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Abstract
Cache-based side-channel attacks are a serious problem
in multi-tenant environments, for example, modern cloud
data centers. We address this problem with Cloak, a
new technique that uses hardware transactional mem-
ory to prevent adversarial observation of cache misses
on sensitive code and data. We show that Cloak pro-
vides strong protection against all known cache-based
side-channel attacks with low performance overhead. We
demonstrate the efficacy of our approach by retrofitting
vulnerable code with Cloak and experimentally confirm-
ing immunity against state-of-the-art attacks. We also
show that by applying Cloak to code running inside In-
tel SGX enclaves we can effectively block information
leakage through cache side channels from enclaves, thus
addressing one of the main weaknesses of SGX.

1 Introduction

Hardware-enforced isolation of virtual machines and
containers is a pillar of modern cloud computing. While
the hardware provides isolation at a logical level, physi-
cal resources such as caches are still shared amongst iso-
lated domains, to support efficient multiplexing of work-
loads. This enables different forms of side-channel at-
tacks across isolation boundaries. Particularly worri-
some are cache-based attacks, which have been shown
to be potent enough to allow for the extraction of sensi-
tive information in realistic scenarios, e.g., between co-
located cloud tenants [56].

In the past 20 years cache attacks have evolved from
theoretical attacks [38] on implementations of crypto-
graphic algorithms [4] to highly practical generic attack
primitives [43,62]. Today, attacks can be performed in an
automated fashion on a wide range of algorithms [24].

Many countermeasures have been proposed to miti-
gate cache side-channel attacks. Most of these coun-
termeasures either try to eliminate resource sharing [12,
18, 42, 52, 58, 68, 69], or they try to mitigate attacks
after detecting them [9, 53, 65]. However, it is diffi-
cult to identify all possible leakage through shared re-
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sources [34,55] and eliminating sharing always comes at
the cost of efficiency. Similarly, the detection of cache
side-channel attacks is not always sufficient, as recently
demonstrated attacks may, for example, recover the en-
tire secret after a single run of a vulnerable cryptographic
algorithm [17, 43, 62]. Furthermore, attacks on singular
sensitive events are in general difficult to detect, as these
can operate at low attack frequencies [23].

In this paper, we present Cloak, a new efficient defen-
sive approach against cache side-channel attacks that al-
lows resource sharing. At its core, our approach prevents
cache misses on sensitive code and data. This effectively
conceals cache access-patterns from attackers and keeps
the performance impact low. We ensure permanent cache
residency of sensitive code and data using widely avail-
able hardware transactional memory (HTM), which was
originally designed for high-performance concurrency.

HTM allows potentially conflicting threads to execute
transactions optimistically in parallel: for the duration
of a transaction, a thread works on a private memory
snapshot. In the event of conflicting concurrent mem-
ory accesses, the transaction aborts and all correspond-
ing changes are rolled back. Otherwise, changes become
visible atomically when the transaction completes. Typi-
cally, HTM implementations use the CPU caches to keep
track of transactional changes. Thus, current implemen-
tations like Intel TSX require that all accessed memory
remains in the CPU caches for the duration of a transac-
tion. Hence, transactions abort not only on real conflicts
but also whenever transactional memory is evicted pre-
maturely to DRAM. This behavior makes HTM a pow-
erful tool to mitigate cache-based side channels.

The core idea of Cloak is to execute leaky algorithms
in HTM-backed transactions while ensuring that all sen-
sitive data and code reside in transactional memory for
the duration of the execution. If a transaction suc-
ceeds, secret-dependent control flows and data accesses
are guaranteed to stay within the CPU caches. Other-
wise, the corresponding transaction would abort. As we
show and discuss, this simple property can greatly raise
the bar for contemporary cache side-channel attacks or
even prevent them completely. The Cloak approach can
be implemented on top of any HTM that provides the
aforementioned basic properties. Hence, compared to
other approaches [11, 42, 69] that aim to provide isola-



tion, Cloak does not require any changes to the operating
system (OS) or kernel. In this paper, we focus on Intel
TSX as HTM implementation for Cloak. This choice is
natural, as TSX is available in many recent professional
and consumer Intel CPUs. Moreover, we show that we
can design a highly secure execution environment by us-
ing Cloak inside Intel SGX enclaves. SGX enclaves pro-
vide a secure execution environment that aims to protect
against hardware attackers and attacks from malicious
OSs. However, code inside SGX enclaves is as much vul-
nerable to cache attacks as normal code [7,20,46,57] and,
when running in a malicious OS, is prone to other mem-
ory access-based leakage including page faults [10, 61].
We demonstrate and discuss how Cloak can reliably de-
fend against such side-channel attacks on enclave code.

We provide a detailed evaluation of Intel TSX as avail-
able in recent CPUs and investigate how different im-
plementation specifics in TSX lead to practical chal-
lenges which we then overcome. For a range of proof-
of-concept applications, we show that Cloak’s runtime
overhead is small—between −0.8% and +1.2% for low-
memory tasks and up to +248% for memory-intense
tasks in SGX—while state-of-the-art cache attacks are
effectively mitigated. Finally, we also discuss limitations
of Intel TSX, specifically negative side effects of the ag-
gressive and sparsely documented hardware prefetcher.

The key contributions of this work are:

• We describe Cloak, a universal HTM-based ap-
proach for the effective mitigation of cache attacks.

• We investigate the peculiarities of Intel TSX and
show how Cloak can be implemented securely and
efficiently on top of it.

• We propose variants of Cloak as a countermeasure
against cache attacks in realistic environments.

• We discuss how SGX and TSX in concert can pro-
vide very high security in hostile environments.

Outline. The remainder of this paper is organized
as follows. In Section 2, we provide background on
software-based side-channel attacks and hardware trans-
actional memory. In Section 3, we define the attacker
model. In Section 4, we describe the fundamental idea of
Cloak. In Section 5, we show how Cloak can be instan-
tiated with Intel TSX. In Section 6, we provide an eval-
uation of Cloak on state-of-the-art attacks in local and
cloud environments. In Section 7, we show how Cloak
makes SGX a highly secure execution environment. In
Section 8, we discuss limitations of Intel TSX with re-
spect to Cloak. In Section 9, we discuss related work.
Finally, we provide conclusions in Section 10.

2 Background

We now provide background on cache side-channel at-
tacks and hardware transactional memory.

2.1 Caches

Modern CPUs have a hierarchy of caches that store and
efficiently retrieve frequently used instructions and data,
thereby, often avoiding the latency of main memory ac-
cesses. The first-level cache is the usually the small-
est and fastest cache, limited to several KB. It is typi-
cally a private cache which cannot be accessed by other
cores. The last-level cache (LLC), is typically unified
and shared among all cores. Its size is usually limited
to several MBs. On modern architectures, the LLC is
typically inclusive to the lower-level caches like the L1
caches. That is, a cache line can only be in an L1 cache
if it is in the LLC as well. Each cache is organized in
cache sets and each cache set consists of multiple cache
lines or cache ways. Since more addresses map to the
same cache set than there are ways, the CPU employs
a cache replacement policy to decide which way to re-
place. Whether data is cached or not is visible through
the memory access latency. This is a root cause of the
side channel introduced by caches.

2.2 Cache Side-Channel Attacks

Cache attacks have been studied for two decades with
an initial focus on cryptographic algorithms [4, 38, 51].
More recently, cache attacks have been demonstrated in
realistic cross-core scenarios that can deduce informa-
tion about single memory accesses performed in other
programs (i.e., access-driven attacks). We distinguish be-
tween the following access-driven cache attacks: Evict+
Time, Prime+Probe, Flush+Reload. While most attacks
directly apply one of these techniques, there are many
variations to match specific capabilities of the hardware
and software environment.

