{ }uantum thermodynamics

- a primer for the curious quantum mechanic

Lídia del Rio, ETH Zurich

QIP 2017 Seattle

This talk is licensed under a Creative Commons Attribution 4.0 International License.

Why quantum thermodynamics?

- Why is thermodynamics so effective?
- Emergent theory?
- Axiomatic formulation?

Why quantum thermodynamics?

- Do quantum systems obey the laws of thermodynamics?
- Correction terms: small or quantum?
- Can we explore new effects?

Why quantum thermodynamics?

- Heat dissipation in (quantum) computers
- Microscopic heat engines
- "Thermodynamics" of relevant parameters at the nano scale?

This lecture

Information and thermodynamics

- Work cost of classical information processing
- Quantum work extraction and erasure

Axiomatic quantum thermodynamics

- Resource theory of thermal operations
- Insights and results
- Directions

Maxwell's demon

Thermodynamics of information processing

- How much work must we supply to compute a function?
- Must (quantum) computers always dissipate heat?

Szilard boxes

1 bit + heat bath
$$(T) \Rightarrow \text{work } kT \ln 2$$

Szilard boxes

1 bit + heat bath (T) \Leftarrow work $kT \ln 2$

Szilard boxes

1 bit + heat bath $(T) \Leftrightarrow \text{work } kT \ln 2$

Landauer's principle [1973]

 $\mathsf{Information} + \mathsf{heat} \Leftrightarrow \mathsf{work}$

► rate: *kT* ln 2 per bit

Maxwell's demon

Cost of computations [Bennett 1992]

Must computers dissipate heat?

Irreversible computation: reversible + erasure

$$\blacktriangleright \mathcal{E}(\rho_{S}) = \operatorname{Tr}_{\mathcal{A}'}(U \ \rho_{S} \otimes \sigma_{\mathcal{A}} \ U)$$

Cost of computations [Bennett 1992]

Must computers dissipate heat?

Irreversible computation: reversible + erasure

$$\blacktriangleright \mathcal{E}(\rho_{S}) = \operatorname{Tr}_{A'}(U \ \rho_{S} \otimes \sigma_{A} \ U)$$

- Reversible computations: free in principle
- ► Work cost: cost of erasure

Work cost of erasure

 $kT \ln 2$ per bit

Erasure

Formatting a hard drive:

 $0?10101??1 \to 00000000$

• Resetting a quantum system: $ho_S
ightarrow |0
angle_S$

Work cost of erasure

$kT \ln 2$ per bit

Erasure

Formatting a hard drive:

$0?10101??1 \to 00000000$

• Resetting a quantum system: $ho_S
ightarrow |0
angle_S$

In numbers

- ▶ $k = 1.38.10^{-23} J/K$
- Erasure of 16*TB* hard drive at room temperature: $0.4\mu J$
- Lifting a tomato by 1m on Earth: 1*J*.

Information compression

Compression length: $n = H(\rho)$ bits

 $W(S) = H(S) kT \ln 2$

(Subjective) side information

 $W(S|M) = H(S|M) \ kT \ln 2$

What about quantum information?

Szilard box for quantum systems?

How do we even measure work?

What about quantum information?

Szilard box for quantum systems?

How do we even measure work?

How to use quantum memories?

• Reading \implies disturbing contents

What about quantum information?

- Szilard box for quantum systems?
 - How do we even measure work?
- How to use quantum memories?
 - Reading ⇒ disturbing contents
- Entropy H(S|M) can be negative!
 - but does that mean anything?

Quantum Szilard box

Semi-classical model [Alicki et al.]

- ► Manipulating *H*: moving energy level by δ*E* costs δ*E* if state is occupied
- Thermalizing: system relaxes to $G(T) = \frac{1}{Z}e^{\frac{H}{kT}}$

Quantum Szilard box

Battery

Quantum model [Skrzypczyk et al.]

- ▶ Free unitaries if [U, H] = 0
- Explicit heat bath and battery

Quantum Szilard box

Quantum model [Skrzypczyk et al.]

