Energy as a detector of nonlocality of many-body spin systems

Jordi Tura

Max Planck Institute of Quantum Optics, Germany ICFO - The Institute of Photonic Sciences, Spain

$$
\begin{aligned}
& \text { 16th - January } \\
& \text { QIP } 2017
\end{aligned}
$$

Seattle, Washington

Energy as a detector of nonlocality of many-body spin systems

 joint work with

Gemma de las Cuevas

Remigiusz Augusiak

Maciej Lewenstein

Antonio Acín

J. Ignacio Cirac

The paper is available on [arXiv:1607.06090] (with referees in
Phys. Rev. X)

Outline

Outline

- Motivation

Outline

- Motivation
- The idea, the setting

Outline

- Motivation
- The idea, the setting
- Quantum optimization

Outline

- Motivation
- The idea, the setting
- Quantum optimization
- Assgning a Bell inequality to a Hamiltonian

Outline

- Motivation
- The idea, the setting
- Quantum optimization
- Assgning a Bell inequality to a Hamiltonian
- Classical optimization

Outine

- Motivation
- The idea, the setting
- Quantum optimization
- Assgning a Bell inequality to a Hamiltonian
- Classical optimization
- Translational invariance

Outine

- Motivation
- The idea, the setting
- Quantum optimization
- Assgning a Bell inequality to a Hamiltonian
- Classical optimization
- Translational invariance
- Examples

Outine

- Motivation
- The idea, the setting
- Quantum optimization
- Assgning a Bell inequality to a Hamiltonian
- Classical optimization
- Translational invariance
- Examples
- Conclusions and outlook

Why Bell correlations?

Why Bell correlations?

- Resource for device-independent QIP

Why Bell correlations?

- Resource for device-independent QIP
- Less assumptions \rightarrow more security

Why Bell correlations?

- Resource for device-independent QIP
- Less assumptions \rightarrow more security
- No Hilbert space, black-box devices can be untrusted

Why Bell correlations?

- Resource for device-independent QIP
- Less assumptions \rightarrow more security
- No Hilbert space, black-box devices can be untrusted
- Loophole-free Bell tests have already been performed [Hensen et al. Nature 526 (2015), Giustina et al., PRL 115 (2015), Shalm et al. PRL 115 (2015)]

Why Bell correlations?

- Resource for device-independent QIP
- Less assumptions \rightarrow more security
- No Hilbert space, black-box devices can be untrusted
- Loophole-free Bell tests have already been performed [Hensen et al. Nature 526 (2015), Giustina et al., PRL 115 (2015), Shalm et al. PRL 115 (2015)]
- Device-Independent...

Why Bell correlations?

- Resource for device-independent QIP
- Less assumptions \rightarrow more security
- No Hilbert space, black-box devices can be untrusted
- Loophole-free Bell tests have already been performed [Hensen et al. Nature 526 (2015), Giustina et al., PRL 115 (2015), Shalm et al. PRL 115 (2015)]
- Device-Independent...
- Quantum Key Distribution

Why Bell correlations?

- Resource for device-independent QIP
- Less assumptions \rightarrow more security
- No Hilbert space, black-box devices can be untrusted
- Loophole-free Bell tests have already been performed [Hensen et al. Nature 526 (2015), Giustina et al., PRL 115 (2015), Shalm et al. PRL 115 (2015)]
- Device-Independent...
- Quantum Key Distribution
- Randomness Expansion
[Acín et al. PRL 98, 230501 (2007),
Pironio et al. PRX 3, 031007 (2013)]
[Colbeck, PhD Thesis (2006)]

Why Bell correlations?

- Resource for device-independent QIP
- Less assumptions \rightarrow more security
- No Hilbert space, black-box devices can be untrusted
- Loophole-free Bell tests have already been performed [Hensen et al. Nature 526 (2015), Giustina et al., PRL 115 (2015), Shalm et al. PRL 115 (2015)]
- Device-Independent...
- Quantum Key Distribution [Acín et al. PRL 98, 230501 (2007),
Pironio et al. PRX 3, 031007 (2013)]
- Randomness Expansion [Colbeck, PhD Thesis (2006)]
- Randomness Amplification [Colbeck and Renner, Nat. Phys. 8, 450 (2012)]

Why Bell correlations?

- Resource for device-independent QIP
- Less assumptions \rightarrow more security
- No Hilbert space, black-box devices can be untrusted
- Loophole-free Bell tests have already been performed [Hensen et al. Nature 526 (2015), Giustina et al., PRL 115 (2015), Shalm et al. PRL 115 (2015)]
- Device-Independent...
- Quantum Key Distribution $\begin{gathered}\text { [Acín et al. PRL 98, 230501 (2007), } \\ \text { Pironio et al. PRX 3, } 031007 \text { (2013) }\end{gathered}$
- Randomness Expansion [Colbeck, PhD Thesis (2006)]
- Randomness Amplification [Colbeck and Renner, Nat. Phys. 8, 450 (2012)]
- Self-testing [Mayers and Yao, 39th Proc. Found. Comp. Science (1998)]

Why Bell correlations?

