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Overview
● Quantum many-body systems are all around!

condensed matter quantum chemistry high-energy physics

● Can exhibit complex quantum correlations (=multipartite entanglement)
→ rich and unconventional physics, but difficult to understand!

● Quantum information and Entanglement Theory: 

Aim: Study strongly correlated quantum many-body systems
from the perspective of quantum information + entanglement theory.

Toolbox to characterize and utilize entanglement



Entanglement structure
of quantum many-body states



Quantum many-body systems

● Our focus: spin models (=qudits) on lattices:
● Wide range of quantum many-body (QMB) systems exists

local interactions

● Realized in many systems:

localized d/f electrons half-filled band

● Expecially interested in the ground state         ,
i.e., the lowest eigenvector

(It is the “most quantum” state, and it also carries relevant information about excitations.)

quantum simulators, 
e.g. optical lattices

… typically 
transl. invariant



Mean-field theory
● In many cases, entanglement in QMB systems is negligible
● System can be studied with product state ansatz

“mean field theory”

● Consequence of “monogamy of entanglement” (→ de Finetti theorem)

● Behavior fully characterized by a single spin       – 
 – a local property (order parameter) → Landau theory of phases

● Behavior insensitive to boundary conditions, topology, ...



Exotic phases and topological order
● Systems exist which cannot be described by mean field theory

degeneracy depends on
global properties

system supports 
exotic excitations (“anyons”)

→ impossible within mean-field ansatz

→ To understand these systems: need to capture their entanglement!

● Useful as quantum memories 
  and for topological quantum computing

 … e.g. Kitaev's “Toric Code”.

→ ordering in entanglement



The physical corner of Hilbert space
● How can we describe entangled QMB states?
● general state of      spins:

exponentially large Hilbert space!

● but then again ...

has only  parameters

→ ground state         must live in a small “physical corner” of Hilbert space!

● Is there a “nice” way to describe states in the physical corner?
→ use entanglement structure!



Entanglement 

Schmidt decomposition                                                   (                    ONB)

● Schmidt coefficients       characterize bipartite entanglement

● Consider bipartition of QMB system into A and B

● Measure of entanglement: 

more disorder → more entanglement

Entanglement entropy 



Entanglement structure: The area law

● entanglement entropy             of a region scales as boundary (vs. volume)

● Interpretation: entanglement 
  is distributed locally

● How much is a region of a QMB system entangled with the rest?

“area law” for entanglement

(for Hamiltonians with a spectral gap; but approx. true even without gap)



One dimension: Matrix Product States



  

● apply linear map (“projector”)

● state characterized by    →              parameters
● satisfies area law by construction

● each site composed of two auxiliary particles (“virtual particles”)
forming max. entangled bonds      (D: “bond dimension”) 

⇒

An ansatz for states with an area law

● family of states: enlarged by increasing 

...



  

Formulation in terms of Matrix Products

matrices

“Matrix Product State” (MPS)

● iterate this for the whole state      :

(or                                                                                           for open boundaries)



  “Tensor Network States”

Formulation in terms of Tensor Networks

● Tensor Network notation:

● Matrix Product States can be written as

with 

...



● MPS form a complete family – every state can be written as an MPS:
Completeness of MPS

● Can be understood in terms of teleporting        using the entangled bonds



Approximation by MPS
● General MPS with possibly very large bond dimension

● Schmidt decomposition across some cut:

● Project onto       largest Schmidt values                     :
→ error 

● Rapidly decaying       (↔ bounded entropy): total error 
● Efficient approximation of states with area law (and thus ground states)



Matrix Product States can efficiently approximate 
states with an area law, and ground states of 

(gapped) one-dimensional Hamiltonians.



  

Computing properties of MPS
● Given an MPS       , can we compute exp. values                 for local     ?

O

“transfer operator”

● computing                 = multiplication of               matrices

● OBC scaling:     [and if done properly, even       (PBC) and        (OBC)]

→ computation time 



The transfer operator
● consider translational invariant system:

● spectrum of transfer operator governs scaling of correlations
(a) largest eigenvalue unique: exponential decay of correlations
(b) largest eigenvalue degenerate: long-range correlations

● uniqueness of purification:      contains all non-local information about state
●                                is Choi matrix of quantum channel 



Numerical optimization of MPS
● MPS approximate ground states efficiently
● expectation values can be computed efficiently
● can we efficiently find the         which minimizes                 ?

