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Abstract. We present an approach for comparing two closely related
concurrent programs, whose goal is to give feedback about interesting
differences without relying on user-provided assertions. This approach
compares two programs in terms of cross-thread interferences and data-
flow, under a parametrized abstraction which can detect any difference in
the limit. We introduce a partial order relation between these abstractions
such that a program change that leads to a “smaller” abstraction is
more likely to be regression-free from the perspective of concurrency.
On the other hand, incomparable or bigger abstractions, which are an
indication of introducing new, possibly undesired, behaviors, lead to
succinct explanations of the semantic differences.

1 Introduction

The lifetime of a software module includes multiple changes that range from
refactoring, addition of new features to bug or performance fixes. Such changes
may introduce regressions which in general are hard to detect and may reveal
themselves much later in the software’s life-cycle. Dealing with this issue is
particularly difficult in the context of concurrent programs, where the bugs are
characterized by subtle interleaving patterns that tend to manifest in the field
while passing an extensive testing phase.

Checking whether a change in a program is regression-free reduces to a
standard, single-program, verification problem assuming a specification of the
possible regressions is provided, for instance, using assertions. However, such
specifications are rarely present in practice.

A different perspective, which avoids the need for specifications, would be to
compare the two versions of a program (before and after the change) under a
certain abstraction, which is precise enough to distinguish common specifications.
Typical examples involve (bi)simulations, sets of reachable configurations 3, and
equality between input-output relations. Simulations define a partial order over

? This work is supported in part by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No 678177).

3 By configuration, we mean the tuple of thread-local states together with the state of
the shared memory.



the set of all programs (bisimulations define an equivalence relation), which
in practice, relates very few programs across refactoring, bug-fixes, or adding
new features. For instance, a transformation that is widely used in bug-fixing
consists in reordering program statements within the same thread. For realistic
programs, there exists no simulation relation between a program obtained by
applying such a transformation and the initial version, or vice-versa. Therefore,
using simulations as an indicator of regression-freeness, i.e., the new version is
considered regression-free when it is simulated by the old version, would lead to
too many false negatives. The same holds when comparing two programs with
respect to their reachable sets of configurations. Comparing input-output relations
is also not suitable in our context, because of the concurrency. Such relations are
hard to compute and also, hard to use for checking regression-freeness, because
of the non-determinism introduced by the thread scheduler.

In this paper we propose a new approach for comparing two closely related
concurrent programs (subsequent versions of programs), which allows to relate
more programs than simulations, for instance. The goal of this approach is to
give feedback about interesting differences as opposed to noise from any change,
without relying on user-provided assertions. From the perspective of concurrency,
interesting differences concern, for instance, enabling new interferences from other
threads (e.g., reading new values written by other threads), or new violations
of atomicity (for some decomposition of the program in atomic blocks, which is
implicit in the mind of the programmer).

The starting point of our approach is a program semantics based on traces [22],
which are compact representations of sets of interleavings. A trace is a graph
where nodes represent read and write actions, and edges represent the program
order, which relates every two actions executed by the same thread, and data-flow
dependencies, i.e., which action writes the value read by a read action, and in which
order values are written to the memory. A trace represents all the interleavings
which are consistent with the program order and the data-flow dependencies.
The traces of two programs can be compared assuming a matching relation
between variables and statements in the two programs, such that matching
statements read and respectively, write the same set of variables (modulo the
variable matching). Roughly, if this matching relation is an isomorphism between
two traces of different programs, then the sets of configurations reachable in the
interleavings represented by these two traces are the same (modulo the constants
used in the statements).

We define a partial order relation between programs based on abstract rep-
resentations of sets of traces. We use abstract representations instead of sets of
(concrete) traces because ordering programs with respect to the latter has the
same disadvantages as the use of simulation relations or sets of reachable configu-
rations (see Section 2 for an example). For instance, bug fixes based on statement
reordering or modifying the placement of the synchronization primitives lead
straightaway to incomparable sets of traces – the set of actions or the program
order are different.



As a first abstraction step, we consider “projected” traces, where roughly,
the program order and all the synchronization statements are omitted 4. This
allows us to expose differences that concern only the data-flow in the program
and not, for instance, the order in which different variables are assigned, or the
synchronization mechanisms used to constrain the interference between threads.
Replacing lock/unlock primitives with wait/nofity or semaphores induces no
difference with respect to sets of projected traces provided that the set of possible
schedules remains the same.

Then, we define abstractions of sets of projected traces, called abstract traces.
Every abstract trace contains a graph structure describing the union of the
projected traces it represents. The nodes of this graph correspond to program
statements and the edges correspond to data-flow dependencies present in some
projected trace. We restrict ourselves to loop-free programs which implies that
these graphs are of bounded size. Handling loops will require some predefined
equivalence relation between statements, a node in the graph representing an
equivalence class with respect to this relation. Adding information about which
sets of dependencies are present together in the same projected trace allows to
refine a given abstract trace. Abstract traces are parametrized by an integer k
which bounds the size of the sets of dependencies that are tracked (whether they
occur in the same trace). We define a partial order between abstract traces which
essentially corresponds to the fact that every set of dependencies in one abstract
trace occurs in the other one as well. An abstract trace not being “smaller” than
another one implies that the set of concrete traces corresponding to the first one
is not included in the set of concrete traces corresponding to the second one (and
thus reveals a difference in thread interference). However, on the opposite side,
the “smaller than” relation does not imply trace set inclusion unless k is big
enough (roughly, the square of the program size). Instead, it can be thought of as
an indicator for not introducing undesired behaviors, whose precision increases
as bigger values of k are considered.

This abstraction framework enables a succinct representation of the difference
between two programs. For a fixed k, the size of the abstract trace is polynomial
in the size of the input program while the size of a complete set of traces is
in general of exponential size. Small values of k allow to explain the difference
between two programs in terms of small sets of dependencies that occur in the
same execution, instead of a complete trace or interleaving.

