Separations in communication complexity using cheat sheet and information complexity

Anurag Anshu ${ }^{a}$, Aleksandrs Belovs ${ }^{b}$, Shalev Ben-David ${ }^{c}$, Mika Göös ${ }^{d}$, Rahul Jain ${ }^{a, e, f}$, Robin Kothari ${ }^{c}$, Troy Lee ${ }^{a, f, g}$, Miklos Santha ${ }^{a, h}$
${ }^{a}$ CQT, National University of Singapore
${ }^{b}$ University of Latvia
${ }^{c}$ Massachusetts Institute of Technology ${ }^{d}$ SEAS, Harvard University
${ }^{e}$ Dept. of CS, National University of Singapore
${ }^{f}$ MajuLab, UMI 3654, Singapore
${ }^{g}$ SPMS, Nanyang Technological University
${ }^{h}$ IRIF, Université Paris Diderot, CNRS
January 16, 2017

Roadmap

(1) Some background

(2) New separations in communication complexity

Separations in query complexity

- For a function F, Randomized (make an error of $1 / 3$) query complexity $\mathrm{R}^{d t}(F)$, Quantum (make error of $1 / 3$) query complexity $\mathrm{Q}^{d t}(F)$.
- Quadratic separation: using Grover's search algorithm [Grov95] and its variant proved in [BBHT96].
- OR: $\{0,1\}^{n} \rightarrow\{0,1\}$ outputs 1 if the input contains at least one 1 .

Communication complexity

- Randomized communication complexity $\mathrm{R}(F)$: number of bits communicated in a randomized protocol.
- Quantum communication complexity $\mathrm{Q}(F)$: number of qubits communicated in an entanglement assisted quantum protocol.
- Information complexity $I C(F)$: amount of information about input that must be revealed (to other party) to compute the function.

Porting query separations to communication

- A quantum query algorithm for a function gives rise to a quantum communication protocol for a related function [BCW98].
- Disjointness function DISJ inputs two subsets x, y of the set $\{1,2, \ldots n\}$ and outputs 0 if the subsets are disjoint.
- $\operatorname{DISJ}(x, y)=\operatorname{OR}\left(x_{1}\right.$ AND y_{1}, x_{2} AND y_{2}, \ldots, x_{n} AND $\left.y_{n}\right)!!$

Super-Grover query separation

- Aaronson, Ben-David and Kothari [2016] introduced the technique of cheat sheet.
- $F_{c s}$ has two components: ' c ' copies of a parent function F and a cheat sheet cs.
- Compute based on inputs to functions and content at 'decimal(b)'.

Separating exact quantum and randomized

- Exact quantum query complexity of F, denoted $\mathrm{Q}_{E}^{d t}(F)$, is number of quantum queries needed to compute F with zero error.
- Similarly we define $\mathrm{Q}_{E}(F)$ for communication complexity.

	Q		Q_{E}	
R	$\begin{array}{c}2.5 \\ {[\mathrm{ABK16}]} \\ d t\end{array}$	2	$\begin{array}{c}1.15 \\ \text { com }\end{array}$	$\begin{array}{c}1.15 \\ d t\end{array}$

com\end{array}\right]\)

Separating exact quantum and randomized

- Exact quantum query complexity of F, denoted $\mathrm{Q}_{E}^{d t}(F)$, is number of quantum queries needed to compute F with zero error.
- Similarly we define $\mathrm{Q}_{E}(F)$ for communication complexity.

	Q		Q_{E}	
R	$\begin{array}{c}2.5 \\ {[\mathrm{ABK} 16]} \\ d t\end{array}$	2	$\begin{array}{c}1.5 \\ \text { com }\end{array}$	$\begin{array}{c}1.15 \\ \text { cABK16] } \\ d t\end{array}$

com\end{array}\right]\)

Partition and Randomized

- Unambiguous certificate complexity $\mathrm{UN}^{d t}$ is a lower bound on deterministic query complexity. Analogously Partition number UN in communication complexity.
- Goos, Pitassi, Watson [2015] presented first super linear separation between UN ${ }^{d t}$ and deterministic query complexity. Similar result in communication complexity.

	Q		Q_{E}		UN	
	2.5	2	1.5	1.15	1.5	1.5
R	[ABK16]		[ABK16]	[Amb12]	[GJPW]	[GJPW]
	$d t$	com	$d t$	com	$d t$	com

Partition and Randomized

- Unambiguous certificate complexity $\mathrm{UN}^{d t}$ is a lower bound on deterministic query complexity. Analogously Partition number UN in communication complexity.
- Goos, Pitassi, Watson [2015] presented first super linear separation between UN ${ }^{d t}$ and deterministic query complexity. Similar result in communication complexity.