- Resource for device-independent QIP
- Less assumptions \rightarrow more security
- No Hilbert space, black-box devices can be untrusted
- Loophole-free Bell tests have already been performed [Hensen et al. Nature 526 (2015), Giustina et al., PRL 115 (2015), Shalm et al. PRL 115 (2015)]
- Device-Independent...
- Quantum Key Distribution [Acín et al. PRL 98, 230501 (2007),
Pironio et al. PRX 3, 031007 (2013)]
- Randomness Expansion [Colbeck, PhD Thesis (2006)]
- Randomness Amplification [Colbeck and Renner, Nat. Phys. 8, 450 (2012)]
- Self-testing [Mayers and Yao, 39th Proc. Found. Comp. Science (1998)]
- Bell correlations are stronger than entanglement

Why Bell correlations in the manybody regime?

Why Bell correlations in the manybody regime?

- Less studied, because of

Why Bell correlations in the manybody regime?

- Less studied, because of
- Mathematical complexity

Why Bell correlations in the manybody regime?

- Less studied, because of
- Mathematical complexity
- Experimentally demanding

Why Bell correlations in the manybody regime?

- Less studied, because of
- Mathematical complexity
- Experimentally demanding
- Quantum description of multipartite states grows exponentially

Why Bell correlations in the manybody regime?

- Less studied, because of
- Mathematical complexity
- Experimentally demanding
- Quantum description of multipartite states grows exponentially
- Recent developments
- Permutationally invariant systems
[Tura et al, Science 3441256 (2014), Schmied et al, Science 352 441(2016)]

Why Bell correlations in the manybody regime?

- Less studied, because of
- Mathematical complexity
- Experimentally demanding
- Quantum description of multipartite states grows exponentially
- Recent developments
- Permutationally invariant systems
[Tura et al, Science 3441256 (2014), Schmied et al, Science 352 441(2016)]
- This talk: spin systems in one spatial dimension

A crash course on nonlocality

A crash course on nonlocality

A crash course on nonlocality

A crash course on nonlocality

Jordi Tura

A crash course on nonlocality

Jordi Tura QIP 2017

A crash course on nonlocality

Local Polytope
\mathbb{P}_{L}

A crash course on nonlocality

Local Polytope \subset Quantum Set
\mathbb{P}_{L}
\mathcal{Q}

A crash course on nonlocality

Local Polytope \subset Quantum Set \subset NS Polytope
\mathbb{P}_{L}
\mathcal{Q}
$\mathbb{P}_{N S}$

A crash course on nonlocality

A crash course on nonlocality

$\vee a_{1} \quad a_{2} \quad \vee a_{3}$
$P\left(a_{1} \ldots a_{n} \mid x_{1} \ldots x_{n}\right)$
d outputs $\stackrel{m \text { inputs }}{\Delta}$
$\vec{v}=\{P(\vec{a} \mid \vec{x}) \quad \forall \vec{a}, \vec{x}\}$
Local Polytope \subset Quantum Set \subset NS Polytope

$$
\mathbb{P}_{L}
$$

\mathcal{Q}
$\mathbb{P}_{N S}$

Example:

Charlie's Instructions

$$
\lambda=\{1,3,1,2,4,3,1,1 \ldots\}
$$

Output
$0, x_{3}, 0,1, \overline{x_{3}}, x_{3}, 0,0, \ldots$

The idea

The idea

Hamiltonian

 \mathcal{H}
The idea

Hamiltonian

H

Ground state energy

The idea

Hamiltonian
 H

- Jordan-Wigner
- MPS, DMRG

Ground state energy

The idea

The idea

- Jordan-Wigner
- MPS, DMRG

Ground state energy

The idea

Translational Invariance

The idea

The idea

The idea

The idea

The setting

The setting

- Spin - 1/2 Hamiltonians

The setting

- Spin - 1/2 Hamiltonians
- n particles

The setting

- Spin - 1/2 Hamiltonians
- n particles

- One spatial dimension

The setting

- Spin - 1/2 Hamiltonians
- n particles

- One spatial dimension
- Open/Periodic boundary conditions

The setting

- Spin - 1/2 Hamiltonians
- n particles

- Open/Periodic boundary conditions
- Short - range interactions (R neighbors)

The setting

- Spin - 1/2 Hamiltonians
- n particles

- Open/Periodic boundary conditions
- Short - range interactions (R neighbors)

$$
\mathcal{H}=\sum_{i=0}^{n-1}\left(t^{(i)} \sigma_{z}^{(i)}+\sum_{r=1}^{R} \sum_{\alpha, \beta \in\{x, y\}} t_{\alpha, \beta}^{(i, r)} \operatorname{Str}_{\alpha, \beta}^{(i, r)}\right)
$$

