

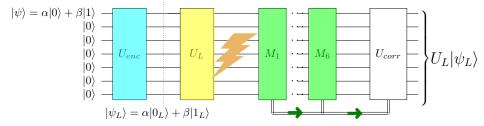
APPLICATION OF A RESOURCE THEOR FOR MAGIC STATES TO FAULT-TOLERANT QUANTUM COMPUTING

Howard & Campbell arXiv:1609.07488

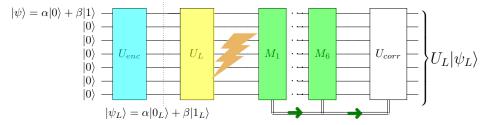
Earl Campbell Sheffield

O Mark Howard

• Need error-correcting code to protect our quantum computation



• Need error-correcting code to protect our quantum computation



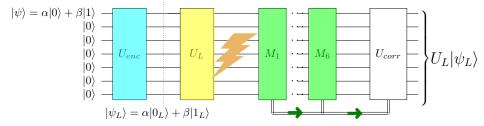
 \bullet Stabilizer codes \rightsquigarrow gates from finite Clifford group ${\mathcal C}$

$$\mathcal{C} = \left\langle \begin{array}{c} \bullet \\ \bullet \end{array}, \begin{array}{c} \text{Symmetry} \\ \text{group of} \end{array} \right\rangle = \left\langle CNOT, H, S = \sqrt{Z} \right\rangle$$

Encoding/correction are Clifford. Typically U_L gates too.

Problem: Can't get transversal & universal (dense) set of gates U_L (e.g. Toric)

• Need error-correcting code to protect our quantum computation



 \bullet Stabilizer codes \rightsquigarrow gates from finite Clifford group ${\mathcal C}$

$$\mathcal{C} = \left\langle \begin{array}{c} \bullet \\ \bullet \end{array}, \begin{array}{c} \text{Symmetry} \\ \text{group of} \end{array} \right\rangle = \left\langle CNOT, H, S = \sqrt{Z} \right\rangle$$

Encoding/correction are Clifford. Typically U_L gates too.

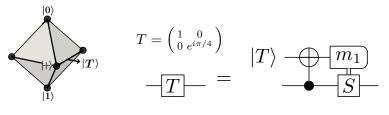
Problem: Can't get transversal & universal (dense) set of gates U_L (e.g. Toric)

Solution: Supplement transversal gates with supply of "Magic States"

- Q: What's a magic state?
- A: A state that enables a non-Clifford gate e.g., $|T\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{i\pi/4}|1\rangle)$

- Q: What's a magic state?
- **A:** A state that enables a non-Clifford gate e.g., $|T\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{i\pi/4}|1\rangle)$

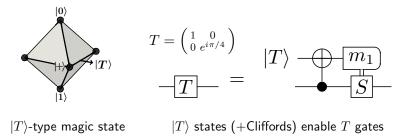
□ It is **not** a Pauli eigenstate (stabilizer state)



|T
angle-type magic state |T
angle states (+Cliffords) enable T gates

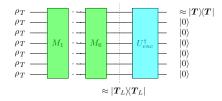
- Q: What's a magic state?
- **A:** A state that enables a non-Clifford gate e.g., $|T\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{i\pi/4}|1\rangle)$

□ It is **not** a Pauli eigenstate (stabilizer state)

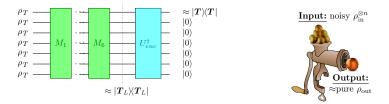


Adding the ability to do $U \notin C$ promotes Cliffords to Universal QC

$$\langle \stackrel{\bullet}{\longrightarrow}, \stackrel{\text{Symmetry}}{\bigoplus} \rangle \neq \text{UQC} = \langle \stackrel{\bullet}{\longrightarrow}, \stackrel{\text{Symmetry}}{\bigoplus}, T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix} \rangle$$



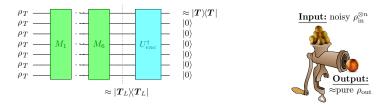
MSD schematic



MSD schematic

 $\bullet\,$ Overhead associated with MSD is polynomial in the number of T gates used

