue.orange-labs.fr/OrangeEntraideForumG2R1C0/webClient.html Forum thread Telecom 6934 31637 86 82

Banque Postale http://dialogue.orange-labs.fr/LaBanquePostaleG0R0C0/webClient.html Web page Retail bank 232 4721 152 101

Orange BS no File & mail Marketing 817 11282 174 225

Lannion http://dialogue.orange-labs.fr/LannionG0R0C1/webClient.html Web page Touristic info 210 5550 107 60

resto.fr (22) http://dialogue.orange-labs.fr/Resto22G0R0C0/webClient.html Webpage Restaurant 253 818 12 7

Traffic laws no Article Traffic laws 210 2675 61 33

AuJardin TV no Video Gardening 294 2692 23 17

TABLE I: Eight french CFAsT text dialogue applications. Five links are provided.

Fig. 2: CFAsT implementation for ANPE.

it comes to border line as it can take several seconds on some
queries. It is a content base that is not well controlled. For
instance, some threads might have the exact same title or some
can include abuse. Also, it is growing on a daily basis.

FAQ ANPE is a Frequently Asked Question list that have
been integrated to the assistant. It shows that, even on a small
content base, the algorithm can find a relevant discriminant
keyword selection, by (awkwardly) asking whether the user is
an employer or looking for a job. On this CFAsT application,
we also illustrated formatted ways to add dialogue strategies.
For instance, asking for “mto” will result in a dedicated joke
and a refocusing on the assistant domain. There is also a
disambiguation strategy that was implemented if the user asks:
“créer un espace”.

The Orange Business Service application is the one that has
the most focused our attention up to now, but we cannot make
it available for obvious confidentiality reasons. Its particularity
is to index very heterogeneous contents: web pages, mails and
various kinds of files (Excel, Word, Powerpoint and PDF files).
The biggest issue is to deal with contents of variable size: a
one-liner mail and a document of one hundred pages.

But the dialogue application that defines best the limits of
the fully text-based approach is the restaurant finder (resto.fr).
The site is presented with a short form including the town,
the price range, the cooking category and some additional
information. CFAsT algorithm cannot compute distance be-
tween instances. For example, a 12e menu is acceptable when
the user specifies a 15e budget. Also it does not have a
hyperonymy structure to understand that Japanese food is okay
when the user asks for an Asian restaurant. The form-based
assistants must be handled specifically. Form-based dialogues,
that are considered as the easiest ones for MDP-based and
handcrafted systems are among the hardest for this search-
based model. This demonstrates their complementarity.

VII. DISCUSSION

In introduction, we claimed that most reservations ex-
pressed in [19], [20] were alleviated by our approach on auto-
matic generation of dialogue systems. The main one concerns
the VUI completeness required in industry, and that “entails
that all possible combinations of user inputs and conditions
need to be anticipated”. Since our model is looping on a
single research dialogue state, it does guarantee that every
situation is anticipated. Moreover, users are used to search
engines and know they work by searching for documents
containing a maximum of query terms. Another reservation
relates to the need of a large dialogue corpus, which is often



missing when building a first version of a dialogue system. Our
model does not require any: only the contents. And finally,
a third reservation10 relies on the loss of control with the
reinforcement learning approach. Our model can be overloaded
with handcrafted rules, granting the developers a full control
on the so-built application.

But, is it really dialogue? Isn’t it an advanced way to
perform search? Obviously, the task is information retrieval.
Although, it is performed through dialogue. The dialogue helps
the user to formulate his query and to navigate through the
hits. Additionally, the dialogue helps to write a user experience
story and therefore to learn how to better interact in the future.

Okay, but the dialogue remains very basic. All the dia-
logue systems presented in this paper were entirely generated.
They are beta versions that can be deployed to gather first
user experience. They look like fancy search engines. But, it
is advised to add human or semi-automated design. At first,
it becomes a search engine with some hard coded dialogue
strategies. Then, it includes more and more dialogue strategies,
until being similar to a dialogue system that uses a search
engine as a parachute: when the dialogue engine fails to find
an answer, the search engine can find an answer. The whole
search-engine/dialogue-system spectrum is possible.

Towards more and more automation. Unlike Reinforce-
ment Learning dialogue systems, CFAsT tools do not pretend
to generate systems that outperform handcrafted dialogue sys-
tems. This article only aims to demonstrate that it is possible
to generate a basic dialogue application with no specific work.
It is a first stone in this direction. Our future work on this
topic includes to enable multi-field queries with a topology
that is optimised over experience, thanks to a recommender
system [17] and to automatically propose dialogue strategies
to a human designer, whose role is to formulate the questions
and answers.
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Fig. 3: CFAsT architecture: orange boxes are CFAsT runtime (online) modules, yellow boxes are CFAsT offline tools, the green
box is TiLT module, and the teal box is Disserto. The blank boxes are data. The ones that are used online are stored in a
PostgreSQL database.
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