In Evict+Time, the victim computation is invoked re-
peatedly by the attacker. In each run, the attacker se-
lectively evicts a cache set and measures the victim’s
execution time. If the eviction of a cache set results in
longer execution time, the attacker learns that the victim
likely accessed it. Evict+Time attacks have been exten-
sively studied on different cache levels and exploited in
various scenarios [51, 60]. Similarly, in Prime+Probe,
the attacker fills a cache set with their own lines. After
waiting for a certain period, the attacker measures if all
their lines are still cached. The attacker learns whether
another process—possibly the victim—accessed the se-
lected cache set in the meantime. While the first Prime+
Probe attacks targeted the L1 cache [51,54], more recent



attacks have also been demonstrated on the LLC [43,
50, 56]. Flush+Reload [62] is a powerful but also con-
strained technique; it requires attacker and victim to
share memory pages. The attacker selectively flushes
a shared line from the cache and, after some waiting,
checks if it was brought back through the victim’s ex-
ecution. Flush+Reload attacks have been studied exten-
sively in different variations [2, 41, 66]. Apart from the
CPU caches, the shared nature of other system resources
has also been exploited in side-channel attacks. This
includes different parts of the CPU’s branch-prediction
facility [1, 15, 40], the DRAM row buffer [5, 55], the
page-translation caches [21, 28, 36] and other micro-
architectural elements [14].

This paper focuses on mitigating Prime+Probe and
Flush+Reload. However, Cloak conceptually also
thwarts other memory-based side-channel attacks such
as those that exploit the shared nature of the DRAM.

2.3 Hardware Transactional Memory
HTM allows for the efficient implementation of paral-
lel algorithms [27]. It is commonly used to elide ex-
pensive software synchronization mechanisms [16, 63].
Informally, for a CPU thread executing a hardware trans-
action, all other threads appear to be halted; whereas,
from the outside, a transaction appears as an atomic oper-
ation. A transaction fails if the CPU cannot provide this
atomicity due to resource limitations or conflicting con-
current memory accesses. In this case, all transactional
changes need to be rolled back. To be able to detect con-
flicts and revert transactions, the CPU needs to keep track
of transactional memory accesses. Therefore, transac-
tional memory is typically divided into a read set and a
write set. A transaction’s read set contains all read mem-
ory locations. Concurrent read accesses by other threads
to the read set are generally allowed; however, concur-
rent writes are problematic and—depending on the actual
HTM implementation and circumstances—likely lead to
transactional aborts. Further, any concurrent accesses
to the write set necessarily lead to a transactional abort.
Figure 1 visualizes this exemplarily for a simple transac-
tion with one conflicting concurrent thread.

Commercial Implementations. Implementations of
HTM can be found in different commercial CPUs,
among others, in many recent professional and consumer
Intel CPUs. Nakaike et al. [48] investigated four com-
mercial HTM implementations from Intel and other ven-
dors. They found that all processors provide comparable
functionality to begin, end, and abort transactions and
that all implement HTM within the existing CPU cache
hierarchy. The reason for this is that only caches can be
held in a consistent state by the CPU itself. If data is

Thread 1 Thread 2

Begin transaction

Read 0x20

Write 0x40

Read 0x20

Write 0x40
write conflict

undo

End transaction

Figure 1: HTM ensures that no concurrent modifications
influence the transaction, either by preserving the old
value or by aborting and reverting the transaction.

evicted to DRAM, transactions necessarily abort in these
implementations. Nakaike et al. [48] found that all four
implementations detected access conflicts at cache-line
granularity and that failed transactions were reverted by
invalidating the cache lines of the corresponding write
sets. Depending on the implementation, read and write
set can have different sizes, and set sizes range from mul-
tiple KB to multiple MB of HTM space.

Due to HTM usually being implemented within
the CPU cache hierarchy, HTM has been proposed
as a means for optimizing cache maintenance and
for performing security-critical on-chip computations:
Zacharopoulos [64] uses HTM combined with prefetch-
ing to reduce the system energy consumption. Guan et al.
[25] designed a system that uses HTM to keep RSA pri-
vate keys encrypted in memory and only decrypt them
temporarily inside transactions. Jang et al. [36] used
hardware transaction aborts upon page faults to defeat
kernel address-space layout randomization.

3 Attacker Model

We consider multi-tenant environments where tenants do
not trust each other, including local and cloud environ-
ments, where malicious tenants can use shared resources
to extract information about other tenants. For example,
they can influence and measure the state of caches via
the attacks described in Section 2.2. In particular, an at-
tacker can obtain a high-resolution trace of its own mem-
ory access timings, which are influenced by operations of
the victim process. More abstractly, the attacker can ob-
tain a trace where at each time frame the attacker learns
whether the victim has accessed a particular memory lo-
cation. We consider the above attacker in three realistic
environments which give her different capabilities:

Cloud We assume that the processor, the OS and the
hypervisor are trusted in this scenario while other
cloud tenants are not. This enables the attacker to
launch cross-VM Prime+Probe attacks.



Local This scenario is similar to the Cloud scenario, but
we assume the machine is not hosted in a cloud en-
vironment. Therefore, the tenants share the machine
in a traditional time-sharing fashion and the OS is
trusted to provide isolation between tenants. Fur-
thermore, we assume that there are shared libraries
between the victim and the attacker, since this is a
common optimization performed by OSs. This en-
ables the attacker to launch Flush+Reload attacks,
in addition to Prime+Probe attacks.

SGX In this scenario, the processor is trusted but the ad-
versary has full control over the OS, the hypervisor,
and all other code running on the system, except
the victim’s code. This scenario models an SGX-
enabled environment, where the victim’s code runs
inside an enclave. While the attacker has more con-
trol over the software running on the machine, the
SGX protections prevent sharing of memory pages
between the enclave and untrusted processes, which
renders Flush+Reload attacks ineffective in this set-
ting.

All other side-channels, including power analysis, and
channels based on shared microarchitectural elements
other than caches are outside our scope.

4 Hardware Transactional Memory as a
Side-Channel Countermeasure

The foundation of all cache side-channel attacks are the
timing differences between cache hits and misses, which
an attacker tries to measure. The central idea behind
Cloak is to instrument HTM to prevent any cache misses
on the victim’s sensitive code and data. In Cloak, all
sensitive computation is performed in HTM. Crucially,
in Cloak, all security-critical code and data is determin-
istically preloaded into the caches at the beginning of
a transaction. This way, security-critical memory loca-
tions become part of the read or write set and all sub-
sequent, possibly secret-dependent, accesses are guar-
anteed to be served from the CPU caches. Otherwise,
in case any preloaded code or data is evicted from the
cache, the transaction necessarily aborts and is reverted.
(See Listing 1 for an example that uses the TSX instruc-
tions xbegin and xend to start and end a transaction.)

Given an ideal HTM implementation, Cloak thus pre-
vents that an attacker can obtain a trace that shows
whether the victim has accessed a particular memory lo-
cation. More precisely, in the sense of Cloak, ideal HTM
has the following properties:

R1 Both data and code can be added to a transaction as
transactional memory and thus are included in the
HTM atomicity guarantees.

Listing 1: A vulnerable crypto operation protected by
Cloak instantiated with Intel TSX; the AES encrypt

function makes accesses into lookup_tables that de-
pend on key. Preloading the tables and running the
encryption code within a HTM transaction ensures that
eviction of table entries from LLC will terminate the
code before it may cause a cache miss.
i f ( ( s t a t u s = x b e g i n ( ) ) == XBEGIN STARTED ) {

f o r ( auto p : l o o k u p t a b l e s )
∗ ( v o l a t i l e s i z e t ∗ ) p ;

AES encrypt ( p l a i n t e x t , c i p h e r t e x t , &key ) ;
xend ( ) ;

}

R2 A transaction aborts immediately when any part of
transactional memory leaves the cache hierarchy.