- Free unitaries if [U, H] = 0
- Explicit heat bath and battery

Memory preservation

Erase the first qubit, preserving the others:

$$|\Psi\rangle\langle\Psi|_{S1}\otimes\rho_{2,3}\quad\rightarrow\quad|0\rangle\langle0|_{S}\otimes\underbrace{\frac{\mathbb{1}_{1}}{2}\otimes\rho_{2,3}}_{\rho_{M}}$$

Memory preservation

Generally: Erase S, preserving M (and correlations)

We can still use the memory optimally:

 $W(S|M) = H(S|M) \ kT \ln 2$ where H(S|M) = H(SM) - H(M).¹

We can still use the memory optimally:

 $W(S|M) = H(S|M) \ kT \ln 2$ where H(S|M) = H(SM) - H(M).¹ Example

$$\underbrace{|\Psi\rangle\langle\Psi|_{S1}\otimes\rho_{2,3}}_{H(S|M)=-1} \quad \rightarrow \quad |0\rangle\langle0|_{S}\otimes\underbrace{\frac{\mathbb{1}_{1}}{2}\otimes\rho_{2,3}}_{\rho_{M}}$$

We can still use the memory optimally:

 $W(S|M) = H(S|M) \ kT \ln 2$ where H(S|M) = H(SM) - H(M).¹ Example

 $|\Psi\rangle\langle\Psi|_{S1} \rightarrow \frac{\mathbb{I}_{S}}{2} \otimes \frac{\mathbb{I}_{1}}{2} + \text{work } 2kT \ln 2$

We can still use the memory optimally:

 $W(S|M) = H(S|M) \ kT \ln 2$ where H(S|M) = H(SM) - H(M).¹ Example

$$rac{\mathbb{I}_{\mathcal{S}}}{2}
ightarrow |0
angle \langle 0|_{\mathcal{S}} - ext{ work } kT \ln 2$$

We can still use the memory optimally:

 $W(S|M) = H(S|M) \ kT \ln 2$ where H(S|M) = H(SM) - H(M).¹ Example

Total: $W(S|M) = -kT \ln 2 = H(S|M) kT \ln 2$

Work cost of computations

Cost of implementing a map ${\mathcal E}$

- $\mathcal{E}: X \to X'$
- unitary dilation $X \to X' \otimes E$

•
$$W = H(E|X')_{\mathcal{E}(\rho)} kT \ln 2^{-2}$$

Work cost of computations

Cost of implementing a map $\ensuremath{\mathcal{E}}$

- $\mathcal{E}: X \to X'$
- unitary dilation $X \to X' \otimes E$
- $W = H(E|X')_{\mathcal{E}(\rho)} kT \ln 2^2$

In numbers

- AND gate: 1.6 kT ln 2
- Running a 20 Petaflops computation: 1W

Goal: erasure $(\sum_{k} p_{k} | \phi_{k} \rangle \langle \phi_{k} |)^{\otimes N} \rightarrow | \phi_{1} \rangle^{\otimes N}$

Goal: erasure $(\sum_{k} p_{k} |\phi_{k}\rangle \langle \phi_{k}|)^{\otimes N} \rightarrow |\phi_{1}\rangle^{\otimes N}$

Goal: erasure $(\sum_{k} p_{k} |\phi_{k}\rangle\langle\phi_{k}|)^{\otimes N} \rightarrow |\phi_{1}\rangle^{\otimes N}$

Goal: erasure $(\sum_{k} p_{k} |\phi_{k}\rangle \langle \phi_{k}|)^{\otimes N} \rightarrow |\phi_{1}\rangle^{\otimes N}$

$$V_k = p_k \ V \implies W_k = N_k \ln(V_k/V) = N \ p_k \ln p_k$$
$$\frac{W}{N} = \sum_k p_k \ln p_k \implies S(\rho) = -\operatorname{Tr}(\rho \ln \rho)$$
von Neumann entropy [1932]