We show that the problem of deciding the difference with respect to abstract
traces of a fixed rank k between two versions of a loop-free program 5 (before and
after a program transformation) can be reduced to a set of assertion checking
queries. This reduction holds for programs manipulating arbitrary, possibly
unbounded, data. The assertion checking queries can be discharged using the
existing verification technology. In the context of loop-free boolean programs, we

4 Our framework is not bound to a specific set of program order constraints and
statements to be preserved in the projected traces – they can be chosen arbitrarily.

5 This reduction can be applied to arbitrary programs assuming a bounded unrolling
of loops.



show that this problem has a lower asymptotic complexity than the problem of
deciding the difference with respect to concrete sets of traces. More precisely,
we prove that the first problem can be reduced to a polynomial number of
assertion checking queries and that it is ∆P

2 -complete, while the second problem
is ΣP

2 -complete. (We recall that ∆P
2 , resp., ΣP

2 , is the class of decision problems
solvable by a polynomial time, resp., NP time, Turing machine augmented by an
oracle for an NP-complete problem.) This complexity gap shows that the latter
problem cannot be reduced to a polynomial number of assertion checking queries
unless P=NP.

As a proof of concept, we have applied our framework to a benchmark
used for the ConcurrencySwapper synthesis tool [6]. This benchmark consists of
pairs of programs, before and after a bug fix, that model real concurrency bug
fixes reported in the Linux kernel development archive (www.kernel.org). The
reachability queries have been discharged using the LazyCseq tool [13, 12] (with
backend CBMC [9]). These experiments show that comparing abstract traces for
small values of k, i.e., k ∈ {1, 2}, suffices to detect interesting semantic changes
while ignoring the irrelevant ones. Moreover, the semantic changes are presented
succinctly as a small set of data-flow dependencies between program statements,
instead of a complex interleaving. This facilitates the task of spotting bugs by
allowing the programmer to focus on small fragments of the program’s behavior.

2 Motivating examples

We provide several examples to illustrate the abstract semantic diffing framework
proposed in this paper and its potential use in verifying concurrency bug fixes.

The program on the left of Fig. 1 is a typical concurrency bug found in device
drivers [6], where the second thread may read an uninitialized value of x (initially,
all variables are 0). Since the second thread runs only when flag is set to 1,
fixing such a bug consists in permuting the two instructions in the first thread
such that x is initialized before flag is set to 1. The modified version is listed
on the right of Fig. 1. Note that the two versions (before and after the fix) have
incomparable sets of reachable configurations: the configuration (flag = 1, x = 0)
is reachable in the first program but not in the second, and (flag = 0, x = 1) is
reachable in the second but not in the first one. This also implies that there exists
no simulation relation from the fixed version to the buggy one, or vice-versa.

Our approach compares abstract representations of data-flow dependencies [22]
in the two programs. These dependencies come in two forms:

– read-from dependencies from actions writing to a variable to actions reading
that variable (specifying the write that a read receives its value from), and

– store-order dependencies which specify the order in which writes to the same
variable are executed in the memory.

The bottom part of Fig. 1 pictures an abstract trace for each of the two
programs where only individual dependencies are tracked (whether they occur in
some trace), i.e., of rank 1. We can notice that the set of dependencies in the



Buggy program:

flag = 1;
x = 1;

|| assume flag == 1;
y = x;

Corrected program:

x = 1;
flag = 1;

|| assume flag == 1;
y = x;

x = y = flag = 0

flag = 1

x = 1

assume flag == 1

y = x

ŝo

ŝo

r̂f

ŝo, r̂f

r̂f

r̂f

x = y = flag = 0

x = 1

flag = 1

assume flag == 1

y = x

ŝo

ŝo

r̂f

ŝo
r̂f

r̂f

Fig. 1. The program on the left is considered buggy since there exists an execution where
y takes an uninitialized value of x. The second program fixes this bug by permuting the
statements in the first thread. The bottom part of the figure pictures their abstract
traces of rank 1. Read-from, resp., store-order, dependencies are represented by edges
labeled with r̂f , resp., ŝo. The second program is a refinement of rank 1 of the first one,
but the reverse is not true.

fixed version is a strict subset of the set of dependencies in the original (buggy)
version. This fact suggests that the bug fix has removed some behaviors but
introduced none. This is not a theoretical guarantee but its likelihood can be
increased by considering abstract traces of bigger ranks. Moreover, the difference
between the abstract trace of the buggy version and the one of the fixed version
consists of one read-from dependency, from a fictitious write which assigns initial
values to the variables, to the read of x in y = x. This dependency is a succinct
description of all the interleavings containing the bug, which read an uninitialized
value of x. The fact that this dependency doesn’t occur anymore in the fixed
version implies that the buggy behaviors have been removed.

In general, exposing the difference between the data-flow in two programs
may require computing sets of data-flow dependencies occurring in the same
execution of one program and not the other one, i.e., abstract traces of rank
k > 1. Fig. 2 lists two programs doing two parallel increments of a shared variable
x, without synchronization on the left and protected by locks on the right. In this
case, there exists no data-flow dependency admitted only by the first program
or only by the second, i.e., the abstract traces of rank 1 are identical. However,
there exists a pair of data-flow dependencies which occur in the same execution
of the buggy program (that has no synchronization) and not in the corrected one
(that uses locks): the two reads of x (from the assignments to temp1 and temp2)
can both take their value from the initial state. Our framework allows to witness
such differences for fixed values of the rank k.