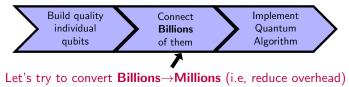
- Logical Cliffords (2% 10% overhead)
- Logical Non-Clifford e.g. T gate (90% 98% overhead including MSD)



MSD schematic

 $\bullet\,$ Overhead associated with MSD is polynomial in the number of T gates used

- Logical Cliffords (2% 10% overhead)
- Logical Non-Clifford e.g. T gate (90% 98% overhead including MSD)

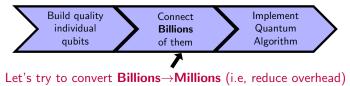




MSD schematic

 $\bullet\,$ Overhead associated with MSD is polynomial in the number of T gates used

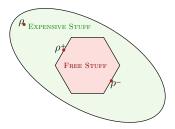
- Logical Cliffords (2% 10% overhead)
- Logical Non-Clifford e.g. T gate (90% 98% overhead including MSD)



• Clifford Z and $S=Z^{\frac{1}{2}}$ rotations "easy" but $T=Z^{\frac{1}{4}}$ gates hard since $\mathbf{Encoded}$

C Mark Howard

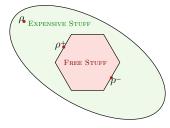
Natural partition into easy/hard operations \Rightarrow Resource Theory. Expense quantifier must obey certain reasonable properties to be useful!



Generic Resource

O Mark Howard

Natural partition into easy/hard operations \Rightarrow Resource Theory. Expense quantifier must obey certain reasonable properties to be useful!



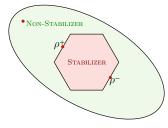
$$\mathcal{R}(\rho) = \min_{\rho^+, \rho^- \in \mathcal{P}_{\text{FREE}}} \{ 2p + 1 | \rho = (p+1)\rho^+ - p\rho^- \}$$

Robustness quantifies expensive stuff. <u>Defn:</u> How much free stuff must be mixed in to make your expensive stuff become free.

Generic Resource

C Mark Howard

Natural partition into easy/hard operations \Rightarrow Resource Theory. Expense quantifier must obey certain reasonable properties to be useful!



$$\mathcal{R}(\rho) = \min_{\rho^+, \rho^- \in \mathcal{P}_{\text{FREE}}} \{ 2p + 1 | \rho = (p+1)\rho^+ - p\rho^- \}$$

Robustness quantifies expensive stuff. <u>Defn:</u> How much free stuff must be mixed in to make your expensive stuff become free.

$$\mathcal{R}(\rho) = \min_{\rho^+, \rho^- \in \mathcal{P}_{\text{STAB}}} \{ 2p + 1 | \rho = (p+1)\rho^+ - p\rho^- \}$$