R3 All pending transactional memory accesses are
purged during a transactional abort.

R4 Prefetching decisions outside of transactions are not
influenced by transactional memory accesses.

R1 ensures that all sensitive code and data can be
added to the transactional memory in a deterministic and
leakage-free manner. R2 ensures that any cache line
evictions are detected implicitly by the HTM and the
transaction aborts before any non-cached access is per-
formed. R3 and R4 ensure that there is no leakage after
a transaction has succeeded or aborted.

Unfortunately, commercially available HTM imple-
mentations and specifically Intel TSX do not precisely
provide R1–R4. In the following Section 5 we discuss
how Cloak can be instantiated on commercially available
(and not ideal) HTM, what leakage remains in practice,
and how this can be minimized.

5 Cloak based on Intel TSX

Cloak can be built using an HTM that satisfies R1–R4
established in the previous section. We propose Intel
TSX as an instantiation of HTM for Cloak to mitigate
the cache side channel. In this section, we evaluate
how far Intel TSX meets R1–R4 and devise strategies
to address those cases where it falls short. All experi-
ments we report on in this section were executed on In-
tel Core i7 CPUs of the Skylake generation (i7-6600U,
i7-6700, i7-6700K) with 4MB or 8MB of LLC. The
source code of these experiments will be made available
at http://aka.ms/msr-cloak.



5.1 Meeting Requirements with Intel TSX
We summarize our findings and then describe the
methodology.

R1 and R2 hold for data. It supports read-only data that
does not exceed the size of the LLC (several MB)
and write data that does not exceed the size of the
L1 cache (several KB);

R1 and R2 hold for code that does not exceed the size
of the LLC;

R3 and R4 hold in the cloud and SGX attacker scenarios
from Section 3, but not in general for local attacker
scenarios.

5.1.1 Requirements 1&2 for Data

Our experiments and previous work [19] find the read set
size to be ultimately constrained by the size of the LLC:
Figure 2 shows the failure rate of a simple TSX transac-
tion depending on the size of the read set. The abort rate
reaches 100% as the read set size approaches the limits
of the LLC (4MB in this case). In a similar experiment,
we observed 100% aborts when the size of data written in
a transaction exceeded the capacity of the L1 data cache
(32 KB per core). This result is also confirmed in In-
tel’s Optimization Reference Manual [30] and in previ-
ous work [19, 44, 64].

Conflicts and Aborts. We always observed aborts
when read or write set cache lines were actively evicted
from the caches by concurrent threads. That is, evictions
of write set cache lines from the L1 cache and read set
cache lines from the LLC are sufficient to cause aborts.
We also confirmed that transactions abort shortly after
cache line evictions: using concurrent clflush instruc-
tions on the read set, we measured abort latencies in the
order of a few hundred cycles (typically with an upper
bound of around 500 cycles). In case varying abort times
should prove to be an issue, the attacker’s ability to mea-
sure them, e.g., via Prime+Probe on the abort handler,
could be thwarted by randomly choosing one out of many
possible abort handlers and rewriting the xbegin instruc-
tion accordingly,1 before starting a transaction.

Tracking of the Read Set. We note that the data struc-
ture that is used to track the read set in the LLC is un-
known. The Intel manual states that “an implementation-
specific second level structure” may be available, which
probabilistically keeps track of the addresses of read-set

1The 16-bit relative offset to a transaction’s abort handler is part of
the xbegin instruction. Hence, for each xbegin instruction, there is a
region of 1 024 cache lines that can contain the abort handler code.
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Figure 2: A TSX transaction over a loop reading an array
of increasing size. The failure rate reveals how much
data can be read in a transaction. Measured on an i7-
6600U with 4 MB LLC.

cache lines that were evicted from the L1 cache. This
structure is possibly an on-chip bloom filter, which tracks
the read-set membership of cache lines in a probabilistic
manner that may give false positives but no false nega-
tives.2 There may exist so far unknown leaks through
this data structure. If this is a concern, all sensitive data
(including read-only data) can be kept in the write set in
L1. However, this limits the working set to the L1 and
also requires all data to be stored in writable memory.

L1 Cache vs. LLC. By adding all data to the write
set, we can make R1 and R2 hold for data with respect
to the L1 cache. This is important in cases where vic-
tim and attacker potentially share the L1 cache through
hyper-threading.3 Shared L1 caches are not a concern in
the cloud setting, where it is usually ensured by the hy-
pervisor that corresponding hyper-threads are not sched-
uled across different tenants. The same can be ensured
by the OS in the local setting. However, in the SGX set-
ting a malicious OS may misuse hyper-threading for an
L1-based attack. To be not constrained to the small L1
in SGX nonetheless, we propose solutions to detect and
prevent such attacks later on in Section 7.2.

We conclude that Intel TSX sufficiently fulfills R1
and R2 for data if the read and write sets are used ap-
propriately.

5.1.2 Requirements 1&2 for Code

We observed that the amount of code that can be exe-
cuted in a transaction seems not to be constrained by the
sizes of the caches. Within a transaction with strictly no
reads and writes we were reliably able to execute more

2In Intel’s Software Development Emulator [29] the read set is
tracked probabilistically using bloom filters.

3Context switches may also allow the attacker to examine the vic-
tim’s L1 cache state “postmortem”. While such attacks may be pos-
sible, they are outside our scope. TSX transactions abort on context
switches.
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Figure 3: A TSX transaction over a nop-sled with in-
creasing length. A second thread waits and then flushes
the first cache line once before the transaction ends. The
failure rate starts at 100% for small transaction sizes. If
the transaction self-evicts the L1 instruction cache line,
e.g., when executing more than 32 KB of instructions,
the transaction succeeds despite of the flush. Measured
on an i7-6600U with 32 KB L1 cache.

than 20 MB of nop instructions or more than 13 MB of
arithmetic instructions (average success rate ˜10%) on a
CPU with 8 MB LLC. This result strongly suggests that
executed code does not become part of the read set and
is in general not explicitly tracked by the CPU.

To still achieve R1 and R2 for code, we attempted to
make code part of the read or write set by accessing it
through load/store operations. This led to mixed results:
even with considerable effort, it does not seem possible
to reliably execute cache lines in the write set without
aborting the transaction.4 In contrast, it is generally pos-
sible to make code part of the read set through explicit
loads. This gives the same benefits and limitations as
using the read set for data.

Code in the L1 Cache. Still, as discussed in the pre-
vious Section 5.1.1, it can be desirable to achieve R1
and R2 for the L1 cache depending on the attack sce-
nario. Fortunately, we discovered undocumented mi-
croarchitectural effects that reliably cause transactional
aborts in case a recently executed cache line is evicted
from the cache hierarchy. Figure 3 shows how the trans-
actional abort rate relates to the amount of code that is
executed inside a transaction. This experiment suggests
that a concurrent (hyper-) thread can cause a transac-
tional abort by evicting a transactional code cache line
currently in the L1 instruction cache. We verified that
this effect exists for direct evictions through the clflush
instruction as well as indirect evictions through cache set
conflicts. However, self-evictions of L1 code cache lines
(that is, when a transactional code cache line is replaced

4In line with our observation, Intel’s documentation [31] states that
“executing self-modifying code transactionally may also cause trans-
actional aborts”.

by another one) do not cause transactional aborts. Hence,
forms of R1 and R2 can also be ensured for code in the
L1 instruction cache without it being part of the write set.

In summary, we can fulfill requirements R1 and R2 by
moving code into the read set or, using undocumented
microarchitectural effects, by limiting the amount of
code to the L1 instruction cache and preloading it via
execution.