3 Multi-Threaded Programs

We consider a simple multi-threaded programming model in which each thread
executes a bounded sequence of steps corresponding to assignments, boolean



Buggy program:

temp1 = x;
x = temp1 + 1;

|| temp2 = x;
x = temp2 + 1;

Corrected program:

lock;
temp1 = x;
x = temp1 + 1;
unlock;

||

lock;
temp2 = x;
x = temp2 + 1;
unlock

temp1 = temp2 = x = 0

temp1 = x

x = temp1 + 1

temp2 = x

x = temp2 + 1

r̂f r̂f

r̂f r̂f

ŝôso

r̂fr̂f

temp1 = temp2 = x = 0

temp1 = x

x = temp1 + 1

temp2 = x

x = temp2 + 1

r̂f r̂f

r̂f r̂f

ŝôso

r̂fr̂f

Fig. 2. Two programs doing two parallel increments of x. The bottom part of the figure
pictures their abstract traces of rank 1. For readability, the ŝo dependencies starting
from the assignment representing initial values are omitted. Considering abstract traces
of rank 2, the pair of red r̂f dependencies belongs to the abstract trace of the buggy
program but not to that of the correct version. The second program is a refinement of
rank 2 of the first one because it has less (pairs of) dependencies which occur in some
execution. The reverse doesn’t hold.

s ::= x := e | assume e | lock | unlock | s [] s | s; s |
P ::= s | P ||P

Fig. 3. The syntax of our language. Each program P is the parallel composition of a fixed
number of threads – ; denotes the sequential composition and [] the non-deterministic
choice between two control-flow paths. Also, x ∈ Vars and e is an expression over Vars.

tests, and synchronization primitives. The semantics of a program is defined as a
set of traces [22], which are partially-ordered sets of read or write actions.

Let Vars be a set of variables. The grammar of Fig. 3 describes our language of
multi-threaded programs. For generality, we leave the syntax of expressions e in
assignments and assume statements unspecified. We allow expressions e = ∗ where
∗ is the (nullary) non-deterministic choice operator. Note that if-then-else

conditionals can be modeled using assume statements and the non-deterministic
choice. To simplify the exposition, we assume that the same variable doesn’t
appear in both the left and the right part of an assignment (e.g., we forbid
assignments of the form x := x+ 1). This simplifies the trace semantics given
hereafter, and it could be removed assuming that the program is first rewritten to
static single assignment form. Also, we consider a minimal set of synchronization
statements, lock/unlock over a unique lock object. However, our approach easily
extends to any class of synchronization primitives. The set of variables in a
statement s, resp., a program P , denoted by Vars(s), resp., Vars(P ), is defined
as usual. The set of statements s over a set of variables V ⊆ Vars is denoted by
Stmts(V ). The set of statements of a program P is denoted by Stmts(P ). When
all the variables range over the booleans, the program is called a boolean program.



Program configurations are variable valuations, and program executions
are defined as usual, as interleavings of statements (we assume a sequentially
consistent semantics). In the following, we define representations of program
executions called traces. For a variable x, W(x) is the set of assignments to x
and R(x) is the set of assume e statements where e contains x together with
the set of assignments reading the variable x (i.e., x occurs in the right part).
We assume that Stmts(P ) contains a fictitious statement init assigning initial
values to all the program variables. We have that init ∈W(x) for every x. The
synchronization primitives lock and unlock are interpreted as both a read and a
write of a distinguished variable l. Thus, W(l) = R(l) = {lock, unlock}.

Essentially, a trace consists of three relations over the program statements,
which represent the data and control dependencies from a program execution.
The store order so represents the ordering of write accesses to each variable, and
the read-from relation rf (from writes to reads) indicates the assignment that
a read receives its value from. The program order po represents the ordering
of events issued by the same thread. These relations represent a sequentially
consistent execution when their union is consistent with the composition of rf
and so (known also as the conflict relation).

Definition 1 (Trace). A trace of program P is a tuple t = (S, po, so, rf ) where
S ⊆ Stmts(P ), init ∈ S, and po, so, and rf are binary relations over S such that:

1. po relates statements included in the same thread,
2. so relates statements writing to the same variable, i.e., so ⊆

⋃
x((S ∩W(x))2,

and for each variable x, it defines a total order between the writes to x where
init is ordered before all the other writes,

3. rf relates writes and reads to the same variable, i.e., rf ⊆
⋃

x(S ∩W(x))×
(S ∩R(x)), and associates to every read of a variable x a write to x, i.e., the
inverse of rf is a total function from S ∩ R(x) to S ∩W(x), and

4. the union of po, so, rf , and rf ◦ so, is acyclic.

For a program P , let Traces(P ) be its set of traces. Figure 4 lists two programs
and their sets of traces.

4 Abstracting Traces

We are interested in comparing the set of behaviors of two programs according
to abstract representations of traces. These representations are defined in two
steps. We first define a projection operator that removes a given set of statements
(defined by a set of variables), e.g., synchronization primitives, and the program
order from all the traces of a given program 6. Such a projection operator focuses
on the differences in cross-thread data-flow interferences, and ignores details that
are irrelevant for standard safety specifications (which are agnostic for instance
to the state of the synchronization objects). Then, we define an abstract domain

6 Our framework can be extended such that the projection operator removes only a
user-specified fragment of the program order.



Program 1:

lock;
x = 1;
y = 2;
unlock;

||
lock;
z = x + y;
unlock;

Program 2:

lock;
y = 2;
x = 1;
unlock;

||
lock;
z = x + y;
unlock;

Traces of Program 1: Traces of Program 2:

x = y = z = 0

x = 1

y = 2

z = x + y

so

so
so

rf

rf

po

x = y = z = 0

x = 1

y = 2

z = x + y

so

so

so, rf

po

x = y = z = 0

x = 1

y = 2

z = x + y

so

so
so

rf

rf

po

x = y = z = 0

x = 1

y = 2

z = x + y

so

so

so, rf

po

Fig. 4. Two programs over the same set of statements but with different program orders,
and different sets of traces. For readability, we write x=y=z=0 instead of init for the
statement that assigns initial values to variables, and we omit lock/unlock statements.

for representing sets of traces obtained through projection, which is based on a
graph structure describing the union of all the traces in a given set.