● various methods:
- DMRG: optimize sequentially                         & iterate
- gradient methods: optimize all        simultaneously 
- hybrid methods

● hard instances exist (NP-hard), but methods practically converge very well
● provably working poly-time method exists

...                 is quadratic in each        → each step can be done efficiently



MPS form the basis for powerful variational methods
for the simulation of one-dimensional spin chains



Example: The AKLT state – a rotationally invariant model

[Affleck, Kennedy, Lieb & Tasaki, '87]
“AKLT state”

singlet  

          : projector onto the spin-1 
  representation of 

⇒  
(“                           ”)

● Resulting state is invariant under             (=spin rotation) by construction:

● Can construct states w/ symmetries by encoding symmetries locally



  

The AKLT Hamiltonian

impossible!

●       and

⇒       is a (frustration free) ground state of 
(frustration free = it minimized each     individually)

● One can prove: -    is the unique ground state of
-       has a spectral gap above the ground state

“parent Hamiltonian”

●      inherits spin-rotation symmetry of state by construction
(specifically,           )

● consider 2 sites of AKLT model

2 sites have spin 



Parent Hamiltonians
● A parent Hamiltonian can be constructed for any MPS:

lives in     –dimensional space

        possible boundary conditions

choose     s.th.                   →      doesn't have full rank

● Construct parent Hamiltonian             ,      

● Can prove:
-     has unique ground state
-     has a spectral gap above the ground state

● This + ability of MPS to approximate ground states of general Hamiltonians
→ MPS form right framework to study physics of 1D QMB systems



MPS and symmetries
● Symmetries in MPS can always be encoded locally

⇒ 

⇒     …     ⇒  

⇒ 

● Symmetries are inherited by the parent Hamiltonian!

and conversely



Fractionalization
● Consider AKLT model on chain with open boundaries

● all choices of boundaries       are ground states of parent Hamiltonian
→ zero energy “edge excitations” with spin 

● “fractionalization” of physical spin            into              at the boundary
→ impossible in mean-field theory
→ non-trivial “topological” phase (“Haldane phase”)

● can prove: cannot smoothly connect MPS
with integer and half-integer spin at edge
→ inequivalent phases!



MPS encode physical symmetries locally,
and can be used to model physical systems
and study their different non-trivial phases.



Two dimensions: Projected Entangled Pair States



Two dimensions: Projected Entangled Pair States

Projected Entangled Pair States (PEPS)

● Natural generalization of MPS to two dimensions:

● approximate ground states of local Hamiltonians well
● PEPS form a complete family with accuracy parameter    .
● PEPS can also be defined on other lattices, 

in three and more dimensions, even on any graph

bond dimension

Tensor Network Notation:



2D: Symmetries and parent Hamiltonians
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● symmetries can be encoded locally in entanglement degrees of freedom:

● however, a general characterization of inverse direction is still missing … 
(but there are partial results)

● we can also define parent Hamiltonians

● again, a full characterization of ground space and spectral gap is missing … 
(and again, there are partial results)



Computational complexity of PEPS

transfer
operator

● expectation values in PEPS (e.g. correlation functions):

● resembles 1D situation, but ...

… exact contraction is a hard problem
(more precisely, #P-hard)

● approximation methods necessary – e.g. by again using MPS



Projected Entangled Pair States (PEPS) 
approximate two-dimensional systems faithfully, 

can be used for numerical simulations,
and allow to locally encode the physics of 2D systems.



Tensor Networks and Topological Order



The Toric Code model
● Toric Code: ground state = superposition of all loop patterns

● Hamiltonian: (i)  vertex term → enforce closed loops

● degenerate ground states: 
   labeled by parity of loops around torus
● non-trivial excitations: 

(i) broken strings (come in pairs)
(ii) wrong relative phase (also in pairs)

(ii) plaquette term → fix phase when flipping plaquette

...



Tensor networks for topological states

● Tensor network for Toric Code:

● Toric Code tensor has        symmetry (=even parity):

+ +

+ + +  ...

● What are consequences of such an entanglement symmetry in a PEPS?



● Symmetry can be rephrased as “pulling-through condition”:

Entanglement symmetry and pulling through

=↔ =
● pulling-through condition ⇒ Strings can be freely moved!

● Strings are invisible locally (e.g. to Hamiltonian)

↔

● Note: Generalization of “pulling-through condition” 
allows to characterize all known (non-chiral) topological phases



→  parametrization of ground space manifold 
based on symmetry of single tensor

Topological ground space manifold

● Torus: closed strings yield different ground states

● degeneracy depends on topology (genus): Topological order!