5.1.3 Requirements 3&4

As modern processors are highly parallelized, it is diffi-
cult to guarantee that memory fetches outside a transac-
tion are not influenced by memory fetches inside a trans-
action. For precisely timed evictions, the CPU may still
enqueue a fetch in the memory controller, i.e., a race con-
dition. Furthermore, the hardware prefetcher is triggered
if multiple cache misses occur on the same physical page
within a relatively short time. This is known to intro-
duce noise in cache attacks [24,62], but also to introduce
side-channel leakage [6].

In an experiment with shared memory and a cycle-
accurate alignment between attacker and victim, we in-
vestigated the potential leakage of Cloak instantiated
with Intel TSX. To make the observable leakage as strong
as possible, we opted to use Flush+Reload for the at-
tack primitive. We investigated how a delay between
the transaction start and the flush operation and a de-
lay between the flush and the reload operations influ-
ence the probability that an attacker can observe a cache
hit against code or data placed into transactional mem-
ory. The victim in this experiment starts the transaction,
by placing data and code into transactional memory in a
uniform manner (using either reads, writes or execution).
The victim then simulates meaningful program flow, fol-
lowed by an access to one of the sensitive cache lines
and terminating the transaction. The attacker “guesses”
which cache line the victim accessed and probes it. Ide-
ally, the attacker should not be able to distinguish be-
tween correct and wrong guesses.

Figure 4 shows two regions where an attacker could
observe cache hits on a correct guess. The left region
corresponds to the preloading of sensitive code/data at
the beginning of the transaction. As expected, cache hits
in this region were observed to be identical to runs where
the attacker had the wrong guess. On the other hand,
the right region is unique to instances where the attacker
made a correct guess. This region thus corresponds to a
window of around 250 cycles, where an attacker could
potentially obtain side-channel information. We explain
the existence of this window by the fact that Intel did not
design TSX to be a side-channel free primitive, thus R3
and R4 are not guaranteed to hold and a limited amount
of leakage remains. We observed identical high-level re-
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Figure 4: Cache hits observed by a Flush+Reload at-
tacker with the ability to overlap the attack with differ-
ent segments of the victim’s transaction. Cache hits can
be observed both in the region where the victim tries to
prepare its transactional memory, as well as in a small
window around a secret access. The Z axis represents
the success rate of the attacker observing a cache hit.

sults for all forms of preloading (reading, writing, exe-
cuting) and all forms of secret accesses (reading, writing,
executing).

To exploit the leakage we found, the attacker has to
be able to determine whether the CPU reloaded a secret-
dependent memory location. This is only possible if the
attacker shares the memory location with the victim, i.e.,
only in local attacks but not in other scenarios. Further-
more, it is necessary to align execution between attacker
and victim to trigger the eviction in exactly the right cy-
cle range in the transaction. While these properties might
be met in a Flush+Reload attack with fast eviction using
clflush and shared memory, it is rather unlikely that
an attack is possible using Prime+Probe, due to the low
frequency of the attack [22] and the cache replacement
policy. Thus, we conclude that requirements R3 and R4
are likely fulfilled in all scenarios where the attacker can
only perform Prime+Probe, but not Flush+Reload, i.e.,
cloud and SGX scenarios. Furthermore, requirements R3
and R4 are likely to be fulfilled in scenarios where an at-
tacker can perform Flush+Reload, but not align with a
victim on a cycle base nor measure the exact execution
time of a TSX transaction, i.e., the local scenario.

5.2 Memory Preloading

Using right the memory preloading strategy is crucial
for the effectiveness of Cloak when instantiated on top
of TSX. In the following, we describe preloading tech-
niques for various scenarios. The different behavior for
read-only data, writable data, and code, makes it neces-
sary to preload these memory types differently.

5.2.1 Data Preloading

As discussed, exclusively using the write set for preload-
ing has the benefit that sensitive data is guaranteed to
stay within the small L1 cache, which is the most secure
option. To extend the working set beyond L1, sensitive
read-only data can also be kept in the LLC as described
in Section 5.1.1. However, when doing so, special care
has to be taken. For example, naı̈vely preloading a large
(> 32 KB) sequential read set after the write set leads
to assured abortion during preloading, as some write set
cache-lines are inevitably evicted from L1. Reversing
the preloading order, i.e., read set before write set, partly
alleviates this problem, but, depending on the concrete
read set access patterns, one is still likely to suffer from
aborts during execution caused by read/write set conflicts
in the L1 cache. In the worst case, such self-eviction
aborts may leak information.

To prevent such conflicts, in Cloak, we reserve cer-
tain cache sets in L1 entirely for the write set. This is
possible as the L1 cache-set index only depends on the
virtual address, which is known at runtime. For exam-
ple, reserving the L1 cache sets with indexes 0 and 1
gives a conflict-free write set of size 2 · 8 · 64B = 1KB.
For this allocation, it needs to be ensured that the same
64 B cache lines of any 4 KB page are not part of the
read set (see Figure 5 for an illustration). Conversely, the
write set is placed in the same 64 B cache lines in up to
eight different 4 KB pages. (Recall that an L1 cache set
comprises eight ways.) Each reserved L1 cache set thus
blocks 1/64th of the entire virtual memory from being
used in the read set.

While this allocation strategy plays out nicely in
theory, we observed that apparently the CPU’s data
prefetcher [30] often optimistically pulled-in unwanted
cache lines that were conflicting with our write set. This
can be mitigated by ensuring that sequentially accessed
read cache lines are separated by a page boundary from
write cache lines and by adding “safety margins” be-
tween read and write cache lines on the same page.

In general, we observed benefits from performing
preloading similar to recent Prime+Probe attacks [22,
45], where a target address is accessed multiple times
and interleaved with accesses to other addresses. Fur-
ther, we observed that periodic “refreshing” of the write
set, e.g., using the prefetchw instruction, reduced the
chances of write set evictions in longer transactions.

5.2.2 Code Preloading

As described in Section 5.1.2, we preload code into the
read set and optionally into the L1 instruction cache. To
preload it into the read set, we use the same approach as
for data. However, to preload the code into the L1 in-
struction cache we cannot simply execute the function,
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Figure 5: Allocation of read and write sets in memory to
avoid conflicts in the L1 data cache
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Figure 6: Cache lines are augmented with a multi-byte
nop instruction. The nop contains a byte c3 which is the
opcode of retq. By jumping directly to the retq byte,
we preload each cache line into the L1 instruction cache.

as this would have unwanted side effects. Instead, we in-
sert a multi-byte nop instruction into every cache line, as
shown in Figure 6. This nop instruction does not change
the behavior of the code during actual function execution
and only has a negligible effect on execution time. How-
ever, the multi-byte nop instruction allows us to incorpo-
rate a byte c3 which is the opcode of retq. Cloak jumps
to this return instruction, loading the cache line into the
instruction L1 cache but not executing the actual func-
tion. In the preloading phase, we perform a call to each
such retq instruction in order to load the correspond-
ing cache lines into the L1 instruction cache. The retq

instruction immediately returns to the preloading func-
tion. Instead of retq instructions, equivalent jmp reg

instructions can be inserted to avoid touching the stack.

5.2.3 Splitting Transactions

In case a sensitive function has greater capacity require-
ments than those provided by TSX, the function needs
to be split into a series of smaller transactional units.
To prevent leakage, the control flow between these units
and their respective working sets needs to be input-
independent. For example, consider a function f() that
iterates over a fixed-size array, e.g., in order to update
certain elements. By reducing the number of loop itera-
tions in f() and invoking it separately on fixed parts of

the target array, the working set for each individual trans-
action is reduced and chances for transactional aborts de-
crease. Ideally, the splitting would be done in an auto-
mated manner by a compiler. In a context similar to ours
though not directly applicable to Cloak, Shih et al. [59]
report on an extension of the Clang compiler that auto-
matically splits transactions into smaller units with TSX-
compatible working sets. Their approach is discussed in
more detail in Section 9.