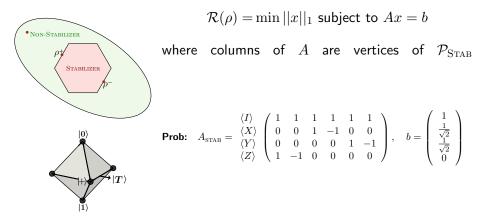
Multi-qubit QC

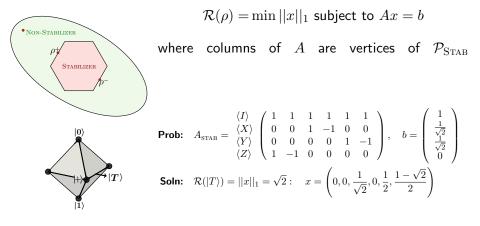
Resource Desiderata

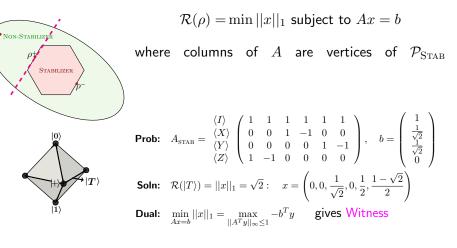
\ldots or take $\log \mathcal{R}$

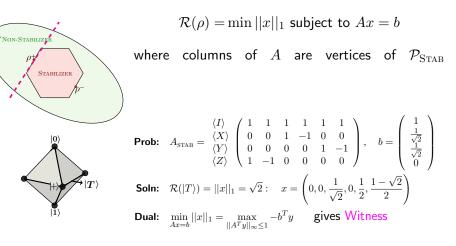
- $\mathcal{R}(\rho) \geq 1$, $(\mathcal{R}(\rho \in \mathcal{P}_{\text{stab}}) = 1)$
- $\mathcal{R}(\rho_1 \otimes \rho_2) \leq \mathcal{R}(\rho_1)\mathcal{R}(\rho_2)$
- $\mathcal{R}\left(\mathcal{E}_{\text{STAB}}(\rho)\right) \leq \mathcal{R}\left(\rho\right)$
- $\ldots \Rightarrow$ Well-behaved quantifier

- $\log \mathcal{R}(\rho) \ge 0$,
- $\log \mathcal{R}(\rho_1 \otimes \rho_2) \leq \log \mathcal{R}(\rho_1) + \log \mathcal{R}(\rho_2)$
- $\log \mathcal{R}\left(\mathcal{E}_{\text{STAB}}(\rho)\right) \leq \log \mathcal{R}\left(\rho\right)$









Use CVX with MATLAB... Guaranteed to converge

Syntax: variable x(n);minimize(norm(x,1));subject to A*x == b Only downside is n (vertices) grows rapidly {6,60,1080,36720,2423520,...}

Three immediate applications of Robustness of Magic

Simulation of quantum circuits

Clifford gates and T gates \Rightarrow Universal QC (shouldn't be efficiently simulable) **Result:** Robustness gives an exponential simulation protocol with small exponent. (Not just T gates ... any third level hierarchy gate U works)

Three immediate applications of Robustness of Magic

Simulation of quantum circuits

Clifford gates and T gates \Rightarrow Universal QC (shouldn't be efficiently simulable) **Result:** Robustness gives an exponential simulation protocol with small exponent. (Not just T gates ... any third level hierarchy gate U works)

② Lower bounds on number of T gates and proving optimality

Result: At least τ T gates are required to implement interesting non-Clifford U.

Three immediate applications of Robustness of Magic

Simulation of quantum circuits

Clifford gates and T gates \Rightarrow Universal QC (shouldn't be efficiently simulable) **Result:** Robustness gives an exponential simulation protocol with small exponent. (Not just T gates ... any third level hierarchy gate U works)

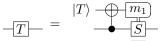
Q Lower bounds on number of T gates and proving optimality **Result:** At least τ T gates are required to implement interesting non-Clifford U.

Identify new circuit identities

Result: Surprising Clifford-equivalence of Magic states

Realize that

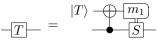
a quantum circuit with $\tau~T$ gates is equivalent to a purely Clifford circuit acting on τ magic states $|T\rangle$



Realize that

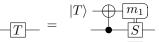
a quantum circuit with $\tau \; T$ gates is equivalent to

a purely Clifford circuit acting on τ magic states $|T\rangle$



2 Adapt the efficient classical simulation schemes for Clifford circuits to allow magic state inputs e.g., input= $|0\rangle^{\otimes n-\tau}|T\rangle^{\otimes \tau}$

- Realize that
 - a quantum circuit with $\tau \; T$ gates is equivalent to
 - a purely Clifford circuit acting on τ magic states $|T\rangle$



2 Adapt the efficient classical simulation schemes for Clifford circuits to allow magic state inputs e.g., input= $|0\rangle^{\otimes n-\tau}|T\rangle^{\otimes \tau}$

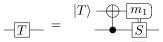
Robustness gives a quasiprobability distribution over stabilizer states:

$$\mathcal{R}(\rho) = \min_{x} \left\{ \sum_{i} |x_{i}|; \rho = \sum_{i} x_{i} \left(\text{Stabilizer State} \right)_{i} \right\} \quad \sum_{i} x_{i} = 1$$

