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Abstract
This article addresses a particular Transfer Reinforcement Learning (RL) problem: when dynamics do not change from one task to
another, and only the reward function does. Our method relies on two ideas, the first one is that transition samples obtained from a task
can be reused to learn on any other task: an immediate reward estimator is learnt in a supervised fashion and for each sample, the
reward entry is changed by its reward estimate. The second idea consists in adopting the optimism in the face of uncertainty principle
and to use upper bound reward estimates. Our method is tested on a navigation task, under four Transfer RL experimental settings:
with a known reward function, with strong and weak expert knowledge on the reward function, and with a completely unknown reward
function. Results reveal that this method constitutes a major improvement for transfer/multi-task problems that share dynamics.
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1 Introduction

Reinforcement Learning (RL, [1]) is a framework for optimising an agent behaviour in an environment. It is generally formalised
as a Markov Decision Process (MDP): 〈S,A, R, P, γ〉 where S the state space, and A the action space are known by the agent.
P : S ×A → S, the Markovian transition stochastic function, defines the unknown dynamics of the environment. R : S → R, the
immediate reward stochastic function, defines the goal(s). In some settings such as dialogue systems or board games, R can be inferred
directly from the state by the agent, and in some others such as in robotics and in Atari games, R is generally unknown. Finally,
γ ∈ [0, 1) the discount factor is a parameter given to the RL optimisation algorithm favouring short-term rewards. As a consequence,
the RL problem consists in (directly or indirectly) discovering P , sometimes R, and planning.

Even when R is unknown, R is often simpler to learn than P : its definition is less combinatorial, R is generally sparse, only a
mean estimation is required, R tends to be less stochastic than P , and finally it is frequently possible for the designer to inject
expert knowledge: for instance, an adequate state space representation for R, the uniqueness of the state with a positive reward, its
determinism or stochastic property, and/or the existence of R bounds: Rmin and Rmax.

Discovering (directly or indirectly) P and R requires collecting trajectories. In real world problems, trajectory collection is resource
consuming (time, money), and Transfer Learning for RL [2, 3], through reuse of knowledge acquired from similar tasks, has proven
useful in many RL domains: Atari games, robotics, or dialogue. In this article, we address the problem of Transfer Reinforcement
Learning with Shared Dynamics (TRLSD), i.e. the transfer problem when P is constant over tasks τ ∈ T , which thus only differ from
each other by their reward functions Rτ . This family of problems may be encountered for instance in robotics, where the robot agent
has to understand the complex shared environment dynamics in order to perform high level tasks that rely on this understanding.

In this article, we advocate that experience gathered on a task can be indirectly and directly reused on another task and that transfer can
be made at the transition sample level. Additionally, the optimism in the face of uncertainty principle allows to guide the exploration
efficiently on a new task, thanks to the dynamics knowledge transferred from the other tasks. The combination of those two principles
allows us to define a general algorithm for TRLSD, on a continuous state space, enabling the injection of task related expert knowledge.

Section 2 offers an overview of the known studies related to TRLSD, and introduces the principles of transition sample sharing
between tasks. Then, Section 3 recalls the optimism in the face of uncertainty principle, explains how to apply it to our setting, and
explores different ways of computing this optimism. Finally, Section 4 presents various experiments illustrating and demonstrating the
functioning of our algorithms in Transfer RL and Multi-Task RL experiments. The experimental results demonstrate the significant
improvement brought by our approach, in comparison with the state-of-the-art algorithms in TRLSD.

2 Background and Principle

To the authors knowledge, only two recent works were dedicated to TRLSD. First, [4] present the framework as a kind of hierarchical
reinforcement learning, where composite and compoundable subtasks are discovered by generalisation over tasks. In order to do so,
tasks share the successor features of their policies, which are invariant from one task to another. Their decomposition of the reward
function from the dynamics is unfortunately restricted to policies characterising the successor features. Additionally, the theoretical
analysis depends on Rτ similarities, which is not an assumption that is made in this article. Second, [5] address the same problem
in a Multi-Task RL setting by sharing the value-function representation: they build a transition sample set for all tasks and apply
generalised versions of Fitted-Q iteration and Fitted Policy Iteration learning on those transitions as a whole. The generalisation
amongst tasks occurs in the regularisation used in the supervised learning step of Fitted-Q iteration (and policy iteration/evaluation).