The setting

- Spin - 1/2 Hamiltonians
- n particles

- Open/Periodic boundary conditions
- Short - range interactions (R neighbors)

$$
\begin{aligned}
& \mathcal{H}=\sum_{i=0}^{n-1}\left(t^{(i)} \sigma_{z}^{(i)}+\sum_{r=1}^{R} \sum_{\alpha, \beta \in\{x, y\}} t_{\alpha, \beta}^{(i, r)} \operatorname{Str}_{\alpha, \beta}^{(i, r)}\right) \\
& \left.\operatorname{str}_{\alpha, \beta}^{(i, r)}=\begin{array}{c}
\sigma_{v_{i}}^{(i)} \\
\sigma_{y}^{(i)}
\end{array}\right\} \sigma_{z}^{(i+1)} \ldots \sigma_{z}^{(i+r-1)}\left\{\begin{array}{c}
\sigma_{x}^{(i+r)} \\
\sigma_{y}^{(i+r)}
\end{array}\right.
\end{aligned}
$$

The setting

- Spin - 1/2 Hamiltonians
- n particles
- Open/Periodic boundary conditions
- Short - range interactions (R neighbors)

$$
\mathcal{H}=\sum_{i=0}^{n-1}\left(t^{(i)} \sigma_{z}^{(i)}+\sum_{r=1}^{R} \sum_{\alpha, \beta \in\{x, y\}} t_{\alpha, \beta}^{(i, r)} \operatorname{Str}_{\alpha, \beta}^{(i, r)}\right)
$$

$$
\left.\operatorname{Str}_{\alpha, \beta}^{(i, r)}=\begin{array}{l}
\sigma_{x}^{(i)} \\
\sigma_{y}^{(i)}
\end{array}\right\} \sigma_{z}^{(i+1)} \cdots \sigma_{z}^{(i+r-1)} \begin{cases}\sigma_{x}^{(i+r)} & \text { e.g. XY-model in a } \\
\sigma_{y}^{(i+r)} & \text { transverse magnetic field }\end{cases}
$$

Finding the ground state energy (I)

Finding the ground state energy (I)

- Exact diagonalization

Finding the ground state energy (I)

- Exact diagonalization
- Jordan ${ }_{i-1}$ Wigner transformation: Spins to fermions

$$
\hat{c}_{i, 0} \leftrightarrow \prod_{j=0} \sigma_{z}^{(j)} \sigma_{x}^{(i)}, \quad \hat{c}_{i, 1} \leftrightarrow-\prod_{j=0} \sigma_{z}^{(j)} \sigma_{y}^{(i)}
$$

Finding the ground state energy (I)

- Exact diagonalization
- Jordan ${ }_{i-1}$ Wigner transformation: Spins to fermions

$$
\hat{c}_{i, 0} \leftrightarrow \prod_{j=0} \sigma_{z}^{(j)} \sigma_{x}^{(i)}, \quad \hat{c}_{i, 1} \leftrightarrow-\prod_{j=0} \sigma_{z}^{(j)} \sigma_{y}^{(i)}
$$

- Majoraña fermions
$\left\{\hat{c}_{i, \alpha}, \hat{c}_{j, \beta}\right\}=2 \delta_{i, j} \delta_{\alpha, \beta} \hat{\mathbb{1}}$

Finding the ground state energy (I)

- Exact diagonalization
- Jordan -Wigner transformation: Spins to fermions

$$
\hat{c}_{i, 0} \leftrightarrow \prod_{j=0} \sigma_{z}^{(j)} \sigma_{x}^{(i)}, \quad \hat{c}_{i, 1} \leftrightarrow-\prod_{j=0} \sigma_{z}^{(j)} \sigma_{y}^{(i)}
$$

- Majoranána fermions

$$
\left\{\hat{c}_{i, \alpha}, \hat{c}_{j, \beta}\right\}=2 \delta_{i, j} \delta_{\alpha, \beta} \hat{\mathbb{1}}
$$

- Every Hamiltonian of this form

$$
\mathcal{H}=\sum_{i=0}^{n-1}\left(t^{(i)} \sigma_{z}^{(i)}+\sum_{r=1}^{R} \sum_{\alpha, \beta \in\{x, y\}} t_{\alpha, \beta}^{(i, r)} \operatorname{Str}_{\alpha, \beta}^{(i, r)}\right)
$$

Finding the ground state energy (I)

- Exact diagonalization
- Jordan -Wigner transformation: Spins to fermions

$$
\hat{c}_{i, 0} \leftrightarrow \prod_{j=0} \sigma_{z}^{(j)} \sigma_{x}^{(i)}, \quad \hat{c}_{i, 1} \leftrightarrow-\prod_{j=0} \sigma_{z}^{(j)} \sigma_{y}^{(i)}
$$

- Majoraña fermions

$$
\left\{\hat{c}_{i, \alpha}, \hat{c}_{j, \beta}\right\}=2 \delta_{i, j} \delta_{\alpha, \beta} \hat{\mathbb{1}}
$$

- Every Hamiltonian of this form

$$
\mathcal{H}=\sum_{i=0}^{n-1}\left(t^{(i)} \sigma_{z}^{(i)}+\sum_{r=1}^{R} \sum_{\alpha, \beta \in\{x, y\}} t_{\alpha, \beta}^{(i, r)} \operatorname{Str}_{\alpha, \beta}^{(i, r)}\right)
$$

becomes quadratic $\quad \hat{\mathcal{H}}=\frac{\dot{⿺}}{2} \sum_{i, j=0}^{n-1} \sum_{\alpha, \beta=0}^{1} H_{i, \alpha ; j, \beta} \hat{c}_{i, \alpha} \hat{c}_{j, \beta}$