→ gives us the tools to explicitly construct & study ground states
→ works for systems with finite correlation length

→ local characterization of topological order



Symmetries and excitations
● Strings w/ open ends: 

● tensors with odd parity:

→ excitations come in pairs
→ endpoints = excitations

→ cannot be created locally
→ must also come in pairs

● these two types of excitations have 
   non-trivial mutual statistics!

● modeling of anyonic excitations
from local symmetries of tensor

● fully local description also at finite correlation length



Topological order in PEPS can be comprehensively 
modeled based on a local entanglement symmetry.



Interplay of physical and entanglement symmetries 

=
● spin-   model: how can we encode             symmetry?

● constraint: number of half-integer representations must be odd

    counts half-int. spins

⇒      must combine integer & half-integer representations!

=

● Open: Full understanding of interplay between 
   physical and entanglement symmetries!

● Entanglement symmetry can emerge from physical symmetries



Example: Study of Resonating Valence Bond states
●              invariant PEPS on the kagome lattice:

+ =

singlets

“Resonating Valence
  Bond State” (RVB)

● Natural interpretation of       constraint: fixed parity of singlets along cut



RVB and dimer models
● RVB difficult to study: 
   - configurations not orthogonal, negative signs
   - Topological? Magnetically ordered? 
● resort to dimer models with orthogonal dimers

- can be exactly solved
- topologically ordered

● Interpolation in PEPS (w/ smooth Hamiltonian!):

RVB dimer model

(topological)(topological)
(physical)



Numerical study of the RVB state

⇒ RVB state on kagome lattice is a       topological spin liquid

no overlap of topological sectors
⇒ topologically ordered

● numerical study of interpolation RVB ↔ dimer model
● “transfer operator”: - governs all correlation functions

- topological sector labeled by symmetry

Finite correlation length
⇒ no long range order
⇒ spin liquid

RVB dimer
model

Eigenvalues of 
transfer operator

● can be proven: RVB is (topo. degenerate) ground state of parent Hamiltonian



PEPS allow to study the interplay of physical and
entanglement symmetries and to separately analyze their effect.



Tensor networks: boundary and entanglement



Edge physics of topological models

edge exhibits precisely quantized currents
which are robust to any perturbation

● Fractional Quantum Hall effect (FQHE):

● Such a behavior cannot occur in a truly one-dimensional system:

Physics at the edge has an anomaly!

● Origin of anomalous edge physics: presence of topologically entangled bulk!
● Nature of anomaly characterizes topological order in the bulk



Entanglement spectra
● Entanglement spectra:

“Entanglement spectrum (ES)” 

● FQHE: Entanglement spectrum resembles 
spectrum of anomalous edge theory 
(a conformal field theory)

momentum     associated to 1D boundary

→ Entanglement spectrum can help 
     to characterize topological phases

→ spectrum of 1D “entanglement Hamiltonian”?

FQHE
state

[Li & Haldane, PRL '08]

● Can we understand the relation between entanglement spectrum, 
  edge physics, and topological order in the bulk?
● Can we understand why the entanglement spectrum relates to a 1D system?



Bulk-edge correspondence in PEPS

...
...

...

... ......
... ... ...

...
...

...
... ......

... ... ...

● Bipartition  →   entanglement carried by 

● Allows for direct derivation of entanglement Hamiltonian

lives on entanglement degrees of freedom

●           inherits all symmetries from tensor

→           has natural 1D structure!

degrees of freedom                           at boundary



Edge physics

● How to describe low-energy edge physics for parent Hamiltonian?

● Parametrized by choosing all possible boundary conditions     !
● Edge physics lives on the entanglement degrees of freedom



Topological symmetries at the edge
● Entanglement symmetry inherited by the edge:

→ topological correction to entanglement entropy
→ entanglement Hamiltonian has an anomalous term:

=

● global constraint (here, parity) on entanglement degrees of freedom:
  Only states in even parity sector can appear at boundary!

→ edge physics constrained to even parity sector: anomalous!

● entanglement spectrum and edge physics exhibit the same anomaly,
which originates in the topological order in the bulk



PEPS provide a natural one-dimensional Hilbert space
which describes the edge physics and entanglement spectrum,

and yield an explicit connection between edge physics, 
entanglement spectrum, and bulk topological order. 



Summary

● Entanglement of quantum many-body systems: Area law

● Matrix Product States and PEPS: 
build entanglement locally

● Efficient approximation: powerful numerical tool

● Framework to study structure of many-body systems

● Topological order ↔ entanglement symmetry

● Explicit 1D Hilbert space for entanglement
→ study of entanglement spectra & edge physics

...

... ......
... ...

=