Instead of sharing successor features or value-function representations, we argue that transition samples can be shared across tasks.
A transition sample (or sample in short) is classically defined as a 4-tuple ξ = 〈s, a, r, s′〉, where s is the state at the beginning of
the transition, a is the action performed, r is the reward immediately received, and s′ is the state reached at the end of the transition.
For Transfer and Multi-Task RL, it is enhanced with task τ to keep in memory which task generated the sample: ξτ = 〈τ, s, a, r, s′〉.
Formulated in another way, s is drawn according to a distribution depending on the behavioural policy πτ , a according to the
behavioural policy πτ (s), r according to the reward function Rτ (s) of task τ and s′ according to the shared dynamics P (s, a).

As a consequence, with a transition sample set for all tasks Ξ =
⋃
τ∈T Ξτ , one can independently learn P̂ , an estimate of P , in a

supervised learning way. In the same manner, with the sample set constituted exclusively of task τ transitions Ξτ , one can independently
learn R̂τ , an estimate of the reward function expected value E[Rτ ], in a supervised learning way. This is what model-based RL does.
In other words, if transition sample ξτ was generated on task τ , and if task τ ′ shares the dynamics P with τ , then ξτ can be used
for learning the dynamics model of task τ ′. The adaptation to non-stationary reward functions has been an argument in favour of
model-based RL for twenty years. In particular, [6] applies it successfully on a task transfer with shared dynamics and similar reward
functions on the inverted pendulum problem.

Nevertheless, this approach has never been theorised nor applied to Transfer or Multi-Task RL. We also advocate that learning the
dynamics model P is not necessary and that efficient policies can be learnt in a direct fashion: given a target task τ , any transition
sample ξτ ′ = 〈τ ′, s, a, r, s′〉 from any other task τ ′ 6= τ can be projected on task τ , just by modifying the immediate reward r with
R̂τ (s), the estimate of the reward function expected value E[Rτ ]: ψR̂τ (ξτ ′) = 〈τ, s, a, R̂τ (s), s′〉. The approach consists thus in
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translating the transition sample set Ξ into R̂τ estimate: ΨR̂τ
(Ξ) = {ψR̂τ (ξτ ′)}ξτ′∈Ξ, and then in using any off-policy RL algorithm

to learn policy πτ on ΨR̂τ
(Ξ). The off-policy characteristic is critical in order to remove the bias originated from the behavioural

policies πτ controlling the transition sample set Ξ generation. In our experiments, we will use Fitted-Q Iteration.

3 Optimism in the Face of Uncertainty Algorithm 1 Transition reuse algorithm
Data: Ξ: transition sample set on various tasks
Data: Ξτ ⊆ Ξ: transition sample set on task τ
Learn on Ξτ an immediate reward proxy: R̃τ
Cast sample set Ξ on task τ : ΨR̃τ

(Ξ)

Learn on ΨR̃τ
(Ξ) a policy for task τ : πτ

In practice, using an estimate R̂τ of Rτ is inefficient in early stages, when only
a few samples have been collected on task τ and reward has never been observed
in most states, because the algorithm cannot decide if it should exploit or explore
further. We generalise our approach to a reward proxy R̃τ in Algorithm 1.

In order to guide the exploration, we adopt the well-known optimism in the face of uncertainty heuristic, which can be found in
Prioritized Sweeping, R-MAX, UCRL, and VIME. In the optimistic view, R̃τ is the most favourable plausible reward function. Only
UCRL and VIME use an explicit representation of the exploration mechanism that is embedded into the transition and the reward
functions. The way UCRL [7] separates the dynamics uncertainty from the immediate rewards uncertainty makes it more convenient
to implement and the following of the article is built on it, but any other optimism-based algorithm could have been considered in its
place. [8] is proposing an interesting alternative option for guiding the exploration in our setting.