Finding the ground state energy (I)

- Exact diagonalization
- Jordan -Wigner transformation: Spins to fermions

$$
\hat{c}_{i, 0} \leftrightarrow \prod_{j=0} \sigma_{z}^{(j)} \sigma_{x}^{(i)}, \quad \hat{c}_{i, 1} \leftrightarrow-\prod_{j=0} \sigma_{z}^{(j)} \sigma_{y}^{(i)}
$$

- Majoraña fermions

$$
\left\{\hat{c}_{i, \alpha}, \hat{c}_{j, \beta}\right\}=2 \delta_{i, j} \delta_{\alpha, \beta} \hat{\mathbb{1}}
$$

- Every Hamiltonian of this form

$$
\begin{aligned}
& \mathcal{H}=\sum_{i=0}^{n-1}\left(t^{(i)} \sigma_{z}^{(i)}+\right. \\
& \text { becomes quadratic }
\end{aligned}
$$

$$
\begin{array}{r}
\sum_{r=1}^{R} \sum_{\alpha, \beta \in\{ } \\
\hat{\mathcal{H}}=\frac{1}{2} \\
\begin{array}{l}
\text { Jordi Tura } \\
\text { QPP } 2017
\end{array}
\end{array}
$$

Finding the ground state energy (II)

Finding the ground state energy (II)

- Williamson eigendecomposition

Finding the ground state energy (II)

- Williamson eigendecomposition

$$
H=O J O^{T} \quad O \in \mathcal{O}(2 n) \quad J=\bigoplus_{k=0}^{n-1}\left(\begin{array}{cc}
0 & \varepsilon_{k} \\
-\varepsilon_{k} & 0
\end{array}\right)
$$

Finding the ground state energy (II)

- Williamson eigendecomposition

$$
H=O J O^{T} \quad O \in \mathcal{O}(2 n) \quad J=\bigoplus_{k=0}^{n-1}\left(\begin{array}{cc}
0 & \varepsilon_{k} \\
-\varepsilon_{k} & 0
\end{array}\right)
$$

New family of
Majorana fermions

$$
\hat{d}_{k, a}=\sum_{i, \alpha} O_{i, \alpha ; k, a} \hat{c}_{i, \alpha}
$$

Finding the ground state energy (II)

- Williamson eigendecomposition

$$
H=O J O^{T} \quad O \in \mathcal{O}(2 n) \quad J=\bigoplus_{k=0}^{n-1}\left(\begin{array}{cc}
0 & \varepsilon_{k} \\
-\varepsilon_{k} & 0
\end{array}\right)
$$

New family of
Majorana fermions
$\hat{d}_{k, a}=\sum_{i, \alpha} O_{i, \alpha ; k, a} \hat{c}_{i, \alpha}$

$$
\hat{\mathcal{H}}=\dot{\mathrm{i}} \sum_{k=0}^{n-1} \varepsilon_{k} \hat{d}_{k, 0} \hat{d}_{k, 1}
$$

Finding the ground state energy (II)

- Williamson eigendecomposition

$$
H=O J O^{T} \quad O \in \mathcal{O}(2 n) \quad J=\bigoplus_{k=0}^{n-1}\left(\begin{array}{cc}
0 & \varepsilon_{k} \\
-\varepsilon_{k} & 0
\end{array}\right)
$$

New family of Majorana fermions

$$
\hat{d}_{k, a}=\sum_{i, \alpha} O_{i, \alpha ; k, a} \hat{c}_{i, \alpha}
$$

$$
\hat{\mathcal{H}}=\dot{\mathbb{1}} \sum_{k=0}^{n-1} \varepsilon_{k} \underbrace{\hat{d}_{k, 0} \hat{d}_{k, 1}}_{\text {Mutually commuting }}
$$

Finding the ground state energy (II)

- Williamson eigendecomposition

$$
\begin{array}{cc}
H=O J O^{T} \quad O \in \mathcal{O}(2 n) \quad J=\bigoplus_{k=0}^{n-1}\left(\begin{array}{cc}
0 & \varepsilon_{k} \\
-\varepsilon_{k} & 0
\end{array}\right) \\
\begin{array}{l}
\text { New family of } \\
\text { Majorana fermions }
\end{array} \quad \hat{\mathcal{H}}=\dot{\mathrm{i}} \sum_{k=0}^{n-1} \varepsilon_{k} \underbrace{\hat{d}_{k, 0} \hat{d}_{k, 1}}_{\text {Mutually commuting }} & \bar{\square} \varepsilon_{n-1} \\
\hat{d}_{k, a}=\sum_{n-2} O_{i, \alpha ; k, a} \hat{c}_{i, \alpha}
\end{array} \quad \begin{aligned}
& \bar{\square} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \hline
\end{aligned}
$$

Finding the ground state energy (II)