Goal: erasure $(\sum_{k} p_{k} |\phi_{k}\rangle \langle \phi_{k}|)^{\otimes N} \rightarrow |\phi_{1}\rangle^{\otimes N}$

$$V_k = p_k \ V \implies W_k = N_k \ln(V_k/V) = N \ p_k \ln p_k$$
$$\frac{W}{N} = \sum_k p_k \ln p_k \implies S(\rho) = -\operatorname{Tr}(\rho \ln \rho)$$

- microscopic details
- Identifies:
 - easy and hard operations
 - freely available resources

- microscopic details
- Identifies:
 - easy and hard operations
 - freely available resources
- Efficient exploitation:
 - steam engines, fridges
 - cost of state transformations

- microscopic details
- Identifies:
 - easy and hard operations
 - freely available resources
- Efficient exploitation:
 - steam engines, fridges
 - cost of state transformations
- Operational approach: resource theory

- microscopic details
- Identifies:
 - easy and hard operations
 - freely available resources
- Efficient exploitation:
 - steam engines, fridges
 - cost of state transformations
- ► Operational approach: resource theory (just like LOCC)

Resource theories

Operational questions

- Can one achieve $X \rightarrow Y$?
- Monotones: characterizing pre-order
- Useful and useless resources?

Resource theories

Example: LOCC

- Allowed operations: local operations and classical communication
- Monotones: formation and distillation entanglement, squashed entanglement...
- ► Free resources: separable states. Currency: Bell states

Thermodynamics as a resource theory

Limitations:

- lack of knowledge: (N, V, T), (N, V, E), ...
- conservation laws: energy, momentum, ...
- limited control of operations

³[Carathéodory 1909] [Giles 1964] [Lieb and Yngvason 1998, 1999, 2003]

Thermodynamics as a resource theory

Limitations:

- lack of knowledge: (N, V, T), (N, V, E), ...
- conservation laws: energy, momentum, ...
- limited control of operations
- Resources: macroscopic descriptions of systems (hot gas, cold bodies)
- Operations: adiabatic, isothermal,
- Insights: laws of thermodynamics, free energy as a monotone, Carnot efficiency, ...³

³[Carathéodory 1909] [Giles 1964] [Lieb and Yngvason 1998, 1999, 2003]

• Resources: quantum descriptions of systems (ρ_S, H_S)

⁴[Janzing 200] [Brandao et al 2011]

- Resources: quantum descriptions of systems (ρ_S, H_S)
- Account for entropy: $U\rho_S U^{\dagger}$

⁴[Janzing 200] [Brandao *et al* 2011]

- Resources: quantum descriptions of systems (ρ_S, H_S)
- Account for entropy: $U\rho_S U^{\dagger}$
- Account for energy: $U\rho_S U^{\dagger}$, $[U, H_S] = 0$

⁴[Janzing 200] [Brandao *et al* 2011]

- Resources: quantum descriptions of systems (ρ_S, H_S)
- Account for entropy: $U\rho_S U^{\dagger}$
- Account for energy: $U\rho_S U^{\dagger}$, $[U, H_S] = 0$
- ► Free environment: $U(\rho_S \otimes \text{Gibbs}(T))U^{\dagger}$, $[U, H_{SB}] = 0$

⁴[Janzing 200] [Brandao *et al* 2011]

- Resources: quantum descriptions of systems (ρ_S, H_S)
- Account for entropy: $U\rho_S U^{\dagger}$
- Account for energy: $U\rho_S U^{\dagger}$, $[U, H_S] = 0$
- ► Free environment: $U(\rho_S \otimes \text{Gibbs}(T))U^{\dagger}$, $[U, H_{SB}] = 0$
- ► Free forgetting: $Tr_A[U(\rho_S \otimes Gibbs(T))U^{\dagger}], [U, H_{SB}] = 0$

⁴[Janzing 200] [Brandao et al 2011]