5.3 Toolset
We implemented the read-set preloading strategy from
Section 5.2.1 in a small C++ container template library.
The library provides generic read-only and writable ar-
rays, which are allocated in “read” or “write” cache lines
respectively. The programmer is responsible for arrang-
ing data in the specialized containers before invoking a
Cloak-protected function. Further, the programmer de-
cides which containers to preload. Most local variables
and input and output data should reside in the containers.
Further, all sub-function calls should be inlined, because
each call instruction performs an implicit write of a re-
turn address. Avoiding this is important for large read
sets, as even a single unexpected cache line in the write
set can greatly increase the chances for aborts.

We also extended the Microsoft C++ compiler ver-
sion 19.00. For programmer-annotated functions on
Windows, the compiler adds code for starting and end-
ing transactions, ensures that all code cache lines are
preloaded (via read or execution according to Sec-
tion 5.2.2) and, to not pollute the write set, refrains
from unnecessarily spilling registers onto the stack af-
ter preloading. Both library and compiler are used in the
SGX experiments in Section 7.1.

6 Retrofitting Leaky Algorithms

To evaluate Cloak, we apply it to existing weak im-
plementations of different algorithms. We demonstrate
that in all cases, in the local setting (Flush+Reload) as
well as the cloud setting (Prime+Probe), Cloak is a prac-
tical countermeasure to prevent state-of-the-art attacks.
All experiments in this section were performed on a
mostly idle system equipped with a Intel i7-6700K CPU
with 16 GB DDR4 RAM, running a default-configured
Ubuntu Linux 16.10. The applications were run as regu-
lar user programs, not pinned to CPU cores, but sharing
CPU cores with other threads in the system.

6.1 OpenSSL AES T-Tables
As a first application of Cloak, we use the AES T-table
implementation of OpenSSL which is known to be sus-
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Figure 7: Color matrix showing cache hits on an AES
T-table. Darker means more cache hits. Measurement
performed over roughly 2 billion encryptions. Prime+
Probe depicted on the left, Flush+Reload on the right.
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Figure 8: Color matrix showing cache hits on an AES T-
table. The implementation is protected by Cloak. Darker
means more cache hits. Measurement performed over
roughly 3 billion transactions (500 million encryptions)
for Prime+Probe (left) and 4.9 billion transactions (1.5
million encryptions) for Flush+Reload (right). The side-
channel leakage is not visible in both cases.

ceptible to cache attacks [4, 24, 26, 33, 35, 51]. In this
implementation, AES performs 16 lookups to 4 different
T-tables for each of the 10 rounds and combines the val-
ues using xor. The table lookups in the first round of
AES are Tj[xi = pi ⊕ ki] where pi is a plaintext byte, ki a
key byte, and i ≡ j mod 4. A typical attack scenario is
a known-plaintext attack. By learning the cache line of
the lookup index xi an attacker learns the upper 4 bits of
the secret key byte xi ⊕ pi = ki. We wrap the entire AES
computation together with the preloading step into a sin-
gle TSX transaction. The preloading step fetches the 4
T-Tables, i.e., it adds 4 KB of data to the read set.

We performed roughly 2 billion encryptions in an
asynchronous attack and measured the cache hits on
the T-table cache lines using Prime+Probe and Flush+
Reload. Figure 7 is a color matrix showing the number of
cache hits per cache line and plaintext-byte value. When
protecting the T-tables with Cloak (cf. Figure 8), the
leakage from Figure 7 is not present anymore.

We fixed the time for which the fully-asynchronous
known-plaintext attack is run. The amount of time cor-
responds to roughly 2 billion encryptions in the baseline
implementation. For the AES T-Table implementation

protected with Cloak we observed a significant perfor-
mance difference based on whether or not an attack is
running simultaneously. This is due to the TSX transac-
tion failing more often if under attack.

While not under attack the implementation protected
with Cloak started 0.8% more encryptions than the base-
line implementation (i.e., with preloading) and less than
0.1% of the transactions failed. This is not surprising, as
the execution time of the protected algorithm is typically
below 500 cycles. Hence, preemption or interruption of
the transaction is very unlikely. Furthermore, cache evic-
tions are unlikely because of the small read set size and
optimized preloading (cf. Section 5.2.1). Taking the ex-
ecution time into account, the implementation protected
with Cloak was 0.8% faster than the baseline implemen-
tation. This is not unexpected, as Zacharopoulos [64]
already found that TSX can improve performance.

Next, we measured the number of transactions fail-
ing under Prime+Probe and Flush+Reload. We observed
82.7% and 99.97% of the transactions failing for each
attack, respectively. Failing transactions do not consume
the full amount of time that one encryption would take
as they abort earlier in the function execution. Thus,
the protected implementation started over 37% more en-
cryptions as compared to the baseline implementation
when under attack using Prime+Probe and 2.53 times
the encryptions when under attack using Flush+Reload.
However, out of these almost 3 billion transactions only
500 million transactions succeeded in the case of Prime+
Probe. In the case of Flush+Reload only 1.4 million
out of 4.9 billion transactions succeeded. Thus, in total
the performance of our protected implementation under a
Prime+Probe attack is only 23.7% of the performance of
the baseline implementation and only 0.06% in the case
of a Flush+Reload attack.

The slight performance gain of Cloak while not being
actively attacked shows that deploying our countermea-
sure for this use case does not only eliminate cache side-
channel leakage but it can also be beneficial. The lower
performance while being attacked is still sufficient given
that leakage is eliminated, especially as the attacker has
to keep one whole CPU core busy to perform the at-
tack and this uses up a significant amount of hardware
resources whether or not Cloak is deployed.

6.2 Secret-dependent execution paths

Powerful attacks allow to recover cryptographic
keys [62] and generated random numbers by monitoring
execution paths in libraries [67]. In this example,
we model such a scenario by executing one of 16
functions based on a secret value that the attacker tries
to learn—adapted from the AES example. Like in
previous Flush+Reload attacks [62, 67], the attacker
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Figure 9: Color matrix showing cache hits on function
code. Darker means more cache hits. Measurement per-
formed over roughly 100 million function executions for
Prime+Probe (left) and 10 million function executions
for Flush+Reload (right).
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Figure 10: Color matrix showing cache hits on func-
tion code protected using Cloak. Darker means more
cache hits. Measurement performed over roughly 1.5 bil-
lion transactions (77314 function executions) for Prime+
Probe (left) and 2 billion transactions (135211 function
executions) for Flush+Reload (right). Side-channel leak-
age is not visible in both cases.

monitors the function addresses for cache hits and thus
derives which function has been called. Each of the 16
functions runs only a small code snippet consisting of
a loop counting from 0 to 10 000. We wrap the entire
switch-case together with the preloading step into a
single TSX transaction. The preloading step fetches the
16 functions, each spanning two cache lines, i.e., 2 KB
of code are added to the read set.

As in the previous example, Cloak eliminates all leak-
age (cf. Figure 10). While not under attack the victim
program protected with Cloak started 0.7% more func-
tion executions than the baseline implementation. Less
than 0.1% of the transactions failed, leading to an overall
performance penalty of 1.2%. When under attack using
Prime+Probe, 11.8 times as many function executions
were started and with Flush+Reload, 19 times as many.
However, only 0.005% of the transactions succeeded in
the case of Prime+Probe and only 0.0006% in the case
of Flush+Reload. Thus, overall the performance is re-
duced to 0.03% of the baseline performance when under
a Prime+Probe attack and 0.14% when under a Flush+
Reload attack. The functions are 20 times slower than
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Figure 11: Cache traces for the multiply routine (as used
in RSA) over 10000 exponentiations. The secret expo-
nent is depicted as a bit sequence. Measurement per-
formed over 10000 exponentiations. The variant pro-
tected with Cloak does not have visual patterns that cor-
respond to the secret exponent.

the AES encryptions from the previous example. Thus,
the high failure rate is not unexpected, as there is more
time for cache evictions caused by other processes.