For a program P , a set V of variables is called closed when P doesn’t include
a statement s that uses both a variable in V and a variable outside of V , i.e.,
Vars(s) ⊆ V or Vars(s) ∩ V = ∅ for each s ∈ Stmts(P ). For example, in the case
of the programs in Fig. 4, the set of variables {x, y, z} is closed, and {x, y} is not
closed because of the statement z := x + y. For a closed set of variables V , a
V -trace of P is a tuple t = (Stmts(V )∩ S, so, rf ) obtained from a standard trace
t′ = (S, po′, so′, rf ′) of P by preserving only the statements over the variables
in V and removing the program order, i.e., so = so′ ∩ (Stmts(V ) ∩ S)2 and
rf = rf ′ ∩ (Stmts(V ) ∩ S)2. Since V is closed, the relations so and rf in t satisfy
the properties (2) and (3) in Definition 1.

The set of all V -traces of a program P is denoted by Traces[V ](P ).
For example, the programs in Fig. 4 have the same set of V -traces where V =

{x, y, z}. This holds because V -traces don’t contain the lock/unlock statements
and the program order.

We define a parametrized abstraction for a set of V -traces that contains all the
statements in those traces, the union of the store order, resp., read-from, relations,
and for a parameter k, all the non-singleton sets of so or rf dependencies of size
at most k that occur together in the same V -trace. As the parameter k increases,
the abstraction is more precise. For two sets A and B, and k ≥ 2, Pk(A,B) is
the set of pairs (A′, B′) where A′ ⊆ A, B′ ⊆ B, and 2 ≤ |A′ ∪B′| ≤ k.

Definition 2 (Abstract trace). For k ≥ 1, an abstract trace of rank k is a

tuple t̂ = (S, ŝo, r̂f , ŝets) where S is a set of statements with init ∈ S and

– ŝo and r̂f are two relations over statements in S such that ŝo ⊆
⋃

x(S ∩
W(x))2, r̂f ⊆

⋃
x(S ∩W(x))× (S ∩ R(x)), and for every variable x,



• ŝo contains (s1, s2) or (s2, s1), for every two assignments s1, s2 ∈ S ∩
W(x), and

• every read on x is related by r̂f to at least one assignment to x
– ŝets = ∅ if k = 1, and ŝets ⊆ Pk(ŝo, r̂f ), otherwise. When k ≥ 2, we assume

that A1 ∪B1 6⊆ A2 ∪B2 for all (A1, B1), (A2, B2) ∈ ŝets.

The elements of ŝets are called k-clusters.

The relations ŝo and r̂f represent the union of the store order and read-from
relations in a given set of V -traces, respectively. Therefore, ŝo is not necessarily
a total order, and the inverse of r̂f is not necessarily a total function, when
considering statements that assign or read the same variable (i.e., they don’t
satisfy the properties (2) and (3) in Definition 1). Also, to avoid redundancy, we
assume that the elements of ŝets are incomparable. Fig. 1 and Fig. 2 contain
examples of abstract traces.

The concretization of an abstract trace t̂ of rank k, denoted by γ(̂t), is
the set of traces formed of some dependencies in t̂ and which contain at least
one set of dependencies in ŝets, if k ≥ 2. Formally, γ(̂t) for an abstract trace

t̂ = (S, ŝo, r̂f , ŝets) of rank k is the set of V -traces t = (S′, so, rf ) where S′ ⊆ S,

so ⊆ ŝo, rf ⊆ r̂f , and if k ≥ 2, then u|1 ⊆ so and u|2 ⊆ rf for some u ∈ ŝets. We
use u|i to denote the i-th component of the tuple u. Note that a trace in the
concretization of t̂ may not necessarily use all the statements in t̂ .

We define an order relation ≤ between abstract traces, which requires that
they contain the same set of statements and the “smaller” trace contains less
dependencies or sets of dependencies.

Definition 3 (Order relation). For k ≥ 1 and two abstract traces t̂1 =

(S, ŝo1 , r̂f1 , ŝets1 ) and t̂2 = (S, ŝo2 , r̂f2 , ŝets2 ) of rank k,

t̂1 ≤ t̂2 iff ŝo1 ⊆ ŝo2 , r̂f1 ⊆ r̂f2 , and ŝets1 ⊆ ŝets2 .

Lemma 1. The order relation ≤ defines a lattice over the set of abstract traces.

5 Interference Refinement

We define a notion of refinement between two programs, called interference
refinement (or refinement for short), which holds under the assumption that
the two programs are structurally similar. Essentially, we assume that there
exists a mapping between variables in the two programs, and a mapping between
statements, such that every two related statements read and respectively, write
the same set of variables (modulo the variable mapping). Then, interference
refinement is defined as the inclusion of V -trace sets for some set of variables V
(modulo the statement mapping). We then give an abstract notion of interference
refinement that uses abstract traces instead of sets of V -traces.

Let P1 and P2 be two programs, and V1 and V2 closed sets of variables of P1

and P2, respectively. A pair (ν, σ) is called a statement matching when ν : V1→V2



is a bijection and σ : Stmts(P1)∩Stmts(V1)→Stmts(P2)∩Stmts(V2) is a bijection
such that s ∈W(x) iff σ(s) ∈W(ν(x)) and s ∈ R(x) iff σ(s) ∈ R(ν(x)) for each
s ∈ Stmts(P1) ∩ Stmts(V1) and x ∈ V1. To simplify the exposition, in the rest
of the paper, we consider statement matchings where ν and σ are the identity.
Extending our notions to the general case is straightforward.

Let P1 and P2 be two programs, and V a set of variables which is closed for
both P1 and P2.

Definition 4 (V -Refinement). A program P1 is a V -interference refine-
ment (or V -refinement for short) of another program P2 iff Traces[V ](P1) ⊆
Traces[V ](P2). Also, P1 and P2 are V -interference equivalent (or V -equivalent
for short) iff P1 is a V -interference refinement of P2 and vice-versa.