UCRL [7] algorithm keeps track of statistics for rewards and transitions: the number of times N(s, a) action a in state s has been
performed, the average immediate reward r̂(s) in state s, and the observed probability p̂(s, a, s′) of reaching state s′ after performing
action a in state s. Those statistics are only an estimate of their true values. However, confidence intervals may be used to define a set
M of plausible MDPs in which the true MDP belongs with high probability. As said in last paragraph, UCRL adopts the optimism in
the face of uncertainty principle overM and follows one of the policies that maximise the expected return in the most favourable
MDP(s) inM. The main idea behind the optimism exploration is the fact that mistakes will be eventually observed and knowledge of
not doing it again will be acquired and realised through a narrowing of the confidence interval.

One UCRL practical problem is the need for searching the optimal policy inside M [9], which is complex and computer time
consuming. In our case, we can however consider that P̂ is precise enough in comparison with R̂τ and that dynamics uncertainty
should not guide the exploration. Therefore, the optimal policy onM is necessarily the optimal policy of the MDP with the highest
reward function inside the confidence bounds, i.e. R̃τ (s) defined by the following equation:

R̃τ (s) = R̂τ (s) + CIτ (s), (1)

where CIτ (s) is the confidence interval of reward estimate R̂τ in state s. Afterwards, the optimal policy can be directly learnt on data
ΨR̃τ

(Ξ) with Fitted-Q Iteration.

Another UCRL limitation is that it does not accommodate continuous state representations: Φ(S) = Rd. UCCRL [10] has been
considered, but it suffers from two heavy drawbacks: it does not define any method for computing the optimistic plausible MDP and
the respective optimal policy; and it relies on the definition of a discretisation of the state representation space, which is exponential on
its dimension, therefore intractable in most case, and in our experimental problem more particularly.

We decided to follow the same idea and compute confidence intervals around the regression R̂τ . The natural way of computing such
confidence intervals would be to use confidence bands. Holm–Bonferroni method [11] consists in defining a band of constant diameter
around the learnt function such that the probability of the true function to be outside of this band is controlled to be sufficiently low.
Unfortunately, this method does not take into account the variability of confidence in different parts of the space, and this variability is
exactly the information we are looking for. Similarly, Scheffé’s method [12] studies the contrasts between the variables, and although
its uncertainty bound is expressed in function of the state, it is only dependent on its distance to the sampling mean, not on the points
density near the point of interest. Both methods are indeed confidence measures for the regression, not for the individual points.

Instead, we propose to use the density of neighbours in Ξτ around the current state to estimate its confidence interval. In order to have
a neighbouring definition, one needs a similarity measure S(s1, s2) that equals 1 when s1 = s2 and tends towards 0 when s1 and s2

get infinitely far from each other. In this article, we use the Gaussian similarity measure relying on the Euclidean distance in the state
space S or its linear representation Φ(S). Once a similarity measure S(s1, s2) has been chosen, the next step consists in computing
the neighbouring weight in a sample set Ξτ around a state s. Similarly to UCB, UCRL and UCCRL upper confidence, the confidence
interval can be obtained thanks to the neighbouring weight with the following equation:

CIτ (s) = κ

√
log(|Ξτ |)
Wτ (s)

, with Wτ (s) =
∑

〈τ,sj ,aj ,s′j ,rj〉∈Ξτ

S(s, sj), (2)

and where parameter κ denotes the optimism of the agent.

This confidence interval definition shows several strengths: contrarily to Holm-Bonferroni and Scheffé’s methods, it is locally defined,
and it works with any regression method computing R̂τ . But it also has two weaknesses: it relies on two parameters S and κ, and it
does not take into account the level of agreement between the neighbours.
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The estimates R̂τ of the rewards can be computed with any regression algorithm, from linear regression to neural nets. In our
experiments, we use linear regression with a Tikhonov regularisation and λ = 1, which, in addition to standard regularisation benefits,
enables to find regression parameters before reaching a number of examples equal or higher to the dimension d of Φ(S). As in UCRL,
the current policy is updated when the confidence interval in some encountered state has been divided by 2 since the last update.

