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Overview

Quantum many-body systems are all around!

0.

condensed matter quantum chemistry high-energy physics

» Can exhibit complex quantum correlations (=multipartite entanglement)

— rich and unconventional physics, but difficult to understand!

* Quantum information and Entanglement Theory:

Toolbox to characterize and utilize entanglement

\,

Aim: Study strongly correlated quantum many-body systems
from the perspective of quantum information + entanglement theory.
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Entanglement structure
of quantum many-body states



Quantum many-body systems

» Wide range of quantum many-body (QMB) systems exists

 Our focus: spin models (=qudits) on lattices:

local interactions

.. typically
cd H = E h;; transl. invariant
(23)
» Realized in many systems:
W“
localized d/f electrons half-filled band quantum simulators,

e.g. optical lattices

 Expecially interested in the ground state |¥),
.e., the lowest eigenvector H |¥) = Ey |¥y)

(It is the “most quantum” state, and it also carries relevant information about excitations.)



Mean-field theory

* In many cases, entanglement in QMB systems is negligible
» System can be studied with product state ansatz

¢ 6.0 .0
é‘%‘%‘%‘é i — % h;  “mean field theory”
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» Consequence of “monogamy of entanglement” (— de Finetti theorem)

» Behavior fully characterized by a single spin |¢) -
- a local property (order parameter) — Landau theory of phases

 Behavior insensitive to boundary conditions, topology, ...



Exotic phases and topological order

 Systems exist which cannot be described by mean field theory

< £

degeneracy depends on system supports
global properties exotic excitations (“anyons”)

.. €.9. Kitaev's “Toric Code”.

— impossible within mean-field ansatz
— ordering in entanglement
— To understand these systems: need to capture their entanglement!

» Useful as quantum memories =
and for topological quantum computing "\




The physical corner of Hilbert space

* How can we describe entangled QMB states?

* general state of NV spins:

[Wo) = Z Cirooin i1, in) € (CHOV = @)

exponentially large Hilbert space! /f/;//

e but then again ... -

H = hi;has only O(N) parameters

(i) /

— ground state | ;) must live in a small “physical corner” of Hilbert space!

* Is there a “nice” way to describe states in the physical corner?
— use entanglement structure!



Entanglement

 Consider bipartition of QMB system into A and B
’

| PaB) =

Schmidt decomposition |®45) = Z,/pk,|ak>A|Bk)B (lak), |B:) ONB)
k

« Schmidt coefficients Pr characterize bipartite entanglement
more disorder — more entanglement

» Measure of entanglement:

Entanglement entropy E(®,5) = S(pa) = — Zpk log pi



Entanglement structure: The area law

« How much is a region of a QMB system entangled with the rest?

cocsveee
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- entanglement entropy S(p ) of a region scales as boundary (vs. volume)

“area law” for entanglement ]

(for Hamiltonians with a spectral gap; but approx. true even without gap)

* Interpretation: entanglement
Is distributed locally
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One dimension: Matrix Product States



An ansatz for states with an area law

O O @ C? O

S [

 each site composed of two auxiliary particles (“virtual particles™)
forming max. entangled bonds |wp) := Zf; . |2,4) (D: “bond dimension”)

« apply linear map (“projector”’) Py : CP x cP — ¢

= |I¢)=(P1®:--@Pn)lwp)®" |

» satisfies area law by construction
- state characterized by P;,..., Py — NdD?* parameters
« family of states: enlarged by increasing D



Formulation in terms of Matrix Products

= > AgliNa. B
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(PLoPo)lwp) = | ¥ AL (e Blas|| £ AR 120y, dlon) [%:T}Tm}
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« iterate this for the whole state ) = (P, @ - @ Py )|wp)®N

py =" (A ARLE L ANLINTG i) “Matrix Product State” (MPS)

(or [y = > (A AR AINLIN G, i) for open boundaries)




Formulation in terms of Tensor Networks
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“Tensor Network States”




Completeness of MPS

 MPS form a complete family - every state can be written as an MPS:

'?:1 '?:2 LI I ] '?:N

D ~ deQ

 Can be understood in terms of teleporting |v) using the entangled bonds

€ 9@ Q@ R 5@ &



Approximation by MPS

» General MPS with possibly very large bond dimension
B S I
« Schmidt decomposition across some cut:

Pas) =Y Pk low) |Be)
k

* Project onto D largest Schmidt values p1,...,pp :

—error €(D) = > px
k>D

» Rapidly decaying p; (<> bounded entropy): total error ~ poly(N,1/D)

- Efficient approximation of states with area law (and thus ground states)



Matrix Product States can efficiently approximate

states with an area law, and ground states of
(gapped) one-dimensional Hamiltonians.