We define an approximation of V -refinement, called (V, k)-refinement, that
compares abstract traces of rank k instead of concrete sets of V -traces. More
precisely, (V, k)-refinement compares abstract traces that represent the V -traces
of a program in the following sense: the sets of dependencies in the abstract
trace are not spurious, i.e., they do occur together in a concrete V -trace, and
the abstract trace contains all the sets of dependencies up to size k that occur
in the same V -trace. Forbidding spurious (sets of) dependencies guarantees
that V -refinement doesn’t hold when the approximated version doesn’t hold,
while completeness allows to prove that the approximated version does imply
V -refinement for big enough values of k.

Definition 5. An abstract trace t̂ = (S, ŝo, r̂f , ŝets) of rank k represents a
program P for a closed set of variables V when

– for every two statements s1, s2 ∈ S, (s1, s2) ∈ ŝo, resp., (s1, s2) ∈ r̂f , iff
there exists a V -trace t = (S′, so, rf ) ∈ Traces[V ](P ) such that (s1, s2) ∈ so,
resp., (s1, s2) ∈ rf , and

– if k ≥ 2, then for each u ∈ Pk(ŝo, r̂f ), u ∈ ŝets iff there exists a V -trace
t = (S′, so, rf ) ∈ Traces[V ](P ) such that u ∈ Pk(so, rf ).

For any abstract trace t̂ representing a program P for a closed set of variables
V , we have that Traces[V ](P ) ⊆ γ(̂t).

Definition 6 ((V, k)-Refinement/Equivalence). A program P1 is a (V, k)-
refinement of another program P2 iff there exist t̂1 and t̂2 two abstract traces of
rank k representing P1 and P2 for the set of variables V , respectively, such that
t̂1 ≤ t̂2 . Also, P1 and P2 are (V, k)-equivalent iff P1 is a (V, k)-refinement of P2

and vice-versa.

When V is understood from the context, we may use refinement of rank k
instead of (V, k)-refinement.

Example 1. Distinguishing two programs with respect to the notion of (V, k)-
equivalence may require arbitrarily-large values of k (these values are however
polynomially bounded by the size of the programs). Indeed, we show that there



exist two programs which are (V, k − 1)-equivalent but not (V, k)-equivalent, for
each k ≥ 2.

Fig. 5 lists two programs that make k parallel increments to a variable x, for
an arbitrary k ≥ 2. The increments are non-atomic in the first program, and
protected by a semaphore s initialized with k − 1 permits in the second program
(acquire acquires a permit from the semaphore, blocking until one is available,
while release returns one permit to the semaphore) 7. The first program admits
all the executions of the second one and one more execution where all the k
threads read the initial value of x. Therefore, the first program has a trace that
contains the set of read-from dependencies from init to each assignment temp1
= x,. . .,tempk = x (the k read-from dependencies marked in red in Fig. 5). This
is not true for the second program where the semaphore synchronization disallows
such a trace.

Let us consider the closed set of variables V = {x, temp1, . . . , tempk}. Every
set of at most k − 1 so or rf dependencies occur together in the same V -trace
of one program iff this holds for the other program as well. Therefore, the two
programs are (V, k − 1)-equivalent. However, the two programs are not (V, k)-
equivalent, more precisely, the first program is not a (V, k)-refinement of the
second one. The abstract trace representing the first program contains a k-cluster
which is the set of read-from dependencies from init to each assignment temp1
= x,. . .,tempk = x. 2

A direct consequence of the definitions is that V -refinement and (V, k)-
refinement coincide for big enough values of k. The number of read-from and
respectively, store-order dependencies, in a V -trace is bounded by |Stmts(P ) ∩
Stmts(V )|2. Therefore, there exist at most 22·|Stmts(P )∩Stmts(V )|2 V -traces, which
implies that V -refinement and (V, k)-refinement coincide when k reaches this
bound. Otherwise, we have only that V -refinement implies (V, k)-refinement.

Theorem 1. For every k ≥ 1, P1 is a (V, k)-refinement of P2 when P1 is a

V -refinement of P2. Moreover, there exists k ≤ 22·|Stmts(P )∩Stmts(V )|2 such that P1

is a V -refinement of P2 iff P1 is a (V, k)-refinement of P2.

6 Checking Interference Refinement

We show that checking whether a program is not a (V, k)-refinement of another
one, for some closed set of variables V and some k ≥ 1, is polynomial time
reducible to assertion checking. This reduction holds for programs manipulating
data coming from arbitrary, not necessarily bounded, domains. Instantiating this
reduction to the case of boolean programs, we get that this problem is in ∆P

2

when k is fixed, and in ΣP
2 , otherwise. We show that these upper complexity

bounds match the lower bounds. As a corollary, we get that deciding whether a
program is not a V -refinement of another one is also ΣP

2 -complete.

7 The simple syntax we considered in Section 3 doesn’t include acquire/release
actions, but they can be easily modeled using lock/unlock.



First program:

temp1 = x;
x = temp1 + 1;

|| temp2 = x;
x = temp2 + 1;

|| . . . || tempk = x;
x = tempk + 1;

Second program:

acquire(s);
temp1 = x;
x = temp1 + 1;
release(s);

||

acquire(s);
temp2 = x;
x = temp2 + 1;
release(s);

|| . . . ||

acquire(s);
tempk = x;
x = tempk + 1;
release(s);

Abstract traces:

temp1 = ... = tempk = x = 0

temp1 = x

x = temp1 + 1

temp2 = x

x = temp2 + 1

. . .

tempk = x

x = tempk + 1

r̂f r̂f

r̂f r̂f

ŝôso ŝôso

r̂f

r̂f

r̂fr̂f

Fig. 5. Two programs doing k parallel increments of x. The two programs have the
same abstract trace of rank 1 which is partially given in the bottom part of the figure;
we omit some of the ŝo dependencies for readability. The abstract trace of rank k of the
first program contains a k-cluster which is the set of read-from dependencies marked in
red (they occur in the same trace) while this is not true for the second program.