Realize that

a quantum circuit with $\tau \ T$ gates is equivalent to

a purely Clifford circuit acting on τ magic states $|T\rangle$



 $\label{eq:Adapt the efficient classical simulation schemes for Clifford circuits to allow magic state inputs e.g., input= |0\rangle^{\otimes n-\tau}|T\rangle^{\otimes \tau}$

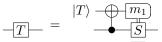
probability: $q_i = |x_i| / \sum_i |x_i|$

Robustness gives a quasiprobability distribution over stabilizer states:

$$\mathcal{R}(\rho) = \min_{x} \left\{ \sum_{i} |x_{i}|; \rho = \sum_{i} x_{i} \left(\text{Stabilizer State} \right)_{i} \right\} \quad \sum_{i} x_{i} = 1$$

Simulation takes longer to converge to desired accuracy (Chernoff-Hoeffding) Require $\frac{2}{\delta^2} (\sum_i |x_i|)^2 \ln \left(\frac{2}{\epsilon}\right)$ samples to get δ -close to real dist. with prob $1 - \epsilon$

- Realize that
 - a quantum circuit with $\tau \; T$ gates is equivalent to
 - a purely Clifford circuit acting on τ magic states $|T\rangle$



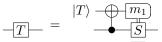
2 Adapt the efficient classical simulation schemes for Clifford circuits to allow magic state inputs e.g., input= $|0\rangle^{\otimes n-\tau}|T\rangle^{\otimes \tau}$

Robustness gives a quasiprobability distribution over stabilizer states:

$$\mathcal{R}(\rho) = \min_{x} \left\{ \sum_{i} |x_{i}|; \rho = \sum_{i} x_{i} \left(\text{Stabilizer State} \right)_{i} \right\} \quad \sum_{i} x_{i} = 1$$

Simulation takes longer to converge to desired accuracy (Chernoff-Hoeffding) Require $\frac{2}{\delta^2} (\sum_i |x_i|)^2 \ln \left(\frac{2}{\epsilon}\right)$ samples to get δ -close to real dist. with prob $1 - \epsilon$ \Rightarrow Robustness has operational meaning as the classical simulation overhead

- Realize that
 - a quantum circuit with $\tau \ T$ gates is equivalent to
 - a purely Clifford circuit acting on τ magic states $|T\rangle$



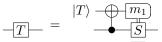
⊘ Adapt the efficient classical simulation schemes for Clifford circuits to allow magic state inputs e.g., input= $|0\rangle^{\otimes n-\tau}|T\rangle^{\otimes \tau}$... $\mathcal{R}(|T\rangle^{\otimes \tau}) = 1.685^{\tau}$

Robustness gives a quasiprobability distribution over stabilizer states:

$$\mathcal{R}(\rho) = \min_{x} \left\{ \sum_{i} |x_{i}|; \rho = \sum_{i} x_{i} \left(\text{Stabilizer State} \right)_{i} \right\} \quad \sum_{i} x_{i} = 1$$

Simulation takes longer to converge to desired accuracy (Chernoff-Hoeffding) Require $\frac{2}{\delta^2} (\sum_i |x_i|)^2 \ln \left(\frac{2}{\epsilon}\right)$ samples to get δ -close to real dist. with prob $1 - \epsilon$ \Rightarrow Robustness has operational meaning as the classical simulation overhead

- Realize that
 - a quantum circuit with $\tau \ T$ gates is equivalent to
 - a purely Clifford circuit acting on τ magic states $|T\rangle$



⊘ Adapt the efficient classical simulation schemes for Clifford circuits to allow magic state inputs e.g., input= $|0\rangle^{\otimes n-\tau}|T\rangle^{\otimes \tau}$... $\mathcal{R}(|T\rangle^{\otimes \tau}) = 1.685^{\tau}$

 $[\mathsf{BSS'16}]\;\chi(|T\rangle^{\otimes\tau}) \rightsquigarrow 1.919^\tau$

Robustness gives a quasiprobability distribution over stabilizer states:

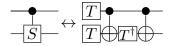
$$\mathcal{R}(\rho) = \min_{x} \left\{ \sum_{i} |x_{i}|; \rho = \sum_{i} x_{i} \left(\text{Stabilizer State} \right)_{i} \right\} \quad \sum_{i} x_{i} = 1$$