- Williamson eigendecomposition

$$
\begin{aligned}
& H=O J O^{T} \quad O \in \mathcal{O}(2 n) \quad J=\bigoplus_{k=0}^{n-1}\left(\begin{array}{cc}
0 & \varepsilon_{k} \\
-\varepsilon_{k} & 0
\end{array}\right) \\
& \begin{array}{l}
\quad \begin{array}{l}
\text { New family of } \\
\text { Majorana fermions } \\
\hat{d}_{k, a}=\sum_{i, \alpha ; k, a} \hat{c}_{i, \alpha}
\end{array} \quad \hat{\mathcal{H}}=\dot{\mathbb{1}} \sum_{k=0}^{n-1} \varepsilon_{k} \underbrace{\hat{d}_{k, 0} \hat{d}_{k, 1}}_{\text {Mutually commuting }} \\
=\varepsilon_{n-1} \\
=
\end{array} \\
& \text { Ground state energy }
\end{aligned}
$$

Finding the ground state energy (II)

- Williamson eigendecomposition

$$
\begin{aligned}
& H=O J O^{T} \quad O \in \mathcal{O}(2 n) \quad J=\bigoplus_{k=0}^{n-1}\left(\begin{array}{cc}
0 & \varepsilon_{k} \\
-\varepsilon_{k} & 0
\end{array}\right) \\
& \text { New family of } \\
& \text { Majorana fermions } \\
& \hat{d}_{k, a}=\sum_{i, \alpha} O_{i, \alpha ; k, a} \hat{c}_{i, \alpha} \\
& \hat{\mathcal{H}}=\dot{\mathbb{i}} \sum_{k=0}^{n-1} \varepsilon_{k} \underbrace{\hat{d}_{k, 0} \hat{d}_{k, 1}}_{\text {Mutually commuting }} \\
& \begin{array}{ll}
& \varepsilon_{n-1} \\
\bar{\vdots} & \varepsilon_{n-2} \\
\hline
\end{array} \\
& \text { Ground state energy } \\
& \beta_{Q}=\sum_{k=0}^{n-1} s_{k} \varepsilon_{k}
\end{aligned}
$$

Finding the ground state energy (II)

- Williamson eigendecomposition

$$
\begin{align*}
& H=O J O^{T} \quad O \in \mathcal{O}(2 n) \quad J=\bigoplus_{k=0}^{n-1}\left(\begin{array}{cc}
0 & \varepsilon_{k} \\
-\varepsilon_{k} & 0
\end{array}\right) \\
& \text { New family of } \\
& \text { Majorana fermions } \\
& \hat{d}_{k, a}=\sum_{i, \alpha} O_{i, \alpha ; k, a} \hat{c}_{i, \alpha} \\
& \hat{\mathcal{H}}=\dot{\mathbb{1}} \sum_{k=0}^{n-1} \varepsilon_{k} \underbrace{\hat{d}_{k, 0} \hat{d}_{k, 1}}_{\text {Mutually commuting }} \\
& \begin{array}{ll}
& \varepsilon_{n-1} \\
\bar{\vdots} & \varepsilon_{n-2} \\
\hline
\end{array} \\
& \text { Ground state energy } \tag{0}\\
& \begin{array}{c}
\beta_{Q}=\sum_{k=0}^{n-1} s_{k} \varepsilon_{k} \\
s_{k}=-1 \\
s_{k}=+1
\end{array}
\end{align*}
$$

Finding the ground state energy (II)

- Williamson eigendecomposition

$$
\begin{align*}
& H=O J O^{T} \quad O \in \mathcal{O}(2 n) \quad J=\bigoplus_{k=0}^{n-1}\left(\begin{array}{cc}
0 & \varepsilon_{k} \\
-\varepsilon_{k} & 0
\end{array}\right) \\
& \text { New family of } \\
& \text { Majorana fermions } \\
& \hat{d}_{k, a}=\sum_{i, \alpha} O_{i, \alpha ; k, a} \hat{c}_{i, \alpha} \\
& \hat{\mathcal{H}}=\dot{\mathbb{1}} \sum_{k=0}^{n-1} \varepsilon_{k} \underbrace{\hat{d}_{k, 0} \hat{d}_{k, 1}}_{\text {Mutually commuting }} \\
& \begin{array}{ll}
& \varepsilon_{n-1} \\
\bar{\vdots} & \varepsilon_{n-2} \\
\hline
\end{array} \\
& \text { Ground state energy } \tag{0}\\
& \text { The parity imposes a superselection rule } \\
& \begin{array}{c}
\beta_{Q}=\sum_{k=0}^{n-1} s_{k} \varepsilon_{k} \\
s_{k}=-1 \\
s_{k}=+1
\end{array}
\end{align*}
$$

Finding the ground state energy (II)