The following intermediary result shows that checking whether a fixed set
of data-flow dependencies occur together in some V -trace of a program P is
reducible to assertion checking in an instrumentation of P . The instrumentation
uses a set of boolean flags to witness the order between two assignments on the
same variable, in the case of store order dependencies, or that an assignment on
a variable x is the last such assignment before a statement reading the value of
x, in the case of read-from dependencies. For instance, let us consider a fragment
with three threads of the first program in Fig. 5.

temp1 = x;

[

x = temp1 + 1;

rf_saw_first = true;
]

||

temp2 = x;

[

x = temp2 + 1;

if ( rf_saw_first &&

!rf_saw_second )

rf_saw_write = true;
]

||

[

temp3 = x;

if ( rf_saw_first &&

!rf_saw_write )

rf_saw_second = true;

]

x = temp3 + 1;

The read-from dependency from the write to x in the first thread to the read
of x in the third thread can be witnessed using three boolean flags rf saw first,
rf saw write, and rf saw second, which are initially false and which are up-
dated atomically with the program’s statements. The flag rf saw second is true
for all executions whose trace contains this read-from dependency (and only for



these executions) 8. For readability, we use brackets instead of synchronization
primitives to delimit atomic sections.

The flag rf saw first is set to true when the write in the first thread happens,
rf saw write is set to true when any other write to x, i.e., the write to x in the
second thread, happens after the one in the first thread, and rf saw second is
set to true when the read of x in the last thread happens, provided that the write
in the first thread was the last write to x before this read (which is equivalent to
rf saw write being false). Dealing with store-order dependencies is simpler, it
requires only two flags so saw first and so saw second to witness that a write
happens before another one. Then, witnessing a set of data-flow dependencies
can be done by adding such flags for each dependency, independently. Note that
the placement of the instructions that set or check these flags is only based on
syntax and their addition is easy to automate.

In formal terms, let

Drf ⊆
⋃
x

(Stmts(V ) ∩W(x))× (Stmts(V ) ∩ R(x)) and

Dso ⊆
⋃
x

(Stmts(V ) ∩W(x))× (Stmts(V ) ∩W(x))

be two sets of read-from, resp., store-order dependencies, and let D = Drf ∪
Dso. For each (s1, s2) ∈ D, P is instrumented with two boolean variables
saw first[s1, s2] and saw second[s1, s2] such that saw first[s1, s2] is atomi-
cally set to true when s1 is executed, and saw second[s1, s2] is atomically set to
true when s2 is executed, provided that saw first[s1, s2] is already true. Addi-
tionally, when (s1, s2) ∈ Drf , a variable saw write[s1, s2] is set to true whenever
saw first[s1, s2] is true, saw second[s1, s2] is false, and a statement writing to
the same variable as s1 is executed. Also, saw second[s1, s2] is set to true when
additionally, saw write[s1, s2] is false (this is to ensure that s1 is the last write
before s2). The instrumented program is denoted by P [D].

Lemma 2. There exists a V -trace t = (S, so, rf ) of P such that Drf ⊆ rf and
Dso ⊆ so iff P [D] reaches a program configuration where saw second[s1, s2] is
true for all (s1, s2) ∈ D.

For a fixed k, checking (V, k)-refinement needs to consider only fixed size sets
of dependencies. Therefore, the following holds.

Theorem 2. Let P1 and P2 be two programs. Checking whether P1 is not a
(V, k)-refinement of P2 is polynomial time reducible to assertion checking.

Proof. The program P1 is not a (V, k)-refinement of P2 iff there exists a set of
dependencies D (of size at most k) such that D occur together in some V -trace
of P1, but no V -trace of P2. Since the number of possible sets D is polynomial

8 Equivalently, the assignment rf saw second = true can be replaced by assert

false. Then, this assertion fails whenever this read-from dependency occurs in
some trace of the program.



in the size of P1 and P2, a polynomial reduction to assertion checking consists in
enumerating all the possible instances of D and checking whether D occurs in
the same V -trace of P1 or P2 using the result in Lemma 2. 2

The algorithm proposed in the proof of Theorem 2 reduces the problem of
checking non (V, k)-refinement, for a fixed k, to a polynomial set of assertion
checking queries and leads the way to the reuse of the existing safety verification
technology. This will be demonstrated in Section 7.

For boolean programs, assertion checking is NP-complete 9, so checking
(V, k)-refinement for any k is in ΣP

2 . We show that it is also ΣP
2 -hard.

Theorem 3. Let P1 and P2 be two boolean programs. Checking whether P1 is
not a (V, k)-refinement of P2 is ΣP

2 -complete.

Proof. A ΣP
2 algorithm for deciding non (V, k)-refinement starts by guessing a

set of dependencies D (of size at most 2 · |Stmts(P ) ∩ Stmts(V )|2), and then
proceeds by checking that the dependencies in D occur in the same V -trace of
P1 (which by Lemma 2 can be decided in NP) and in none of the traces of P2

(which again by Lemma 2 is in co-NP).
To prove ΣP

2 -hardness we show that deciding the satisfiability of an ∃∗∀∗
boolean formula can be reduced to checking (V, k)-refinement for some k which
depends on the number of existential variables in the boolean formula. Let
∃~x ∀~y. ϕ be a boolean formula in prenex normal form (without free variables),
where ~x = (x1, . . . , xn) and ~y are vectors of boolean variables. Also, let P1 and
P2 be the following programs:

Program P1:

x1 = 0 [] x1 = 1;

. . .
xn = 0 [] xn = 1;

~y = ?;
done = 1;

a = 1;

||

assume done;

t1 = x1;

. . .
tn = xn;

b = a;

assume ¬ϕ;

Program P2:

x1 = 0 [] x1 = 1;

. . .
xn = 0 [] xn = 1;

~y = ?;
done = 1;

a = 1;

||

assume done;

t1 = x1;

. . .
tn = xn;

assume ¬ϕ;
b = a;

We assume that all variables are 0 in the initial state. Let D~x be a set of read-from
dependencies that includes either (xi = 0, ti = xi) or (xi = 1, ti = xi) for each
1 ≤ i ≤ n. Then, let D = D~x ∪ {(a = 1, b = a)} (the latter is also in rf ).