Computing properties of MPS

* Given an MPS |¢), can we compute exp. values (i|O|) for local O ?

- N >
(Y|0|y) = E=) AQA Il»
i A
D
_ [ “transfer operator”]
g E
" OE0E0

(Y|O|p) = [E[llEP], L ElFU R, ERFH2L. -E[N]]

e computing (¥|O]v) = multiplication of D*xD?* matrices

— computation time oc N - D® = poly(N)

« OBC scaling: D* [and if done properly, even D° (PBC) and D> (OBC)]



The transfer operator | A

E = Z A @ A — L
e consider translational invariant system: i A
- 4 >
- || | _121 - | || ..
- S E =3 Milre){l
- H H HAH H H - k
JeHe HEHEHEHE, HEF ES =) Aulre) (]
\ }YEE J k.

« spectrum of transfer operator governs scaling of correlations

(a) largest eigenvalue unique: exponential decay of correlations
(b) largest eigenvalue degenerate: long-range correlations

* uniqueness of purification: £ contains all non-local information about state

e E = Z A' ® A" is Choi matrix of quantum channel € : p — Z A'p(AY)T



Numerical optimization of MPS

* MPS approximate ground states efficiently
 expectation values can be computed efficiently
- can we efficiently find the |¢’) which minimizes ()| H|)?

I I I I I I
— A AR ABI— A4 AP Al —

» various methods:
- DMRG: optimize sequentially Al A2 . &iterate
- gradient methods: optimize all A*! simultaneously
- hybrid methods
.. (Y|H ) is quadratic in each A!*l— each step can be done efficiently

 hard instances exist (NP-hard), but methods practically converge very well

 provably working poly-time method exists



MPS form the basis for powerful variational methods
for the simulation of one-dimensional spin chains



Example: The AKLT state — a rotationally invariant model

@ s-1 P :projector onto the spin-1
TP representationofu @ u=1¢ V,
(u%®%20@1 u)

- = PuQ@u) =V, P

o—=

singlet |w) = [01) — |10)

u®ul|w) = |w)
\ 4
( )
’521 .S:l S=1
“AKLT state”
[T) = PEN| )N _‘_‘_‘_ [Affieck, Kennedy, Lieb & Tasaki, '87]
\_ _J

 Resulting state is invariant under SU(2) (=spin rotation) by construction:

Vo) = (VuP)# N |w) N = (P (u @ w))* N |w)® = POV |w)®Y = |¥)

» Can construct states w/ symmetries by encoding symmetries locally



The AKLT Hamiltonian

P2
e consider 2 sites of AKLT model A

r \
. S=1 ‘ S=1

2 siteshavespin 1®1=001¢X TP Trp

. . 1 _
impossible! 5= —0

e h:=1lg— : h>0 ,and h‘\IJAKLT> =0

= | W axrT) IS a (frustration free) ground state of H = h;

(frustration free = it minimized each ©; individually)

“parent Hamiltonian”

* [ inherits spin-rotation symmetry of state by construction

(specifically, i; = 2[S; - Six1 + 2(Si - Six1)?] +3)

* One can prove: - |U 1) IS the unique ground state of /1
- H has a spectral gap above the ground state

b | =



Parent Hamiltonians

A parent Hamiltonian can be constructed for any MPS:

A [ " [ [
"o ? > Do p¢ lives in d*~dimensional space

-,—.—.— D? possible boundary conditions
C cP

choose ¢ s.th. d* > D?> — p, doesn't have full rank

- Construct parent Hamiltonian h = 1 — Myer(p,) » H =Y h

« Can prove:
- has unique ground state
- has a spectral gap above the ground state

* This + ability of MPS to approximate ground states of general Hamiltonians

— MPS form right framework to study physics of 1D QMB systems



MPS and symmetries

« Symmetries in MPS can always be encoded locally

I |
- - — ‘/&- _VJ[

and conversely

) = ug™ )

_%T p— %_

1
L = e
= = [¢) = ud [¢)
W |
= Hd F=vqd }v

Ryl

« Symmetries are inherited by the parent Hamiltonian!




Fractionalization

» Consider AKLT model on chain with open boundaries
O

T T T T
(o @ & >

» all choices of boundaries ® are ground states of parent Hamiltonian
— zero energy “edge excitations” with spin S = 1

 “fractionalization” of physical spin.S =1 into S =
— impossible in mean-field theory
— non-trivial “topological” phase (“Haldane phase”) I

% at the boundary

e can prove: cannot smoothly connect MPS
with integer and half-integer spin at edge

— inequivalent phases!