Simulation takes longer to converge to desired accuracy (Chernoff-Hoeffding) Require $\frac{2}{\delta^2} (\sum_i |x_i|)^2 \ln \left(\frac{2}{\epsilon}\right)$ samples to get δ -close to real dist. with prob $1 - \epsilon$ \Rightarrow Robustness has operational meaning as the classical simulation overhead Circuit using n copies of resource state ρ has simulation cost $\mathcal{R}(\rho)^{2n}$ Cost of simulating a circuit with $|T\rangle^{\otimes \tau}$ ancilla? Submultiplicativity gives savings here:

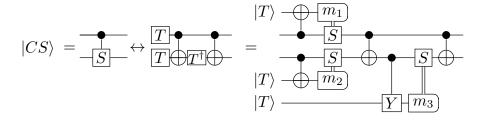
> $\mathcal{R}(|T\rangle)^{2\tau} \sim 2^{\tau}$ $\mathcal{R}(|T,T\rangle)^{\frac{2\tau}{2}} \sim 1.748^{\tau}$ $\mathcal{R}(|T,T,T\rangle)^{\frac{2\tau}{3}} \sim 1.701^{\tau}$ $\mathcal{R}(|T,T,T,T\rangle)^{\frac{2\tau}{4}} \sim 1.692^{\tau}$ $\mathcal{R}(|T,T,T,T,T\rangle)^{\frac{2\tau}{5}} \sim 1.685^{\tau}$: : $\lim_{n \to \infty} \mathcal{R}\left(|T^{\otimes n}\rangle\right)^{\frac{2\tau}{n}} \sim \in [1.457^{\tau}, 1.685^{\tau}]$

Thm: Regularized robustness of $ho=(r_x,r_y,r_z)$ lower-bounded by $rac{1+r_x+r_y+r_z}{2}$

A quantum algorithm will require a sequence of unitaries and measurements. These unitaries will not be Clifford+T in general so we must compile. We must not waste hard-earned T gates

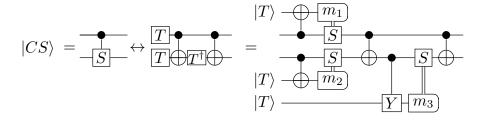


A quantum algorithm will require a sequence of unitaries and measurements. These unitaries will not be Clifford+T in general so we must compile. We must not waste hard-earned T gates



Idea: Compare robustness of target gate $|U\rangle := U|+\rangle$ with $\mathcal{R}(|T\rangle^{\otimes \tau})$

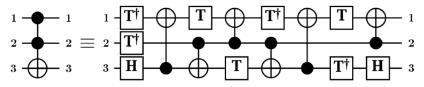
A quantum algorithm will require a sequence of unitaries and measurements. These unitaries will not be Clifford+T in general so we must compile. We must not waste hard-earned T gates

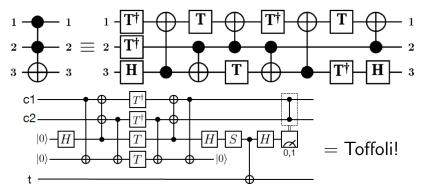


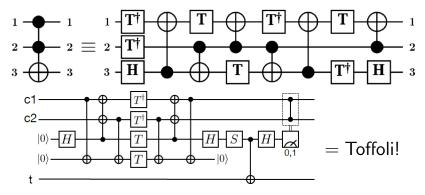
Idea: Compare robustness of target gate $|U\rangle := U|+\rangle$ with $\mathcal{R}(|T\rangle^{\otimes \tau})$

 $\begin{array}{ll} \mbox{Calculate and find:} & \mathcal{R}(|T\rangle^{\otimes 2}) < \mathcal{R}(|CS\rangle) < \mathcal{R}(|T\rangle^{\otimes 3}) \\ & 1.747 < 2.2 & \lesssim 2.219 \end{array}$

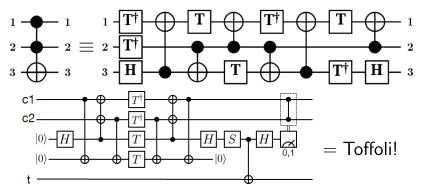
meaning no possible scheme could implement CS using fewer than 3 T gates.