It is important to note that the performance under at-
tack is not essential as the attacker simultaneously keeps
one or more CPU cores on full load, accounting for a
significant performance loss with and without Cloak.

6.3 RSA Square-and-Multiply example
We now demonstrate an attack against a square-and-
multiply exponentiation and how Cloak allows to pro-
tect it against cache side-channel attacks. Square-and-
multiply is commonly used in cryptographic implemen-
tations of algorithms such as RSA and is known to
be vulnerable to side-channel attacks [54, 62]. Though
cryptographic libraries move to constant-time exponen-
tiations that are intended to not leak any information
through the cache, we demonstrate our attack and pro-
tection on a very vulnerable schoolbook implementation.
A square-and-multiply algorithm takes 100 000 cycles to
complete. Thus, wrapping the whole algorithm in one
TSX transaction has only a very low chance of success
by itself. Instead we split the loop of the square-and-
multiply algorithm into one small TSX transaction per
exponent bit, i.e., adding the xbegin and xend instruc-
tions and the preloading step to the loop. This way, we
increase the success rate of the TSX transactions signif-
icantly, while still leaking no information on the secret
exponent bits. The preloading step fetches 1 cache line
per function, i.e., 128 B of code are added to the read set.

Figure 11 shows a Flush+Reload cache trace for the
multiply routine as used in RSA. The plot is generated
over 10000 exponentiation traces. Each trace is aligned
by the first cache hit on the multiply routine that was
measured per trace. The traces are then summed to pro-
duce the functions that are plotted. The baseline imple-
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Figure 12: Cache template matrix showing cache hits on
the binary search in gdk keyval from name without
protection (left) and with Cloak (right). Darker means
more cache hits. All measurements were performed with
Flush+Reload. The pattern of the binary search is clearly
visible for the unprotected implementation and not visi-
ble anymore when protected with Cloak.

mentation has a clear peak for each 1 bit in the secret ex-
ponent. The same implementation protected with Cloak
shows no significant changes in the cache hits over the
full execution time.

While not under attack, the performance of the im-
plementation protected with Cloak is only slightly lower
than the performance of the unprotected baseline imple-
mentation. To evaluate the performance in this case we
performed 1 million exponentiations. During these 1
million exponentiations, only 0.5% of the transactions
failed. The total runtime overhead we observed while
not under attack was 1.1%. Unsurprisingly, while un-
der attack we observed a significantly higher overhead
of factor 982. This is because 99.95% of the transac-
tions failed, i.e., the transactions for almost every single
bit failed and had to be repeated.

6.4 GTK keystroke example

We investigated leakage in the GTK framework, which
performs a binary search to translate raw keyboard in-
puts to platform-independent key names and key values.
Gruss et al. [24] demonstrated that this leaks significant
information on single keys typed by a user, in an auto-
mated cache template attack. Their attack on GDK li-
brary version 3.10.8 has partially been resolved on cur-
rent Linux systems with GDK library version 3.18.9. In-
stead of multiple binary searches that leak information
we only identified one binary search that is still per-
formed upon every keystroke.

In order to demonstrate the general applicability of
Cloak, we reproduced the attack by Gruss et al. [24]
on a recent version of the GDK library (3.18.9) which
comes with Ubuntu 16.10. We attack the binary search in
gdk keyval from name which is executed upon every

keystroke in a GTK window. As shown in Figure 12, the
cache template matrix of the unprotected binary search
reveals the search pattern, narrowing down on the darker
area where the letter keys are and thus the search ends.
In case of the implementation protected by Cloak, the
search pattern is disguised. With the keystroke informa-
tion protected by Cloak, we could neither measure a dif-
ference in the perceived latency when typing through a
keyboard, nor measure and overall increase of the system
load or execution time of processes. The reason for this
is that keystroke processing involves hundreds of thou-
sands of CPU cycles spent in drivers and other functions.
Furthermore, keystrokes are rate-limited by the OS and
constrained by the speed of the user typing. Thus, the
overhead we introduce is negligible for the overall la-
tency and performance.

We conclude that Cloak can be used as a practical
countermeasure to prevent cache template attacks on
fine-grained information such as keystrokes.

7 Side-Channel Protection for SGX

Intel SGX provides an isolated execution environment
called enclave. All code and data inside an enclave is
shielded from the rest of the system and is even protected
against hardware attacks by means of strong memory en-
cryption. However, SGX enclaves use the regular cache
hierarchy and are thus vulnerable to cache side-channel
attacks. Further, as enclaves are meant to be run on un-
trusted hosts, they are also susceptible to a range of other
side-channel attacks such as OS-induced page faults [61]
and hardware attacks on the memory bus. In this sec-
tion, we first retrofit a common machine learning algo-
rithm with Cloak and evaluate its performance in SGX.
Afterwards, we explore the special challenges that en-
clave code faces with regard to side channels and design
extended countermeasures on top of Cloak. Specifically,
we augment sensitive enclave code with Cloak and re-
quire that the potentially malicious OS honors a special
service contract while this code is running.

7.1 Secure Decision Tree Classification
To demonstrate Cloak’s applicability to the SGX envi-
ronment and its capability to support larger working sets,
we adapted an existing C++ implementation of a deci-
sion tree classification algorithm [49] using the toolset
described in Section 5.3. The algorithm traverses a de-
cision tree for an input record. Each node of the tree



contains a predicate which is evaluated on features of the
input record. As a result, observations of unprotected
tree traversal can leak information about the tree and the
input record. In this particular case, several trees in a so-
called decision forest are traversed for each input record.

Our Cloak-enhanced implementation of the algorithm
contains three programmer-annotated functions, which
translates into three independent transactions. The most
complex of these traverses a preloaded tree for a batch of
preloaded input records. The batching of input records is
crucial here for performance, as it amortizes the cost of
preloading a tree. We give a detailed explanation and a
code sample of tree traversal with Cloak in Appendix A.

Evaluation. We compiled our implementation for
SGX enclaves using the extended compiler and a cus-
tom SGX software stack. We used a pre-trained decision
forest for the Covertype data set from the UCI Machine
Learning Repository5. Each tree in the forest consists of
30497—32663 nodes and has a size of 426 KB–457 KB.
Each input record is a vector of 54 floating point val-
ues. We chose the Covertype data set because it pro-
duces large trees and was also used in previous work by
Ohrimenko et al. [49], which also mitigates side channel
leakage for enclave code.

We report on experiments executed on a mostly idle
system equipped with a TSX and SGX-enabled Intel
Core i7-6700 CPU and 16 GB DDR4 RAM running Win-
dows Server 2016 Datacenter. In our container library,
we reserved eight L1 cache sets for writable arrays, re-
sulting in an overall write set size of 4 KB. Figure 13
shows the cycles spent inside the enclave (including en-
tering and leaving the enclave) per input record averaged
over ten runs for differently sized input batches. These
batches were randomly drawn from the data set. The
sizes of the batches ranged from 5 to 260. For batches
larger than 260, we observed capacity aborts with high
probability. Nonetheless, seemingly random capacity
aborts could also be observed frequently even for small
batch sizes. The number of aborts also increased with
higher system load. The cost for restarting transactions
on aborts is included in Figure 13.

As baseline, we ran inside SGX the same algorithm
without special containers and preloading and without
transactions. The baseline was compiled with the un-
modified version of the Microsoft C++ compiler at the
highest optimization level. As can be seen, the number
of cycles per query greatly decreases with the batch size.
Batching is particularly important for Cloak, because
it enables the amortization of cache preloading costs.
Overall, the overhead ranges between +79% (batch size
5) and +248% (batch size 260). The overhead increases

5https://archive.ics.uci.edu/ml
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Figure 13: Average number of cycles per query for deci-
sion forest batch runs of different sizes.

with the batch size, because the baseline also profits from
batching (i.e., “cache warming” effects and amortization
of costs for entering/leaving the enclave), while the pro-
tected version experiences more transactional aborts for
larger batches. We also ran a similar micro-benchmark
outside SGX with more precise timings. Here, the effect
of batching was even clearer: for a batch size of 5, we
observed a very high overhead of +3078%, which grad-
ually decreased to +216% for a batch size of 260.