Byl




MPS encode physical symmetries locally,

and can be used to model physical systems
and study their different non-trivial phases.




Two dimensions: Projected Entangled Pair States



Two dimensions: Projected Entangled Pair States

 Natural generalization of MPS to two dimensions:

d
¢ e C bond dimension D

— |'%/_"7—/_%-7_
— Ml MI-& I
P v v syl v el v Tensor Network Notation:
L2 e

s ZAa675A7675’

D
) = X 1))

Projected Entangled Pair States (PEPS)

« approximate ground states of local Hamiltonians well
 PEPS form a complete family with accuracy parameter D.

* PEPS can also be defined on other lattices,
in three and more dimensions, even on any graph



2D: Symmetries and parent Hamiltonians

« symmetries can be encoded locally in entanglement degrees of freedom:

Uy A R
L2 =i tzy, — e e
v, R s 2

* however, a general characterization of inverse direction is still missing ...
(but there are partial results)

« we can also define parent Hamiltonians

= 7
L7

 again, a full characterization of ground space and spectral gap is missing ...
(and again, there are partial results)
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Computational complexity of PEPS

» expectation values in PEPS (e.g. correlation functions):
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« approximation methods necessary - e.g. by again using MPS

EHEHEHEo
= T 7
H{EEHEHE
i i i i
o EHHEHE
I | | |
EMNEHERE

] transfer
operator

... exact contraction is a hard problem
(more precisely, #P-hard)



Projected Entangled Pair States (PEPS)
approximate two-dimensional systems faithfully,

can be used for numerical simulations,
and allow to locally encode the physics of 2D systems.




Tensor Networks and Topological Order



The Toric Code model

» Toric Code: ground state = superposition of all loop patterns

0 T < < <

« Hamiltonian: (i) vertex term — enforce closed loops
(i) plaquette term — fix phase when flipping plaquette

» degenerate ground states: o
labeled by parity of loops around torus

 non-trivial excitations:
(i) broken strings (come in pairs) 1
(i) wrong relative phase (also in pairs)




Tensor networks for topological states

e Tensor network for Toric Code:

A 0 1 0 1
<= Sh &8

> 1Ko 1A Ao

0 0 0 0

1 1 1 1

 Toric Code tensor has Zs symmetry (=even parity):

» What are consequences of such an entanglement symmetry in a PEPS?



Entanglement symmetry and pulling through

« Symmetry can be rephrased as “pulling-through condition”:

-
-
..........................

» pulling-through condition = Strings can be freely moved!

- = 2w
J@z/*‘zy'j;_ — ﬁ/://;—/—,'ﬁzﬁ‘zlj_
S a3 S a2

« Strings are invisible locally (e.g. to Hamiltonian)

"/ "/ "/ "/
| ==~ == _ == /_z‘ﬁ
27 2

Tz 2 B e g
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* Note: Generalization of “pulling-through condition”
allows to characterize all known (hon-chiral) topological phases



Topological ground space manifold

 Torus: closed strings yield different ground states

» degeneracy depends on topology (genus): Topological order!

— local characterization of topological order

— parametrization of ground space manifold
based on symmetry of single tensor

— gives us the tools to explicitly construct & study ground states
— works for systems with finite correlation length



Symmetries and excitations

» Strings w/ open ends: 4z 4= ~14=
— endpoints = excitations T—gﬁ‘/—l-%ﬁrl‘% I;
— excitations come in pairs 7|;ﬁ/_|—§ﬁ/—|§ ZI/-_&
L

* tensors with odd parity: e A ey A
Z | |'§ﬁr"§—
/ / /

— cannot be created locally
— must also come in pairs

I I I I
* these two types of excitations have Lz _%7:27]77_;7
non-trivial mutual statistics! %ﬁ z7

A A a2

 modeling of anyonic excitations
from local symmetries of tensor

- fully local description also at finite correlation length



Topological order in PEPS can be comprehensively
modeled based on a local entanglement symmetry.



Interplay of physical and entanglement symmetries

» spin-3 model: how can we encode SU(2) symmetry?

\t—rwr—l
Il
N
D
-)
N[
D
-

= V, must combine integer & half-integer representations!

e constraint: number of half-integer representations must be odd

Z §=3
—gb— = - Z—@b—z 7 = @d counts half-int. spins
Z S

=0

« Entanglement symmetry can emerge from physical symmetries

* Open: Full understanding of interplay between
physical and entanglement symmetries!