- Williamson eigendecomposition

$$
\begin{aligned}
& H=O J O^{T} \quad O \in \mathcal{O}(2 n) \quad J=\bigoplus_{k=0}^{n-1}\left(\begin{array}{cc}
0 & \varepsilon_{k} \\
-\varepsilon_{k} & 0
\end{array}\right) \\
& \text { New family of } \\
& \text { Majorana fermions } \\
& \hat{d}_{k, a}=\sum_{i, \alpha} O_{i, \alpha ; k, a} \hat{c}_{i, \alpha} \\
& \hat{\mathcal{H}}=\dot{\mathbb{1}} \sum_{k=0}^{n-1} \varepsilon_{k} \underbrace{\hat{d}_{k, 0} \hat{d}_{k, 1}}_{\text {Mutually commuting }} \\
& \begin{array}{ll}
\ldots & \varepsilon_{n-1} \\
\bar{\vdots} & \varepsilon_{n-2} \\
&
\end{array} \\
& \text { Ground state energy } \\
& \text { The parity imposes a superselection rule } \\
& p=(\operatorname{det} O) \prod_{k=0}^{n-1} s_{k} \\
& \begin{array}{c}
\beta_{Q}=\sum_{k=0}^{n-1} s_{k} \varepsilon_{k} \\
s_{k}=-1 \\
s_{k}=+1
\end{array}
\end{aligned}
$$

Assigning a Bell inequality

Assigning a Bell inequality

- We want a Bell operator of the form $\mathcal{B}=\beta_{C} \mathbb{1}+\mathcal{H}$

Assigning a Bell inequality

- We want a Bell operator of the form $\mathcal{B}=\beta_{C} \mathbb{1}+\mathcal{H}$

Assigning a Bell inequality

- We want a Bell operator of the form $\mathcal{B}=\beta_{C} \mathbb{1}+\mathcal{H}$
- Taking m measurements in the X-Y plane
- Extra measurement in the Z direction

Assigning a Bell inequality

- We want a Bell operator of the form $\mathcal{B}=\beta_{C} \mathbb{1}+\mathcal{H}$
- Taking m measurements in the X-Y plane
- Extra measurement in the Z direction

Assigning a Bell inequality

- We want a Bell operator of the form $\mathcal{B}=\beta_{C} \mathbb{1}+\mathcal{H}$
- Taking m measurements in the X-Y plane
- Extra measurement in the Z direction

$$
\mathcal{H}=\sum_{i=0}^{n-1}\left(t^{(i)} \sigma_{z}^{(i)}+\sum_{r=1}^{R} \sum_{\alpha, \beta \in\{x, y\}} t_{\alpha, \beta}^{(i, r)} \operatorname{Str}_{\alpha, \beta}^{(i, r)}\right)
$$

Assigning a Bell inequality

- We want a Bell operator of the form $\mathcal{B}=\beta_{C} \mathbb{1}+\mathcal{H}$
- Taking m measurements in the X-Y plane
- Extra measurement in the Z direction

$$
\begin{aligned}
\mathcal{H} & =\sum_{i=0}^{n-1}\left(t^{(i)} \sigma_{z}^{(i)}+\sum_{r=1}^{R} \sum_{\alpha, \beta \in\{x, y\}} t_{\alpha, \beta}^{(i, r)} \operatorname{Str}_{\alpha, \beta}^{(i, r)}\right) \\
I & =\sum_{i=0}^{n-1}\left(\gamma^{(i)} M_{m}^{(i, 0)}+\sum_{r=1}^{R} \sum_{k, l=0}^{m-1} M_{(k, m, \ldots, m, l)}^{(i, r)}\right)
\end{aligned}
$$

位

Finding the classical bound

Finding the classical bound

- We want a Bell inequality of the form $I+\beta_{C} \geq 0$

Finding the classical bound

- We want a Bell inequality of the form $I+\beta_{C} \geq 0$

$$
\beta_{C}=-\min _{\mathrm{LHVM}} I
$$

Finding the classical bound

- We want a Bell inequality of the form $I+\beta_{C} \geq 0$

$$
\beta_{C}=-\min _{\mathrm{LHVM}} I
$$

Finding the classical bound

- We want a Bell inequality of the form $I+\beta_{C} \geq 0$

$$
\beta_{C}=-\min _{\mathrm{LHVM}} I
$$

- Fine's Theorem:
[A. Fine, Phys. Rev. Lett. 48, 291 (1982)]

Finding the classical bound

- We want a Bell inequality of the form $I+\beta_{C} \geq 0$

$$
\beta_{C}=-\min _{\mathrm{LHVM}} I
$$

- Fine's Theorem:
[A. Fine, Phys. Rev. Lett. 48, 291 (1982)]
- It is enough to optimize over Local Deterministic Strategies

Finding the classical bound

- We want a Bell inequality of the form $I+\beta_{C} \geq 0$

$$
\beta_{C}=-\min _{\mathrm{LHVM}} I
$$

- Fine's Theorem:
[A. Fine, Phys. Rev. Lett. 48, 291 (1982)]
- It is enough to optimize over Local Deterministic Strategies

[^0]
Finding the classical bound

- We want a Bell inequality of the form $I+\beta_{C} \geq 0$

$$
\beta_{C}=-\min _{\mathrm{LHVM}} I
$$

- Fine's Theorem:
[A. Fine, Phys. Rev. Lett. 48, 291 (1982)]
- It is enough to optimize over Local Deterministic Strategies

$$
M_{0}^{(i)}
$$

$M_{1}^{(i)}$
$M_{2}^{(i)}$

Finding the classical bound

- We want a Bell inequality of the form $I+\beta_{C} \geq 0$

$$
\beta_{C}=-\min _{\mathrm{LHVM}} I
$$

- Fine's Theorem:
[A. Fine, Phys. Rev. Lett. 48, 291 (1982)]
- It is enough to optimize over Local Deterministic Strategies