Since the assignment b = a in P1 is executed in every complete interleaving,
there exists a trace of P1 that contains all the read-from dependencies from D.
This set of dependencies occurs in a trace of P2 only if there exists some valuation
for ~y such that ϕ is false. This implies that P1 is not a (V, n+ 1)-refinement of
P2 where V is the set of all variables of P1 iff ∃~x ∀~y. ϕ is satisfiable. 2

Following the same lines of Theorem 3, we can show that the problem of
checking non (V, k)-refinement becomes ∆P

2 -complete when k is fixed. Essentially,
the set of dependencies that need to be tracked are now of fixed size and they
can be enumerated explicitly (as stated in Theorem 2).

9 Recall that we consider programs without looping constructs and procedure calls.



Theorem 4. Let P1 and P2 be two boolean programs. For a fixed but arbitrary
k ≥ 1, checking whether P1 is not a (V, k)-refinement of P2 is ∆P

2 -complete.

Proof. The problem can be decided using a similar algorithm as in Theorem 3. In-
stead of non-deterministically guessing the set of dependenciesD, we enumerate all
such sets of dependencies of size k which are at most O(|Stmts(P )∩Stmts(V )|2·k)
many.

To prove ∆P
2 -hardness we show that deciding the satisfiability of an ∃∗ ∧ ∀∗

boolean formula can be reduced to checking (V, 1)-refinement. Let ∃~x. ϕ1∧∀~y. ϕ2

be a boolean formula (without free variables), where ~x and ~y are vectors of
boolean variables. Also, let P1 and P2 be the following programs:

Program P1:

~x = ?;
a = 1;

done = 1;

|| assume (done && ϕ1);

b = a;

Program P2:

~y := ?;
a = 1;

done = 1;

|| assume (done && ¬ϕ2);

b = a;

We assume that all variables are 0 in the initial state. Let V = {a, b} and
D = {(a = 1, b = a)} be a singleton set of read-from dependencies.

The assignment b = a in P1 is executed if and only if there exists some
valuation for ~x such that ϕ1 holds, i.e., the formula ∃~x. ϕ1 is satisfiable. Therefore,
the dependency (a = 1, b = a) occurs in a trace of P1 iff ∃~x. ϕ1 is satisfiable.
By the definition of V , this is the only dependency possible in P1, which may
imply non (V, 1)-refinement. Furthermore, this dependency doesn’t occur in a
trace of P2 if and only if the formula ϕ2 holds for all valuations of ~y, i.e., the
formula ∀~y. ϕ2 is satisfiable. Consequently, P1 is not a (V, 1)-refinement of P2 iff
∃~x. ϕ1 ∧ ∀~y. ϕ2 is satisfiable. 2

7 Experimental Evaluation

To demonstrate the practical value of our approach, we argue that our notion of
(V, k)-refinement:

– can be checked using the existing verification technology,
– witnesses for semantic differences (bug introduction) with small values of k,
– enables succinct representations for the semantic difference,
– is a relevant indicator of regression-freeness.

To argue these points, we consider a set of bug fixes produced by the Con-
currencySwapper synthesis tool [6] which model concurrency bug fixes for Linux
device drivers reported at www.kernel.org 10. We check whether the fixed version
is a (V, k)-refinement of the original one and vice-versa. We use this benchmark
without modifications, except the use of the pthread library for managing threads
(otherwise, the programs are written in C), and unfolding loops once.

We have added the annotation that reduces (V, k)-refinement checking to
assertion checking (explained in Theorem 2) and used LazyCseq [13, 12] (with

10 They are available at https://github.com/thorstent/ConcurrencySwapper

https://github.com/thorstent/ConcurrencySwapper


Name #loc #threads k # (sets of)
possible de-
pendencies

size of the
difference

Time

r8169-1 24 2 1/2/3 6/21/41 1/5/11 6.35s/12.93s/20.27s

r8169-2 25 2 1/2/3 6/21/41 1/5/11 4.93s/10.22s/16.44s

r8169-3 33 3 1/2/3 3/6/7 1/3/3 2.74s/5.43s/8.03s

i2c-hid 27 2 1 27 2 45.65s

i2c-hid-noA 27 2 1/2 27/237 0/4 42.34s/24.3m

rtl8169 256 7 1 94 3 37.27m

Table 1. Experimental data for checking (V, k)-refinement. The size of the difference
between the abstract trace of the original (buggy) and the fixed version, respectively, is
the number of (sets of) dependencies occurring in one and not the other.

backend CBMC [9]) for checking the assertions. LazyCseq is a bounded model
checker that explores round-robin schedules up to a given bound on the number of
rounds. We have used a bound of 4 for the number of rounds, which was enough
to compute abstract traces that represent the considered programs (according to
Definition 5). We have checked manually that these abstract traces are complete,
i.e., that they contain all the sets of dependencies which occur in the same
V -trace (up to the given bound). The fact that they don’t contain spurious sets
of dependencies is implied by the completeness of the bounded model checker.
All the bug fixes except i2c-hid and i2c-hid-noA that consist in adding locks,
are based on statement reordering 11. This allowed us to consider closed sets of
variables that consist of all variables except variables of type lock, and statement
matchings (ν, σ) where ν and σ are the identity.