- Resources: quantum descriptions of systems (ρ_S, H_S)
- Account for entropy: $U\rho_S U^{\dagger}$
- Account for energy: $U\rho_S U^{\dagger}$, $[U, H_S] = 0$
- ► Free environment: $U(\rho_S \otimes \text{Gibbs}(T))U^{\dagger}$, $[U, H_{SB}] = 0$
- ► Free forgetting: $\operatorname{Tr}_{A}[U(\rho_{S} \otimes \operatorname{Gibbs}(T))U^{\dagger}], \quad [U, H_{SB}] = 0$
- ► Toy model ⁴

⁴[Janzing 200] [Brandao et al 2011]

$$G(T)=\frac{1}{Z}e^{-\frac{H}{kT}}$$

Landauer's principle

$$G(T) = \frac{1}{Z}e^{-\frac{H}{kT}}$$

$$G(T)=\frac{1}{Z}e^{-\frac{H}{kT}}$$

Reduced description

- Large system composed of independent parts: $H = H_S + H_E$
- Energy shell Ω_E of fixed energy
- Global state of maximal entropy: $\mathbb{1}_{\Omega_E}/d_{\Omega_E}$
- $\blacktriangleright \rho_S = G_S(T(E))$

$$G(T)=\frac{1}{Z}e^{-\frac{H}{kT}}$$

Typicality of thermalization⁵

- $d_S \ll d_\Omega$
- Static thermalization: for most global states and most subsystems,

$$\rho_{S} \approx \operatorname{Tr}_{E}(\mathbb{1}_{\Omega}/d_{\Omega}) = G_{S}(T)$$

- Decoupling (also with side quantum information).
- Also if S corresponds to observable.

⁵Review: [Gogolin & Eisert 2016]

$$G(T)=\frac{1}{Z}e^{-\frac{H}{kT}}$$

⁵Review: [Gogolin & Eisert 2016]

$$G(T)=\frac{1}{Z}e^{-\frac{H}{kT}}$$

Typicality of thermalization⁵

- Evolution towards thermal state: if H is rich, $\rho_S(t) \approx G_S(T)$ for most times t and initial states.
- Time scales: under study

⁵Review: [Gogolin & Eisert 2016]

$$G(T) = \frac{1}{Z}e^{-\frac{H}{kT}}$$

Complete passivity

Intuition: only free state that does not trivialize the resource theory

- Allowed operations: unitaries
- Allowed many copies of a state
- Cannot extract energy $\implies G(T)^{\otimes n}$

$$G(T) = \frac{1}{Z}e^{-\frac{H}{kT}}$$

Complete passivity

Intuition: only free state that does not trivialize the resource theory

- Allowed operations: unitaries
- Allowed many copies of a state
- Cannot extract energy $\implies G(T)^{\otimes n}$

Still a spherical cow...

Insights: noisy operations

Case H = 0

▶ Pre-order: majorization⁶ $\rho \rightarrow \sigma \iff \rho \prec \sigma$,

$$ho \prec \sigma \iff \sum_{i=1}^k \lambda_i(
ho) \ge \sum_{i=1}^k \lambda_i(\sigma)$$

⁶Review: [Gour et al (2013)]

Insights: noisy operations

Case H = 0

▶ Pre-order: majorization⁶ $\rho \rightarrow \sigma \iff \rho \prec \sigma$,

$$\rho \prec \sigma \iff \sum_{i=1}^k \lambda_i(\rho) \ge \sum_{i=1}^k \lambda_i(\sigma)$$

Monotones: Schur-convex functions, e.g.

$$D^{\alpha}(\rho_{S}||\mathbb{1}_{S}/d_{S}),$$

entropies $H(\rho), H_{\alpha}(\rho), \ldots$

• Classically: $D^{\alpha}(\rho||\sigma) = \frac{\operatorname{sgn} \alpha}{\alpha - 1} \log \sum_{i} p_{i}^{\alpha} q_{i}^{1 - \alpha}$

⁶Review: [Gour et al (2013)]

Lorenz curves

- 1. Sort eigenvalues of ρ : $p_1 \ge p_2 \ge \cdots \ge p_d$
- 2. Build step function: $f_{\rho}(x) = p_i(\rho)$ for $i 1 \le x < i$