Finding the classical bound

- We want a Bell inequality of the form $I+\beta_{C} \geq 0$

$$
\beta_{C}=-\min _{\mathrm{LHVM}} I
$$

- Fine's Theorem:
[A. Fine, Phys. Rev. Lett. 48, 291 (1982)]
- It is enough to optimize over Local Deterministic Strategies

Finding the classical bound

- We want a Bell inequality of the form $I+\beta_{C} \geq 0$

$$
\beta_{C}=-\min _{\mathrm{LHVM}} I
$$

- Fine's Theorem:
[A. Fine, Phys. Rev. Lett. 48, 291 (1982)]
- It is enough to optimize over Local Deterministic Strategies

Finding the classical bound

- We want a Bell inequality of the form $I+\beta_{C} \geq 0$

$$
\beta_{C}=-\min _{\mathrm{LHVM}} I
$$

- Fine's Theorem:
[A. Fine, Phys. Rev. Lett. 48, 291 (1982)]
- It is enough to optimize over Local Deterministic Strategies

Jordi Tura
OIP 2017
ICFO7

Finding the classical bound

- We want a Bell inequality of the form $I+\beta_{C} \geq 0$

$$
\beta_{C}=-\min _{\mathrm{LHVM}} I
$$

- Fine's Theorem:
[A. Fine, Phys. Rev. Lett. 48, 291 (1982)]
- It is enough to optimize over Local Deterministic Strategies

Finding the classical bound

- We want a Bell inequality of the form $I+\beta_{C} \geq 0$

$$
\beta_{C}=-\min _{\mathrm{LHVM}} I
$$

- Fine's Theorem:
[A. Fine, Phys. Rev. Lett. 48, 291 (1982)]
- It is enough to optimize over Local Deterministic Strategies

Finding the classical bound

- We want a Bell inequality of the form $I+\beta_{C} \geq 0$

$$
\beta_{C}=-\min _{\mathrm{LHVM}} I
$$

- Fine's Theorem:
[A. Fine, Phys. Rev. Lett. 48, 291 (1982)]
- It is enough to optimize over Local Deterministic Strategies

Jordi Tura QIP 2017

Finding the classical bound

Finding the classical bound

- Optimization over all LHV models

Finding the classical bound

- Optimization over all LHV models
- Linear programming (general case)

Finding the classical bound

- Optimization over all LHV models
- Linear programming (general case)
- Impossible for many-body BI

Finding the classical bound

- Optimization over all LHV models
- Linear programming (general case)
- Impossible for many-body BI
- Dynamic programming is extremely efficient for 1D-like BI
[N. Schuch, J. I. Cirac, Phys. Rev. A. 82, 012314 (2010)]

Finding the classical bound

- Optimization over all LHV models
- Linear programming (general case)
- Impossible for many-body BI
- Dynamic programming is extremely efficient for 1D-like BI
[N. Schuch, J. I. Cirac, Phys. Rev. A. 82, 012314 (2010)]
Ingredients

Finding the classical bound

- Optimization over all LHV models
- Linear programming (general case)
- Impossible for many-body BI
- Dynamic programming is extremely efficient for 1D-like BI
[N. Schuch, J. I. Cirac, Phys. Rev. A. 82, 012314 (2010)]
Ingredients
-Recurrence relation

Finding the classical bound

- Optimization over all LHV models
- Linear programming (general case)
- Impossible for many-body BI
- Dynamic programming is extremely efficient for 1D-like BI
[N. Schuch, J. I. Cirac, Phys. Rev. A. 82, 012314 (2010)]
Ingredients
-Recurrence relation
-Compute \& store
intermediate sub-
solutions

Finding the classical bound

- Optimization over all LHV models
- Linear programming (general case)
- Impossible for many-body BI
- Dynamic programming is extremely efficient for 1D-like BI
[N. Schuch, J. I. Cirac, Phys. Rev. A. 82, 012314 (2010)]

Ingredients

-Recurrence relation
-Compute \& store
intermediate sub-
solutions
-Ordering of sub-
solutions

Finding the classical bound

- Optimization over all LHV models
- Linear programming (general case)
- Impossible for many-body BI
- Dynamic programming is extremely efficient for 1D-like BI
[N. Schuch, J. I. Cirac, Phys. Rev. A. 82, 012314 (2010)]

Ingredients

-Recurrence relation
-Compute \& store
intermediate sub-
solutions
-Ordering of subsolutions

Finding the classical bound

- Optimization over all LHV models
- Linear programming (general case)
- Impossible for many-body BI
- Dynamic programming is extremely efficient for 1D-like BI
[N. Schuch, J. I. Cirac, Phys. Rev. A. 82, 012314 (2010)]

Ingredients

-Recurrence relation
-Compute \& store
intermediate sub-
Result
solutions
-Ordering of subsolutions