How do we know there is no way of doing Toffoli with 3 T gates (or 2 or 1)?



How do we know there is no way of doing Toffoli with 3 T gates (or 2 or 1)? Once again, our resource theory allows us to say

$$\mathcal{R}(|T\rangle^{\otimes 3}) < \mathcal{R}(|\mathsf{Toffoli}\rangle) < \mathcal{R}(|T\rangle^{\otimes 4}).$$

and so 4 T gates is the minimum possible. We have shown (non-)optimality of several important circuits

 $T \operatorname{cost} = 7$

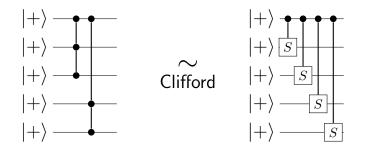
 $T \operatorname{cost} = 4$

 $T \operatorname{cost} = 74$ $T \operatorname{cost} = 4$

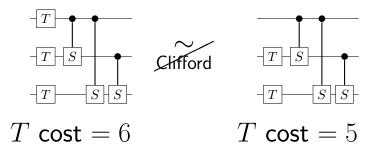
 $\mathcal{R}(|CCZ\rangle) = 2.555 = \mathcal{R}(|CS_{12,13}\rangle)$

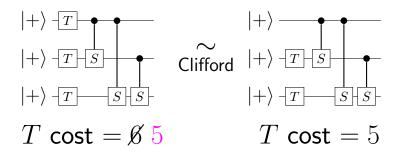
 $T \operatorname{cost} = 11$

 $T \operatorname{cost} = 8$



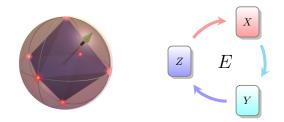
 $T \operatorname{cost} = \mathcal{H} 8 \qquad T \operatorname{cost} = 8$ $\mathcal{R}(|CCZ_{123,145}\rangle) = 4.077 = \mathcal{R}(|CS_{12,13,14,15}\rangle)$



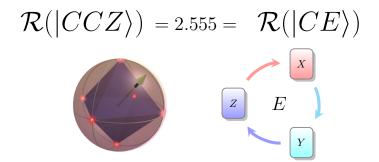


 $\mathcal{R}(|T_{1,2,3}CS_{12,13,23}\rangle) = 3.121 = \mathcal{R}(|T_{2,3}CS_{12,13,23}\rangle)$

 $T \operatorname{cost} = 7$ $T \operatorname{cost} = 4$



 $T \operatorname{cost} = 74$ $T \operatorname{cost} = 4$



In Summary

Protecting qubits from errors incurs an overhead:

While Clifford gates (CNOT, H etc) are easily implementable, T gates are costly ... This suggests a resource theory picture

• We used Robustness of Magic as the resource quantifier.

Simulate quantum circuits with modestly exponential (in T gates) samples
 Identify (non-)optimality of circuit synthesis (compilation)...prevent T wastage

Sind Clifford-equivalent magic states

Bonus: This norm-minimization approach (Ax = b) encompasses all similar known results (ℓ_0 norm, kets, Wigner polytope)...different quantifiers

In Summary

Protecting qubits from errors incurs an overhead:

While Clifford gates (CNOT, H etc) are easily implementable, T gates are costly ... This suggests a resource theory picture

• We used Robustness of Magic as the resource quantifier.

Simulate quantum circuits with modestly exponential (in T gates) samples
 Identify (non-)optimality of circuit synthesis (compilation)...prevent T wastage
 Find Clifford-equivalent magic states

Bonus: This norm-minimization approach (Ax = b) encompasses all similar known results (ℓ_0 norm, kets, Wigner polytope)...different quantifiers

Open Questions

- Q: Is there a scalable way of calculating a Magic Resource?
- **Q:** Is a measure that combines different quantifiers possible/preferable?
- Q: Can we establish interconvertability results a la Entanglement?
- **Q:** Algorithms to calculate the T cost for ancilla states $|U\rangle$?