Since, in our setting, the optimism principle is only used for the reward confidence interval, we can dissociate the continuous linear
parametrisation Φ(S) used for learning the optimal policy and a simpler discrete representation for estimating R̂τ . If R̂τ is estimated
by averaging on this discrete representation, its confidence interval CIτ might be computed in the same way as UCB or UCRL.

The possibility to use a different state representation for estimating P and R̃τ is a useful property since it enables to include expert
knowledge on the tasks: structure, bounds, or priors on Rτ , which may drastically speed up the learning convergence in practice. In
particular, the possibility to use priors is interesting when the task distribution is known or learnt from previously encountered tasks.

4 Experiments and results

We consider a TRLSD navigation toy problem, where the agent navigates in a 2D maze world as depicted by Figure 1. The state
representation S is the agent’s real-valued coordinates st = {xt, yt} ∈ (0, 5)

2, and the set of 25 features Φ(st) is defined with 5*5
Gaussian radial basis functions placed at sij = {i− 0.5, j − 0.5} for i, j ∈ J1, 5K.

At each time step, the agent selects an action among four possibilities: A = {NORTH,WEST, SOUTH, EAST}. P is defined as follows
for the NORTH action: xt+1 ∼ xt +N (0, 0.25) and yt+1 ∼ yt − 1 +N (0, 0.5), where N (µ, ν) is the Gaussian distribution with
centre µ and standard deviation ν. This works similarly with the other three directions. Then, wall and out-of-grid events intervene in
order to respect the dynamics of the maze. When a wall is encountered, a rebound is drawn according to U(0.1, 0.5) is applied, where
U(·, ·) denotes the uniform distribution. The stochastic reward function Rτij is corrupted with a strong noise and is defined for each
task τij with i, j ∈ J1, 5K as follows: Rτij (st) ∼ 1 +N (0, 1) if i = dxte and j = dyte, and Rτij (st) ∼ N (0, 1) otherwise.

Transfer Learning experiments unfold as follows. First, 25000 transitions are generated with a random policy and stored in Ξ. After
each transition, the trajectory has a 2% chance to be terminated, then, the next state is reset to a uniformly drawn state. Those
transitions are considered enough to construct a perfect representation of P . Whatever the reward function has been used during this
data collection, the reward information is discarded, such that any target task τ would be regarded as new and undiscovered during the
transfer phase.

In the first experiment, Task τ is assumed to be known (i.e. the reward function Rτ is known). It is the case when the agent is instructed
to perform a specific task. In this setting, the reward estimator R̂τ equals Rτ and the uncertainty is null. Therefore, R̃τ = Rτ . An
optimal policy can directly be computed from ΨRτ (Ξ) with Fitted-Q Iteration. Figure 1a shows that the agent immediately follows a
rational policy and heads towards the reward slot. In the other transfer RL experiments, where Rτ is partially unknown, the transfer
learning phase consists in the gathering of 1,000 transitions on the target task.

In the second experiment, 25 tasks are considered. Two transition reuse settings are compared: the continuous and the discrete settings.
In the continuous setting, nothing is assumed to be known about the task τ : state representation Φ(S) is used to learn Rτ . Figures 1b,
1c, and 1d show the exploration-exploitation trade-off of typical trajectories in the continuous setting. Initially, the agent is attracted by
unknown areas, but as the task is discovered, it exploits more and more its knowledge, and exploration is eventually limited to less
visited places when the agents passes by them. In the discrete setting, it is assumed to be known that task τ is defined as follows:
Rτ : J1, 5K2 → R and the reward function is cast into this simpler discrete space. Figure 1e shows the first trajectory in the discrete
setting, exploring methodically the 25 slots.

(a) Reward func-
tion is known:
20 first transi-
tions.

(b) Reward func-
tion is unknown:
15 first transi-
tions.

(c) Reward func-
tion is unknown:
after 150 transi-
tions.

(d) Reward func-
tion is unknown:
after 650 transi-
tions.

(e) Rewards are
known to be de-
fined by cell: 50
first transitions.

(f) Rewards are
known to be at
the corners: 15
first transitions.

(g) Rewards are
known to be at
the corners: 30
first transitions.

(h) Rewards are
known to be at
the corners: 60
first transitions.