Even though the experimental setting in Ohri-
menko et al. [49] is not the same as ours (for instance
they used the official Intel SGX SDK, an older version
of the compiler, and their input data was encrypted) and
they provide different guarantees, we believe that their
reported overhead of circa +6200% for a single query to
SGX highlights the potential efficiency of Cloak.

7.2 Service Contracts with the OS

Applying the basic Cloak techniques to sensitive enclave
code reduces the risk of side-channel attacks. However,
enclave code is especially vulnerable as the correspond-
ing attacker model (see Section 3) includes malicious
system software and hardware attacks. In particular, ma-
licious system software, i.e., the OS, can amplify side-
channel attacks by concurrently (A1) interrupting and re-
suming enclave threads [40], (A2) unmapping enclave
pages [61], (A3) taking control of an enclave thread’s
sibling hyper-thread (HT) [11], or (A4) repeatedly reset-
ting an enclave. A3 is of particular concern in Cloak
as TSX provides requirement R2 (see Section 4) only for
the LLC. Hence, code and data in the read set are not pro-
tected against a malicious HT which can perform attacks
over the L1 and L2 caches from outside the enclave. In
the following, we describe how Cloak-protected enclave
code can ensure that the OS is honest and does not mount
attacks A1–A4.



7.2.1 Checking the Honesty of the OS

While SGX does not provide functionality to directly
check for A1 and A2 or to prevent them, it is simple with
Cloak: our experiments showed in line with Intel’s docu-
mentation [31] that transactions abort with code OTHER
(no bits set in the abort code) in case of interrupts or ex-
ceptions. In case unexpected aborts of this type occur,
the enclave may terminate itself as a countermeasure.

Preventing A3 is more involved and requires several
steps: before executing a transaction, we demand that
(i) both HTs of a CPU core enter the enclave and (ii) re-
main there. To enforce (ii), the two threads write a unique
marker to each thread’s State Save Area (SSA) [32] in-
side the enclave. Whenever a thread leaves an enclave
asynchronously (e.g., because of an interrupt), its regis-
ters are saved in its SSA [32]. Hence, every unexpected
exception or interrupt necessarily overwrites our mark-
ers in the SSAs. By inspecting the markers, we can thus
ensure that neither of the threads was interrupted (and
potentially maliciously migrated to a different core by
the OS). One thread now enters a Cloak transaction and
verifies the two markers, making them part of its read set.
Thus, as we confirmed experimentally, any interruption
of the threads would overwrite an SSA marker in the read
set and cause an immediate transactional abort with code
CONFLICT (bit three set in the abort code).

Unfortunately, for (i), there is no direct way for en-
clave code to tell if two threads are indeed two corre-
sponding HTs. However, after writing the SSA markers,
before starting the SSA transaction, the enclave code can
initially conduct a series of experiments to check that,
with a certain confidence, the two threads indeed share
an L1 cache. One way of doing so is to transmit a se-
cret (derived using the rdrand instruction inside the en-
clave) over a timing-less L1-based TSX covert channel:
for each bit in the secret, the receiver starts a transac-
tion and fills a certain L1 cache set with write-set cache
lines and busy-waits within the transaction for a certain
time; if the current bit is 1, the sender aborts the re-
ceiver’s transaction by touching conflicting cache lines of
the same cache set. Otherwise, it touches non-conflicting
cache lines. After the transmission, both threads com-
pare their versions of the secret. In case bit-errors are
below a certain threshold, the two threads are assumed
to be corresponding HTs. In our experiments, the covert
channel achieved a raw capacity of 1 MB/s at an error
rate of 1.6% between two HTs. For non-HTs, the er-
ror rate was close to 50% in both cases, showing that no
cross-core transmission is possible.6 While a malicious
OS could attempt to eavesdrop on the sender and replay
for the receiver to spoil the check, a range of additional

6Using the read set instead yields a timing-less cross-core covert
channel with a raw capacity of 335 KB/s at an error rate of 0.4%.

countermeasures exists that would mitigate this attack.
For example, the two threads could randomly choose a
different L1 cache set (out of the 64 available) for each
bit to transmit.

To protect against A4, the enclave may use SGX’s
trusted monotonic counters [3] or require an online con-
nection to its owner on restart.

Finally, the enclave may demand a private LLC parti-
tion, which could be provided by the OS via Intel’s re-
cent Cache Allocation Technology (CAT) feature [32] or
“cache coloring” [11,37,58]. A contract violation would
become evident to the enclave through increased num-
bers of aborts with code CONFLICT.

8 Limitations and Future Work

Cache attacks are just one of many types of side-channel
attacks and Cloak naturally does not mitigate all of them.
Especially an adversary able to measure the execution
time of a transaction might still derive secret information.
Beyond this, Cloak instantiated with Intel TSX may be
vulnerable to additional side channels that have not yet
been explored. We identified five potential side channels
that should be investigated in more detail: First, the in-
teraction of the read set and the “second level structure”
(i.e., the bloom filter) is not documented. Second, other
caches, such as translation-lookaside buffers and branch-
prediction tables, may still leak information. Third, the
Intel TSX abort codes may provide side-channel infor-
mation if accessible to an attacker. Fourth, variants of
Prime+Probe that deliberately evict read set cache lines
from L1 to the LLC but not to DRAM could potentially
obtain side-channel information without causing trans-
action aborts. Fifth, the execution time of transactions
including in particular the timings of aborts may leak in-
formation. Finally, it is important to note that Cloak is
limited by the size of the CPU’s caches, since code and
data that have secret-dependent accesses must fit in the
caches. TSX runtime behavior can also be difficult to
predict and control for the programmer.

9 Related Work

Using HTM for Security and Safety. The Mimosa
system [25] uses TSX to protect cryptographic keys in
the Linux kernel against different forms of memory dis-
closure attacks. Mimosa builds upon the existing TRE-
SOR system [47], which ensures that a symmetric master
key is always kept in the CPU’s debug registers. Mi-
mosa extends this protection to an arbitrary number of
(asymmetric) keys. Mimosa always only writes pro-
tected keys to memory within TSX transactions. It en-
sures that these keys are wiped before the correspond-



ing transaction commits. This way, the protected keys
are never written to RAM. However, Mimosa does not
prevent cache side-channel attacks. Instead, for AES
computations it uses AES-NI, which does not leak in-
formation through the cache. However, a cache attack on
the square-and-multiply routine of RSA in the presence
of Mimosa would still be possible. To detect hardware
faults, the HAFT system [39] inserts redundant instruc-
tions into programs and compares their behavior at run-
time. HAFT uses TSX to efficiently roll-back state in
case a fault was encountered.

Probably closest related to Cloak is the recent T-SGX
approach [59]. It employs TSX to protect SGX enclave
code against the page-fault side channel [61], which can
be exploited by a malicious OS that unmaps an enclave’s
memory pages (cf. Section 7). At its core, T-SGX lever-
ages the property that exceptions within TSX transac-
tions cause transactional aborts and are not delivered to
the OS. T-SGX ensures that virtually all enclave code
is executed in transactions. To minimize transactional
aborts, e.g., due to cache-line evictions, T-SGX’s ex-
tension of the Clang compiler automatically splits en-
clave code into small execution blocks according to a
static over-approximation of L1 usage. At runtime, a
springboard dispatches control flow between execution
blocks, wrapping each into a separate TSX transaction.
Thus, only page faults related to the springboard can be
(directly) observed from the outside. All transactional
aborts are handled by the springboard, which may termi-
nate the enclave when an attack is suspected. For T-SGX,
Shih et al. [59] reported performance overheads of 4%–
108% across a range of algorithms and, due to the strat-
egy of splitting code into small execution blocks, caused
only very low rates of transactional aborts.