The results are reported in Table 1. Each line corresponds to a pair of
programs, the version before and after a bug fix or a set of bug fixes implemented
during the evolution of a Linux driver, r8169, i2c-hid, or rtl8169. We list the
number of lines of code (loc) and the number of threads of the original version
(before the bug fix). Checking refinement of rank 1 requires enumerating all
pairs of statements accessing the same variable, at least one being a write, called
possible dependencies, and verifying whether they occur in some execution of the
original or the fixed version. To indicate the difficultly of the benchmark we give
the number of such possible dependencies, or sets of possible dependencies of size
at most k, when k > 1. Note that the number of possible dependencies is usually
much smaller than the square of the number of statements. All measurements
were made on a MacBook Pro 2.5GHz Intel Core i7 machine.

We consider several values of k for each example and in all cases we get that
the fixed version is a refinement of rank k of the buggy version. Also, except
for i2c-hid-noA with k = 1, the abstract trace of the correct version is strictly
smaller than the one of the buggy version. The i2c-hid example contains some
assertions that fail only in the buggy version. These assertions participate in
read-from dependencies which allow to distinguish the buggy from the corrected

11 Studies of concurrency errors, e.g., [6, 19], have reported that reordering statements
for fixing bugs is very frequent (around 30% of the fixes are based on reorderings).



version with abstract traces of rank 1. Removing these assertions requires abstract
traces of rank 2 to distinguish the two versions. This fact is demonstrated in the
i2c-hid-noA example which is exactly i2c-hid without those assertions.

These results indicate that comparing abstract traces of small ranks is enough
to reveal interesting behaviors, in particular bugs (the abstract trace of the buggy
version is always different from the one of the corrected version). Therefore,
(V, k)-refinement for small values of k is a relevant indicator of regression-freeness.
Note however that there is no theoretical connection between abstract trace
difference and the presence of bugs. Moreover, (V, k)-refinement continues to hold
when k is increased, as shown by the results in Table 1.

The difference between the abstract traces of the original and the fixed version,
respectively, consists of few (sets of) dependencies. For the first three examples
and k = 1, the difference consists of a single read-from dependency showing
that a particular variable gets an uninitialized or undesired value (like in the
example from Figure 1). In the case of the fourth example when assertions are
present, the difference between abstract traces of rank 1 consists of 2 read-from
dependencies which correspond to two failing assertions. When assertions are
removed, i.e., in the example i2c-hid-noA, the difference between the abstract
traces of rank 2 consists of few pairs of dependencies similar to the example
in Figure 2. The buggy version of the example rtl8169 contains 3 bugs that
are repaired in the correct version. The difference between the abstract traces
contains an explanation for each bug.

The running time increases with the number of threads and possible depen-
dencies. However, since the presence of a set of dependencies (in some execution)
reduces to an independently-checkable assertion, the verification process is easily
parallelizable. Also, we didn’t use assertion checking to exclude some dependen-
cies that are obviously not feasible because of thread creation/join (i.e., reading
from a write that belongs to a thread not yet created). As future work, we plan
to investigate static analyses for filtering out such dependencies.

8 Related work

The work on refinement checking [1] provides a general framework for comparing
traces of two programs. However, in most instances one of the programs serves
as a specification with very limited concurrency.

Joshi et al. [15] checks if a given concurrent program fails an assertion more
often on an input compared to another concurrent program — the second program
is usually limited to sequential interleavings only. Our approach does not require
the presence of assertions to compare the two concurrent programs as it exploits
the structural similarity between the two programs. The work closest to ours
is the work on regression verification for multi-threaded programs [8]. This
paper proposes a proof rule to prove that the input-output relations for two
multithreaded programs are the same. This approach cannot distinguish between
two transformations that introduce and respectively, remove a bug. In both cases,
the proof rule will fail to establish equivalence w.r.t. the input-output relation.



Generalizations of good or bad program executions using partial orders
have been previously used in the context of assertion checking or program
synthesis [6, 7, 10]. The notion of trace robustness proposed in the context of
weak memory models [4, 5] compares a program running under a weak memory
model with the same program running under Sequential Consistency (SC). The
focus there is to check if a program admits behaviors which are not possible
under SC while our goal is to compare two programs running under SC.

There has been interest in applying program analysis towards the problem
of comparing two versions of a program, in the context of sequential programs.
Jackson and Ladd [14] used the term semantic diff to compare two sequential
programs in terms of the dependency between input and output variables. For
most concurrency related transformations, such a metric is unlikely to yield any
difference. There has been work on equivalence checking of sequential executions
across program versions using uninterpreted function abstraction and program
verifiers [11, 16]. Verification Modulo Versions [17, 18] compares two sequential
programs w.r.t. a set of assertions. Differential symbolic execution [21] summarizes
differences in summaries of two procedures, and Marinescu et al. [20] use symbolic
execution for generating tests over program differences.

9 Conclusions

We have presented an approach for comparing two closely related concurrent
programs whose goal is to give feedback about interesting differences, without
relying on user-provided assertions. This approach is based on comparing abstract
representations of the data-flow dependencies admitted by two subsequent versions
of the same program. This comparison is reducible to assertion checking which
enables the reuse of the existing verification technology.

As future work, we plan to investigate static analyses for discarding data-
flow dependencies which are not interesting or not feasible. This can be also
used to minimize the number of assertion checking queries when checking (V, k)-
refinement. Moreover, we consider extending our theory to programs that contain
loops where the main difficulty is that traces contain an unbounded number of
copies of the same statement (when inside a loop). The idea would be define
a new abstraction of traces that collapses together occurrences of the same
statement from multiple iterations of a loop. On the practical side, we aim at a
more thorough experimental evaluation of this approach in the context of other
program transformations. On one side, we plan to consider more general program
edits than reordering statements or modifying synchronization primitives which
need to consider more general statement matchings than the identity. Also, we
plan to investigate other classes of program transformations besides bug-fixing,
such as refactoring, addition of new features or performance fixes. For instance, in
the context of performance fixes, the new version of the program may allow more
behaviors (interleavings). Our approach would produce a succinct representation
of the new behaviors (in terms of small sets of dependencies), which may help in
validating their correctness.
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