Example: Study of Resonating Valence Bond states

« SU(2) invariant PEPS on the kagome lattice:

N~

@0
©0

N —

1
4‘*#*4 W+ L =
} ‘tf %GBO

“Resonating Valence
Bond State” (RVB)

singlets %\T,U — 41

» Natural interpretation of Zs constraint: fixed parity of singlets along cut



RVB and dimer models

« RVB difficult to study:

- configurations not orthogonal, negative signs (O‘ O) _ 23/2

- Topological? Magnetically ordered?

* resort to dimer models with orthogonal dimers (/ \‘ -
DIO)

- can be exactly solved
- topologically ordered

* Interpolation in PEPS (w/ smooth Hamiltonian!):

Z %X?VBﬁ Z

£0)

—4j<—> =

) (physical)

% >dimer model

topolo@ @(topolog@



Numerical study of the RVB state (

« numerical study of interpolation RVB < dimer model

* “transfer operator”: - governs all correlation functions ‘g\ p
|

- topological sector labeled by symmetry

1

Eigenvalues of
081~ transfer operator

0.6 /
0.4 = Finite correlation length

02__ / ] = no long range order
| \ _ = spin liquid
L —t— dimer

\ ] I
RVB =G5~ 04 06 08 model

— RVB state on kagome lattice is a Z, topological spin liquid

 can be proven: RVB is (topo. degenerate) ground state of parent Hamiltonian



PEPS allow to study the interplay of physical and
entanglement symmetries and to separately analyze their effect.



Tensor networks: boundary and entanglement



Edge physics of topological models

* Fractional Quantum Hall effect (FQHE):

edge exhibits precisely quantized currents
which are robust to any perturbation

» Such a behavior cannot occur in a truly one-dimensional system:

Physics at the edge has an anomaly!

* Origin of anomalous edge physics: presence of topologically entangled bulk!

* Nature of anomaly characterizes topological order in the bulk



Entanglement spectra

» Entanglement spectra: [Li & Haldane, PRL '08]

FQHE 1Y) = Ze_E"" ;) ® |B:)
state
) “Entanglement spectrum (ES)” E; = E; (k)

momentum £ associated to 1D boundary
— spectrum of 1D “entanglement Hamiltonian™?

« FQHE: Entanglement spectrum resembles
spectrum of anomalous edge theory
(a conformal field theory)

— Entanglement spectrum can help
to characterize topological phases
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« Can we understand the relation between entanglement spectrum,
edge physics, and topological order in the bulk?

» Can we understand why the entanglement spectrum relates to a 1D system?



Bulk-edge correspondence in PEPS

e Bipartition |®45) = Z VDilai)|Bi) — entanglement carried by

degrees of freedom ¢ = (¢1,...,77,) at boundary

* Allows for direct derivation of entanglement Hamiltonian

e_ ent < 0-

<+ lives on entanglement degrees of freedom

— H_,+ has natural 1D structure!

 H., inherits all symmetries from tensor



Edge physics

« How to describe low-energy edge physics for parent Hamiltonian?

e %

o2 7 5 12 ® ®

fé ¢ 6 ¢ ® ®

» Parametrized by choosing all possible boundary conditions e !

» Edge physics lives on the entanglement degrees of freedom



Topological symmetries at the edge

 Entanglement symmetry inherited by the edge:

Z Z Z
| Z % o Z-/;"%-/;'é—/;"é-z
—Qlj‘:Z—QjZ » L 2 2 Z—/;I H/_l H;l A7
Z S R 2 3 222 2 7
Z Z Z

* global constraint (here, parity) on entanglement degrees of freedom:
Only states in even parity sector can appear at boundary!

— topological correction to entanglement entropy

— entanglement Hamiltonian has an anomalous term:
—H —H o o'H opo
p = 1_Ievene 1_Ieven — € ThPreop top

— edge physics constrained to even parity sector: anomalous!

- entanglement spectrum and edge physics exhibit the same anomaly,
which originates in the topological order in the bulk



PEPS provide a natural one-dimensional Hilbert space
which describes the edge physics and entanglement spectrum,

and yield an explicit connection between edge physics,
entanglement spectrum, and bulk topological order.




Summary

* Entanglement of quantum many-body systems: Area law desssoseels
: e e
» Matrix Product States and PEPS: Yz 2 2
build entanglement locally L2

« Efficient approximation: powerful numerical tool

» Framework to study structure of many-body systems _47gj Jgﬁvg%
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« Explicit 1D Hilbert space for entanglement
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