The strategy employed by T-SGX cannot be generally
transferred to Cloak, as—for security—one would need
to reload the code and data of a sensitive function when-
ever a new block is executed. Hence, this strategy is not
likely to reduce cache conflicts, which is the main reason
for transactional aborts in Cloak, but rather increase per-
formance overhead. Like T-SGX, the recent Déjà Vu [8]
approach also attempts to detect page-fault side-channel
attacks from within SGX enclaves using TSX: an en-
clave thread emulates an non-interruptible clock through
busy waiting within a TSX transaction and periodically
updating a counter variable. Other enclave threads use
this counter for approximate measuring of their execu-
tion timings along certain control-flow paths. In case
these timings exceed certain thresholds, an attack is as-
sumed. Both T-SGX and Déjà Vu conceptually do not
protect against common cache side-channel attacks.

Prevention of Resource Sharing. One branch of de-
fenses against cache attacks tries to reduce resource shar-

ing in multi-tenant systems. This can either be imple-
mented through hardware modifications [12, 52], or by
dynamically separating resources. Shi et al. [58] and
Kim et al. [37] propose to use cache coloring to isolate
different tenants in cloud environments. Zhang et al. [68]
propose cache cleansing as a technique to remove infor-
mation leakage from time-shared caches. Godfrey et al.
[18] propose temporal isolation through scheduling and
resource isolation through cache coloring. More re-
cently Zhou et al. [69] propose a more dynamic approach
where pages are duplicated when multiple processes ac-
cess them simultaneously. Their approach can make at-
tacks significantly more difficult to mount, but not im-
possible. Liu et al. [42] propose to use Intel CAT to split
the LLC, avoiding the fundamental resource sharing that
is exploited in many attacks. In contrast to Cloak, all
these approaches require changes on the OS level.

Detecting Cache Side-Channel Leakage. Other de-
fenses aim at detecting potential side-channel leakage
and attacks, e.g., by means of static source code analy-
sis [13] or by performing dynamic anomaly detection us-
ing CPU performance counters. Gruss et al. [23] explore
the latter approach and devise a variant of Flush+Reload
that evades it. Chiappetta et al. [9] combine performance
counter-based detection with machine learning to detect
yet unknown attacks. Zhang et al. [65] show how per-
formance counters can be used in cloud environments to
detect cross-VM side-channel attacks. In contrast, Cloak
follows the arguably stronger approach of mitigating at-
tacks before they happen. Many attacks require only a
small number of traces or even work with single mea-
surements [17, 43, 62]. Thus, Cloak can provide protec-
tion where detection mechanisms fail due to the inherent
detection delays or too coarse heuristics. Further, reliable
performance counters are not available in SGX enclaves.

10 Conclusions

We presented Cloak, a new technique that defends
against cache side-channel attacks using hardware trans-
actional memory. Cloak enables the efficient retrofitting
of existing algorithms with strong cache side-channel
protection. We demonstrated the efficacy of our ap-
proach by running state-of-the-art cache side-channel at-
tacks on existing vulnerable implementations of algo-
rithms. Cloak successfully blocked all attacks in every
attack scenario. We investigated the imperfections of In-
tel TSX and discussed the potentially remaining leakage.
Finally, we showed that one of the main limitations of
Intel SGX, the lack of side-channel protections, can be
overcome by using Cloak inside Intel SGX enclaves.
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[13] DOYCHEV, G., KÖPF, B., MAUBORGNE, L., AND REINEKE, J.
CacheAudit: a tool for the static analysis of cache side channels.
ACM Transactions on Information and System Security (TISSEC)
(2015).

[14] EVTYUSHKIN, D., AND PONOMAREV, D. Covert channels
through random number generator: Mechanisms, capacity esti-
mation and mitigations. In ACM Conference on Computer and
Communications Security (CCS) (2016).

[15] EVTYUSHKIN, D., PONOMAREV, D., AND ABU-GHAZALEH,
N. Jump over ASLR: Attacking branch predictors to bypass
ASLR. In IEEE/ACM International Symposium on Microarchi-
tecture (MICRO) (2016).

[16] FERRI, C., BAHAR, R. I., LOGHI, M., AND PONCINO, M.
Energy-optimal synchronization primitives for single-chip multi-
processors. In ACM Great Lakes Symposium on VLSI (2009).

[17] GE, Q., YAROM, Y., COCK, D., AND HEISER, G. A sur-
vey of microarchitectural timing attacks and countermeasures on
contemporary hardware. Journal of Cryptographic Engineering
(2016).

[18] GODFREY, M. M., AND ZULKERNINE, M. Preventing cache-
based side-channel attacks in a cloud environment. IEEE Trans-
actions on Cloud Computing (2014).

[19] GOEL, B., TITOS-GIL, R., NEGI, A., MCKEE, S. A., AND
STENSTROM, P. Performance and energy analysis of the re-
stricted transactional memory implementation on Haswell. In
International Conference on Parallel Processing (ICPP) (2014).

[20] GÖTZFRIED, J., ECKERT, M., SCHINZEL, S., AND MÜLLER,
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Listing 2: Decision tree classification before and after
Cloak: the code in black is shared by both versions, the
code before Cloak is in dark gray(lines 1–3), and Cloak-
specific additions are in blue (lines 5–7, 11, 12, 15).

1 using Nodes = nelem_t*;

2 using Queries = Matrix<float>;

3 using LeafIds = uint16_t*;

4
5 using Nodes = ReadArray<nelem t, NCS R>;
6 using Queries = ReadMatrix<float, NCS R>;
7 using LeafIds = WriteArray<uint16 t, NCS W>;
8
9 void tsx protected lookup_leafids(

10 Nodes& nodes , Queries& queries , LeafIds&

leafids) {

11 nodes.preload();

12 queries.preload();

13
14 for (size_t q=0; q < queries.entries ();

q++) {

15 if (!(q % 8)) leafids.preload();

16 size_t idx = 0, left , right;

17 for (;;) {

18 auto &node = nodes[idx];

19 left = node.left;

20 right = node.right_or_leafid;

21 if (left == node) {

22 leafids[q] = right;

23 break;

24 }

25 if (queries.item(q, node.fdim) <=

node.fthresh)

26 idx = left;

27 else

28 idx = right;

29 }

30 }

31 }

A Cloak Code Example

Listing 2 gives an example of the original code for tree
traversal and its Cloak-protected counterpart. In the orig-
inal code, a tree is stored in a Nodes array where each
node contains a feature, fdim, and a threshold, fthres.
Access to a node determines which feature is used to
make a split and its threshold on the value of this feature
indicates whether the traversal continues left or right. For
every record batched in Queries, the code traverses the
tree according to feature values in the record. Once a
leaf is reached its value is written as the output of this
query in LeafIds. The following features of Cloak are
used to protect code and data accesses of the tree traver-
sal. First, it uses Cloak data types to allocate Nodes and
Queries in the read set and LeafIds in the write sets.
This ensures that data is allocated as described in Sec-
tion 5.2.1, oblivious from the programmer. The parame-
ters NCS R and NCS W indicate the number of cache sets to
be used for the read and write sets. Second, the program-
mer indicates to the compiler which function should be
run within a transaction by using tsx protected anno-
tation. The programmer calls preload (lines 11, 12, and
15) on sensitive data structures. The repeated preloading
of the writable array leafids in line 15 refreshes the
write set to prevent premature evictions.