	Q		Q_{E}		UN	
R	$\left[\begin{array}{c} 2.5 \\ {[\mathrm{ABK} 16]} \end{array}\right.$	2	$\left.\left\lvert\, \begin{array}{c} 1.5 \\ {[\mathrm{ABK} 16]} \end{array}\right.\right]$	$\begin{gathered} 1.15 \\ {[\mathrm{Amb12}} \end{gathered}$	2 [AKK16]	$\begin{gathered} 1.5 \\ {[G J P W]} \end{gathered}$
	$d t$	com	$d t$	com	$d t$	com

Super-Disjointness in communication world?

- Can we somehow lift these query results to communication? What gadgets should be used?
- AND is not a good: $\operatorname{AND}\left(x_{1}\right.$ AND y_{1}, \ldots, x_{n} AND $\left.y_{n}\right)$ is easy.
- Inner Product lifts a lower bound (junta degree) on $\mathrm{R}^{d t}(F)$ to a lower bound on communication complexity $\mathrm{R}(F)$ (smooth rectangle bound) [GLMWZ, 2015].
- But we have no idea what is junta degree for cheat sheet function.

Look-up function $F_{\mathcal{G}}$

$$
\begin{gathered}
F: \mathcal{X} \otimes \mathcal{Y} \rightarrow\{0,1\} \\
F_{1}, F_{2} \ldots F_{c} \equiv F
\end{gathered}
$$

$u_{0}, v_{0}, u_{1}, v_{1} \ldots u_{2^{c}}, v_{2^{c}} \in W$
$\mathcal{G}: \mathcal{X}^{\otimes c} \otimes \mathcal{Y}^{\otimes c} \otimes W \rightarrow\{0,1\}$

W is set of strings of size $\mathcal{O}\left(n^{2}\right)$

Look-up function $F_{\mathcal{G}}$

$b=\left(F_{1}, F_{2}, \ldots F_{c}\right)$

Look-up function $F_{\mathcal{G}}$

Look-up function $F_{\mathcal{G}}$

Lower bound on communication complexity of look-up function

- For reasonably non-trivial function \mathcal{G}, we show the following.

Theorem
$\mathrm{R}\left(F_{\mathcal{G}}\right)=\Omega\left(\mathrm{R}(F) / c^{2}\right)$ and $I C\left(F_{\mathcal{G}}\right)=\Omega\left(I C(F) / c^{3}\right)$.

An idea of the proof: pointer function

$$
\begin{gathered}
F: \mathcal{X} \otimes \mathcal{Y} \rightarrow\{0,1\} \\
F_{1}, F_{2} \ldots F_{c} \equiv F
\end{gathered}
$$

An idea of the proof: pointer function

$$
\begin{gathered}
F: \mathcal{X} \otimes \mathcal{Y} \rightarrow\{0,1\} \\
F_{1}, F_{2} \ldots F_{c} \equiv F
\end{gathered}
$$

$$
\begin{gathered}
\stackrel{\text { compute }}{\left(F_{1}, F_{2}, \ldots F_{c}\right)} \text {) }
\end{gathered}
$$

An idea of the proof: pointer function

$$
\begin{gathered}
F: \mathcal{X} \otimes \mathcal{Y} \rightarrow\{0,1\} \\
F_{1}, F_{2} \ldots F_{c} \equiv F
\end{gathered}
$$

Output $u_{b} \oplus v_{b}$

An idea of the proof: pointer function

$$
\begin{gathered}
F: \mathcal{X} \otimes \mathcal{Y} \rightarrow\{0,1\} \\
F_{1}, F_{2} \ldots F_{c} \equiv F
\end{gathered}
$$

Hard distribution for F: μ Distribution for pointer: $\mu^{\otimes c} \otimes$ uniform $_{U V}$

An idea of the proof: pointer function

$$
\begin{gathered}
F: \mathcal{X} \otimes \mathcal{Y} \rightarrow\{0,1\} \\
F_{1}, F_{2} \ldots F_{c} \equiv F
\end{gathered}
$$

$$
\begin{gathered}
\text { transcript } \Pi \\
\mathrm{I}(\Pi: b \mid U V Y) \text { small } \\
\mathrm{I}(\Pi U: b \mid V Y) \text { small }
\end{gathered}
$$

An idea of the proof: pointer function

$$
\begin{gathered}
F: \mathcal{X} \otimes \mathcal{Y} \rightarrow\{0,1\} \\
F_{1}, F_{2} \ldots F_{c} \equiv F
\end{gathered}
$$

transcript Π

$\left[(\Pi \cup)_{b, v, y} \approx(\Pi \cup)_{v, y}\right]$ averaged over b, v, y

An idea of the proof: pointer function

$$
\begin{gathered}
F: \mathcal{X} \otimes \mathcal{Y} \rightarrow\{0,1\} \\
F_{1}, F_{2} \ldots F_{c} \equiv F
\end{gathered}
$$