Lorenz curves

1. Integrate to get Lorenz curve:

$$g_{\rho}(x) = \int_0^{d \ x} f_{\rho}(x') \ dx'$$

2. Pre-order: $ho
ightarrow \sigma \iff g_{
ho}(x) \geq g_{\sigma}(x), \; \forall \; x \in [0, 1[$

Insights: thermal operations

General Hamiltonian

- Pre-order: thermo-majorization (for block-diagonal states!)
- ► Monotones: e.g. relative entropy to thermal state

 $D^{\alpha}(\rho||G(T)),$

free energies...

Rescaled Lorenz curves⁷

⁷[Renes] [Horodecki & Oppenheim]

Insights: thermal operations

Rescaled Lorenz curves

- For block-diagonal states,
 - 1. Rescale eigenvalues: $r_i = p_i e^{\beta E_i}$ and sort them.
 - 2. Build step function:

$$f_
ho(x) = r_i \quad ext{for} \;\; \sum_{k < i} e^{-eta E_k} \leq x < \sum_{k \leq i} e^{-eta E_k}$$

3. Integrate to get Lorenz curve:

$$g_{\rho}(x) = \int_0^{Z \times} f_{\rho}(x') \, dx'$$

4. Pre-order: $ho
ightarrow \sigma \iff g_{
ho}(x) \geq g_{\sigma}(x), \; \forall \; x \in [0,1)$

Free energies as monotones

•
$$\rho \to \sigma \implies F^{\alpha}(\rho, T) \ge F^{\alpha}(\sigma, T), \ \forall \alpha, \text{ where}^8$$

 $F^{lpha}(
ho,T)=kT \left[D^{lpha}(
ho||G(T))-\log Z
ight]$

⁸[Brandao et al 2014]

Free energies as monotones

•
$$\rho \to \sigma \implies F^{\alpha}(\rho, T) \ge F^{\alpha}(\sigma, T), \ \forall \alpha, \text{ where}^8$$

$$F^{lpha}(
ho,T)=kT \left[D^{lpha}(
ho||G(T))-\log Z
ight]$$

 $\blacktriangleright \Leftarrow$ for classical states

⁸[Brandao et al 2014]

Free energies as monotones

•
$$\rho \to \sigma \implies F^{\alpha}(\rho, T) \ge F^{\alpha}(\sigma, T), \ \forall \alpha, \text{ where}^8$$

$$F^{lpha}(
ho,T)=kT \left[D^{lpha}(
ho||G(T))-\log Z
ight]$$

- \blacktriangleright \Leftarrow for classical states
- In particular

$$F^{1}(\rho, T) = \operatorname{Tr}(H \ \rho) - kTS(\rho).$$

Free energies as monotones

•
$$\rho \to \sigma \implies F^{\alpha}(\rho, T) \ge F^{\alpha}(\sigma, T), \ \forall \alpha, \text{ where}^{8}$$

$$F^{\alpha}(\rho, T) = kT \left[D^{\alpha}(\rho || G(T)) - \log Z \right]$$

- \blacktriangleright \Leftarrow for classical states
- In particular

$$F^{1}(\rho, T) = \operatorname{Tr}(H \ \rho) - kTS(\rho).$$

Free energies: rescaling of $D^{\alpha}(\rho||G(T))$ such that

 $F^{1}(|E\rangle\langle E|, T) = E$

⁸[Brandao et al 2014]

Recovering thermodynamics

Third law

Cannot cool to ground state with finite resources.9

⁹[Masanes & Openheim 2014] [Janzing] [Wilming (in prep.)]
¹⁰[LdR et al 2011]
¹¹[Reeb & Wolf 2013] [Woods et al 2015]

Recovering thermodynamics

Third law

Cannot cool to ground state with finite resources.9

Landauer's principle

• Work cost of erasing S in the presence of M costs 10

 $W \approx kT \ H(S|M)_{\rho}$

▶ Single-shot: H^{ε} , finite-size effects¹¹ limit efficiency

⁹[Masanes & Openheim 2014] [Janzing] [Wilming (in prep.)]
 ¹⁰[LdR et al 2011]
 ¹¹[Reeb & Wolf 2013] [Woods et al 2015]