Figure 1: Trajectories directed by policies learnt from 25,000 transition samples with various reward function representations. Some of
the policies are motivated by the knowledge of the estimated reward function and some are motivated by curiosity and optimism. The
walls are displayed in black and are constant over tasks, the reward function representation are displayed in green, the current trajectory
is the broken line in blue and the policy at the centre of cells is coarsely exhibited with the red arrows. In all these screenshots, the real
reward function is the one rewarding the bottom left cell.
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(a) 25 tasks: average immediate rewards re-
ceived in function of transition index. Compari-
son of no-transfer learning and non-optimistic
and optimistic in continuous and discrete set-
tings.

(b) 4 tasks (in corners): average immediate re-
wards received in function of transition index.
Comparison of optimistic in continuous setting
and in discrete setting with injection of strong
expert knowledge.

(c) Multi-Task RL: average immediate rewards
received in function of trajectory index. Com-
parison of non-optimistic with two similarity
functions: one defined on S, and the other on
Φ(S) in the continuous setting.

Figure 2: Performance plots for Transfer RL and Multi-Task RL experiments under continuous and discrete settings.

The results of the second experiment are displayed on Figure 2a: it compares the collected rewards averaged on 500 independent runs
(i.e. 20 times each task) with the best parametrisation of continuous and discrete settings, with the non-optimistic version (i.e. with
κ = 0) which corresponds to the method in [6], and with a learning that would not use any transfer. Without transfer, the time scale
(only 1000 transitions) is too short to converge to any efficient policy because the dynamics are too complex. The non-optimistic
version is better at the very beginning because it exploits right away what it finds, but also regularly fails to converge because of this
premature exploitation trend. But the most interesting result that can be observed is the fact that the continuous setting dominates the
discrete one if the updates are made every time a confidence interval is divided by 2. Actually, the continuous setting triggers twice
more policy updates (80 vs. 40 on average) than the discrete setting. By setting the update parameter to 1.2 instead of 2, the number of
updates becomes similar as well as the performance curves. The knowledge of the reward function shape does not help: there is the
same number of unknown values (25), and our continuous version of confidence bounds demonstrate good properties.

In the third experiment, only corner tasks τ11, τ15, τ51, and τ55 are considered. Once again, we compare the continuous setting and the
discrete setting where it is known that rewards are exclusively distributed at the four corners. More formally, task τ is known to be
defined as follows: Rτ : {1, 5}2 → R. It corresponds to the case when strong expert knowledge may be injected into the system in
order to speed up learning. Figures 1f, 1g, and 1h show that exploration is well targeted at the corners and that unnecessary exploration
is avoided. Figure 2b compares both settings and one can notice that initial knowledge boosts significantly early convergence. Once
again, one needs to pay attention that less than 10 updates on average are realised after the 1000 fist transitions with the update
parameter set to 2, and the performance of online learning gets impaired. The update parameter set to 1.05 reaches 50 updates and a
better convergence curve.

A similar experiment has been led in a Multi-Rask RL setting. We invite the readers to refer to [13] for more details. Figure 2c
displays the 200-run average performance over time under the continuous setting. It compares the non-optimistic version and two
different similarity measures. It reveals that both similarity definitions are equally efficient and that they significantly outperform the
non-optimistic setting.

Unfortunately, direct comparison with [4] and [5] is difficult for the following reasons: in addition to the shared dynamics, [4] assumes
that the reward function parameters are similar among tasks, which is not an assumption that is made in our experiments. Still, one can
notice that their experiment dynamics were simpler: no wall and reduced action noise, and that their reward function is deterministic.
Despite dealing with a much easier problem, the reward function changed every 5000 transitions in their most complex setting. Our
problem of 25 tasks is near solved after 300 episodes of 50 transitions for a total of 15,000 transitions, i.e. 600 transition per task.
Additionally, they needed 30,000 transitions over 6 tasks to find a good transfer model. It is two times more than our approach on 25
tasks. [5] does not make any assumption of this kind, but their algorithm cannot be directly applied to an online learning problem. As
for [4], their experiment is much simpler: deterministic dynamics and reward functions, and despite this, the required sample budget
was of 500 transitions per task, when we only need 600 in our very noisy setting.
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