$\mathrm{I}\left(\Pi: U_{b} \mid V Y\right)$ small

 b distributed correctly

An idea of the proof: pointer function

$$
\begin{gathered}
F: \mathcal{X} \otimes \mathcal{Y} \rightarrow\{0,1\} \\
F_{1}, F_{2} \ldots F_{c} \equiv F
\end{gathered}
$$

$$
\left[\left(\Pi U_{b}\right)_{v, y} \approx \Pi_{v, y} \otimes U_{b}\right]
$$ averaged over b, v, y

An idea of the proof: pointer function

$$
\begin{gathered}
F: \mathcal{X} \otimes \mathcal{Y} \rightarrow\{0,1\} \\
F_{1}, F_{2} \ldots F_{c} \equiv F
\end{gathered}
$$

$\left[\left(\Pi U_{b}\right)_{v, y} \approx \Pi_{v, y} \otimes U_{b}\right]$ $\left[(\Pi \cup)_{b, v, y} \approx(\Pi U)_{v, v}\right]$ averaged over b, v, y

An idea of the proof: pointer function

$$
\begin{gathered}
F: \mathcal{X} \otimes \mathcal{Y} \rightarrow\{0,1\} \\
F_{1}, F_{2} \ldots F_{c} \equiv F
\end{gathered}
$$

$\left[\left(\Pi U_{b}\right)_{v, y} \approx \Pi_{v, y} \otimes U_{b}\right]$ $\left[\left(\Pi U_{b}\right)_{b, v, y} \approx\left(\Pi U_{b}\right)_{v, y}\right]$ averaged over b, v, y

An idea of the proof: pointer function

$$
\begin{gathered}
F: \mathcal{X} \otimes \mathcal{Y} \rightarrow\{0,1\} \\
F_{1}, F_{2} \ldots F_{c} \equiv F
\end{gathered}
$$

$\left(\Pi U_{b}\right)_{b, v, y} \approx(\Pi)_{b, v, y} \otimes U_{b}$ error!!

Main results

- We choose \mathcal{G} in similar way as in cheat sheet function.
- We choose appropriate F, lifting SIMON ○ TRIBES (a la Aaronson,Ben-David,Kothari [2016]). Lifting done using Inner Product gadget ([Goos et. al., 2015]).

Theorem

There exists a total function F such that $R(F)=\tilde{\Omega}\left(Q(F)^{2.5}\right)$.

Main results

Theorem

There exists a total function F such that $R(F)=\tilde{\Omega}\left(Q(F)^{2.5}\right)$.

	Q		Q_{E}		UN	
R	2.5 $[$ ABK16] $d t$	1.5 2.5 com	1.15 [ABK16] dt	2 [Amb12] [AKK16]	1.5 [GJPW] $d t$	com

Main results

- Similarly for exact quantum separation, lifting the super linear separation of Aaronson, Ben-David, Kothari [2016].

Theorem

There exists a total function F such that $R(F)=\tilde{\Omega}\left(Q_{E}(F)^{1.5}\right)$.

	Q		Q_{E}		UN	
R	$\begin{gathered} 2.5 \\ {[\mathrm{ABK} 16]} \end{gathered}$	$\begin{array}{r} 2.5 \\ \text { com } \\ \hline \end{array}$	$\left[\begin{array}{c} 1.5 \\ {[\mathrm{ABK} 16]} \\ d t \end{array}\right]$	$\begin{aligned} & 1.5 \\ & \text { com } \end{aligned}$	$\left[\begin{array}{c} 2 \\ {[\mathrm{AKK} 16]} \end{array}\right]$	$\begin{gathered} 1.5 \\ {[\mathrm{GJPW}]} \\ \mathrm{com} \end{gathered}$

Main results

- Following Ambianis,Kokainis and Kothari (2016), we separate $R(F)$ and $U N(F)$.
- We use the lower bound on information complexity (IC) of look-up function, since it has nice properties required for F.

Theorem (ABBG+16)

There exists a function F with the following relation between $R(F)$ and unambiguous non-deterministic communication complexity UN(F): $R(F)>U N(F)^{2-o(1)}$.

Main results

Theorem (ABBG+16)

There exists a function F such that $R(F)>U N(F)^{2-o(1)}$.

	Q		Q_{E}		UN	
R	2.5 $[\mathrm{ABK} 16]$ $d t$	2.5	1.5 [ABK16] $c o m$	1.5 $d t$	2 [AKK16]	com $d t$

Open questions

- Is there a general lifting theorem from randomized query complexity to randomized communication complexity?
- Are randomized communication complexity and quantum communication complexity of total functions polynomially related?
- Can we reduce the number of blocks in cheat sheet?