Recovering thermodynamics

Fluctuation theorems

- Crooks' and Jarzinsky's relations: prob. violation exponentially surpressed
- \blacktriangleright Beyond two-measurement setting for coherent processes,^{12} e.g. $|+\rangle \to |0\rangle$

¹²[Elouard et al 2015] [Åberg 2016] [Perarnau-Llobet, et al (2016)]
Multiple conserved quantities

- ▶ Multiple¹³ conserved quantities *A*₁, *A*₂, . . .
- Allowed operations: $U : [U, A_i] = 0, \forall i$

¹³ [Vaccaro and Barnett 2011] [Lostaglio et al 2015] [Guryanova et al 2015] [Yunger Halpern et al 2015] [Perarnau-Llobet et al 2015]

Multiple conserved quantities

- ▶ Multiple¹³ conserved quantities A₁, A₂,...
- Allowed operations: $U : [U, A_i] = 0, \forall i$
- Generalized Gibbs state

$$G(\beta_1,\beta_2,\dots)=e^{\beta_1A_1+\beta_2A_2+\dots}$$

Typical thermalization and passivity results hold

¹³ [Vaccaro and Barnett 2011] [Lostaglio et al 2015] [Guryanova et al 2015] [Yunger Halpern et al 2015] [Perarnau-Llobet et al 2015]

Multiple conserved quantities

- ▶ Multiple¹³ conserved quantities A₁, A₂,...
- Allowed operations: $U : [U, A_i] = 0, \forall i$
- Generalized Gibbs state

$$G(\beta_1,\beta_2,\dots)=e^{\beta_1A_1+\beta_2A_2+\dots}$$

- Typical thermalization and passivity results hold
- Monotones: $D^{\alpha}(\rho || G(\beta_1, \beta_2, ...))$
- ▶ First protocols for conversion between *A*₁, *A*₂,...

¹³ [Vaccaro and Barnett 2011] [Lostaglio et al 2015] [Guryanova et al 2015] [Yunger Halpern et al 2015] [Perarnau-Llobet et al 2015]

Needed to implement unitaries (laser).

¹⁴[Åberg 2014] ¹⁵[Korzekwa et al 2016]

Needed to implement unitaries (laser).

Catalytic coherence?

- Relevant properties of coherence reservoir ρ : $(\Delta_{\rho}, M_{\rho})$
 - $\Delta_{\rho} = \mathsf{Tr}(\frac{1}{2}(\Delta + \Delta^{\dagger})\rho)$ coherence: $\Delta = \sum_{n} |n+1\rangle \langle n|$
 - ► *M* : lowest occupied energy level

¹⁴[Åberg 2014]
¹⁵[Korzekwa et al 2016]

Needed to implement unitaries (laser).

Catalytic coherence?

- Relevant properties of coherence reservoir ρ : $(\Delta_{\rho}, M_{\rho})$
 - $\Delta_{\rho} = \text{Tr}(\frac{1}{2}(\Delta + \Delta^{\dagger})\rho)$ coherence: $\Delta = \sum_{n} |n+1\rangle \langle n|$
 - ► *M* : lowest occupied energy level
- Unbounded coherence reservoir:¹⁴
 - \blacktriangleright back-action of implementing operations: stretching of ρ
 - no degradation of Δ
 - can always pump up M with energy

¹⁴[Åberg 2014]
¹⁵[Korzekwa et al 2016]

Needed to implement unitaries (laser).

Catalytic coherence?

- Relevant properties of coherence reservoir ρ : $(\Delta_{\rho}, M_{\rho})$
 - $\Delta_{\rho} = \text{Tr}(\frac{1}{2}(\Delta + \Delta^{\dagger})\rho)$ coherence: $\Delta = \sum_{n} |n+1\rangle \langle n|$
 - ► *M* : lowest occupied energy level
- Unbounded coherence reservoir:¹⁴
 - \blacktriangleright back-action of implementing operations: stretching of ρ
 - no degradation of Δ
 - ► can always pump up *M* with energy
- More realistic reservoirs:¹⁵
 - protocol for work extraction from coherent states
 - operationally restoring reservoir: $(\Delta_{\rho}, M_{\rho}) = (\Delta_{\rho'}, M_{\rho'})$

¹⁴[Åberg 2014] ¹⁵[Korzekwa et al 2016]

Clocks and control

$$[U, H_0] = 0, \quad U = e^{-i t H_U}$$

- $H_U(t) \implies$ control
- Effort of building and keeping control systems
- Clocks and controls are out of equilibrium systems
- ► Fairer book-keeping: give agents little control, explicit clocks

¹⁶[Brandao et al (2011)] [Malabarba et al 2014]
¹⁷[Wilming et al 2014]
¹⁸[Woods et al 2016]

Clocks and control

$$[U, H_0] = 0, \quad U = e^{-i t H_U}$$

- $H_U(t) \implies$ control
- Effort of building and keeping control systems
- Clocks and controls are out of equilibrium systems
- ► Fairer book-keeping: give agents little control, explicit clocks

First steps

- ▶ Ideal clock (particle in a line) \implies catalytic, perfect U ¹⁶
- Thermal contact¹⁷
- Dimension bounds and clock degradation¹⁸

```
^{16} [Brandao et al (2011)] [Malabarba et al 2014] ^{17} [Wilming et al 2014 ] ^{18} [Woods et al 2016 ]
```

Autonomous thermal engines

Carnot efficiency¹⁹ (fine-tuned gaps)

¹⁹[Skrzypczyk et al (various)]

Open questions

Clocks and control

- Designs for efficient clocks (theory and experiment)
- Combine with insights from reference frames
- Further restrictions (no fine-tuning of baths, Hamiltonians)
- Clean framework (how much control to give the agent?)
- Relation to coherence (again!)
- Relation to time in foundations

Open questions

Realistic resource theories

- Operational notions of temperature: baths beyond Gibbs ²⁰
- ► Finite-size effects ²¹
- Beyond weak coupling
- Realistic resource descriptions for experimentalists ²²
- Towards operational resource theories²³

```
<sup>20</sup>[Farshi et al (in prep)]
<sup>21</sup>[Reeb et al (2013)], [Woods et al (2015)]
<sup>22</sup>[LdR et al (2015)], [Krämer & LdR (2016)]
<sup>23</sup>[Yunger Halpern (2015)]
```

Open questions

Generalized probability theories

- ► GPTs: apply von Neumann's operational approach to entropy 24
- Relate thermodynamics on different physical theories

$\mathsf{AdS}/\mathsf{CFT}$

- Notions of thermalization
- Black hole entropy & information paradox

²⁴[Barnum et al 2015]

Thank you for your attention!

Reviews

- Goold, Huber, Riera, LdR & Skrzypczyk, The role of quantum information in thermodynamics — a topical review, J. Phys. A, 49, 14 (2016).
- Gour, Müller, Narasimhachar, Spekkens, Yunger Halpern, The resource theory of informational nonequilibrium in thermodynamics, Phys. Rev. Lett. 111, 250404 (2013).

Gogolin, Eisert,

Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems, Rep. Prog. Phys. 79, 056001 (2016).

Thermo QIP 2017

Talks

- Monday 3pm Carlo Sparaciari
- Wednesday 9am Jonathan Oppenheim
- ► Friday 2pm Michael Kastoryano, then Kohtaro Kato

Posters

Monday

- ▶ 35 A sufficient set of gates for thermodynamics
- ► 36 Fundamental energy cost for quantum measurement
- 38 Thermal Operations under Partial Information An operational derivation of Jaynes Principle
- 39 Thermalization and Return to Equilibrium on Finite Quantum Lattice Systems

Tuesday

► 52 Autonomous quantum machines and finite sized clocks