Finding the classical bound

- Optimization over all LHV models
- Linear programming (general case)
- Impossible for many-body BI
- Dynamic programming is extremely efficient for 1D-like BI
[N. Schuch, J. I. Cirac, Phys. Rev. A. 82, 012314 (2010)]

Ingredients

-Recurrence relation
-Compute \& store
intermediate sub-
solutions
-Ordering of subsolutions

Result
-Polynomial scaling

Finding the classical bound

- Optimization over all LHV models
- Linear programming (general case)
- Impossible for many-body BI
- Dynamic programming is extremely efficient for 1D-like BI
[N. Schuch, J. I. Cirac, Phys. Rev. A. 82, 012314 (2010)]

Ingredients

-Recurrence relation
-Compute \& store
intermediate sub-
solutions
-Ordering of subsolutions

Result
-Polynomial scaling
-Constructive method of
1 optimal solution

Finding the classical bound

- Optimization over all LHV models
- Linear programming (general case)
- Impossible for many-body BI
- Dynamic programming is extremely efficient for 1D-like BI
[N. Schuch, J. I. Cirac, Phys. Rev. A. 82, 012314 (2010)]

Ingredients

-Recurrence relation
-Compute \& store
intermediate sub-
solutions
-Ordering of subsolutions

Result
-Polynomial scaling
-Constructive method of
1 optimal solution
-Much better than
backtracking/brute force

Finding the classical bound

- Optimization over all LHV models
- Linear programming (general case)
- Impossible for many-body BI
- Dynamic programming is extremely efficient for 1D-like BI
[N. Schuch, J. I. Cirac, Phys. Rev. A. 82, 012314 (2010)]

Ingredients

-Recurrence relation
-Compute \& store intermediate sub-
solutions
-Ordering of subsolutions

Result
-Polynomial scaling
-Constructive method of
1 optimal solution
-Much better than
backtracking/brute force

Finding the classical bound

- Optimization over all LHV models
- Linear programming (general case)
- Impossible for many-body BI
- Dynamic programming is extremely efficient for 1D-like BI
[N. Schuch, J. I. Cirac, Phys. Rev. A. 82, 012314 (2010)]

Ingredients

-Recurrence relation
-Compute \& store intermediate subsolutions
-Ordering of subsolutions

Result
-Polynomial scaling
-Constructive method of
1 optimal solution
-Much better than
backtracking/brute force

Dynamic programming

Dynamic programming

- The Bell Inequality as a sum of smaller BI

Dynamic programming

- The Bell Inequality as a sum of smaller BI

- The optimization

Dynamic programming

- The Bell Inequality as a sum of smaller BI

- The optimization

Dynamic programming

- The Bell Inequality as a sum of smaller BI

- The optimization


```
0
1
m-1
```


Dynamic programming

- The Bell Inequality as a sum of smaller BI

- The optimization

Dynamic programming

- The Bell Inequality as a sum of smaller BI

- The optimization

Dynamic programming

- The Bell Inequality as a sum of smaller BI

- The optimization

> Jordi Tura
> QIP 2017

Dynamic programming

- The Bell Inequality as a sum of smaller BI

- The optimization

$E_{i}\left(\triangle \Delta=\min E_{i-1} \square \triangle\right)+h_{i} \square \triangle \triangle$
Classical bound at

$$
\beta_{C}:=E_{n}
$$

Dynamic programming

- The Bell Inequality as a sum of smaller BI

- The optimization

Classical bound at

$$
\beta_{C}:=E_{n}
$$

Overall complexity $O(n)$

Translationally invariant BI

Translationally invariant BI

Translationally invariant BI

- Idea: Minimize a function $F=\min _{x_{0}, \ldots, x_{w}} \sum_{j=0} f^{(0)}\left(x_{j}, x_{j+1}\right)$

Translationally invariant BI

- Idea: Minimize a function $F=\min _{x_{0}, \ldots, x_{w}} \sum_{j=0} f^{(0)}\left(x_{j}, x_{j+1}\right)$ by eliminating half of the variables at each step

$$
f^{(t+1)}(x, y)=\min _{z}\left(f^{(t)}(x, z)+f^{(t)}(z, y)\right)
$$

Translationally invariant BI

- Idea: Minimize a function $F=\min _{x_{0}, \ldots, x_{w}} \sum_{j=0} f^{(0)}\left(x_{j}, x_{j+1}\right)$ by eliminating half of the variables at each step $f^{(t+1)}(x, y)=\min _{z}\left(f^{(t)}(x, z)+f^{(t)}(z, y)\right)$

Translationally invariant BI

- Idea: Minimize a function $F=\min _{x_{0}, \ldots, x_{w}} \sum_{j=0} f^{(0)}\left(x_{j}, x_{j+1}\right)$ by eliminating half of the variables at each step

Translationally invariant BI

- Idea: Minimize a function $F=\min _{x_{0}, \ldots, x_{w}} \sum_{j=0} f^{(0)}\left(x_{j}, x_{j+1}\right)$ by eliminating half of the variables at each step $f^{(t+1)}(x, y)=\min _{z}\left(f^{(t)}(x, z)+f^{(t)}(z, y)\right)$

Translationally invariant BI

- Idea: Minimize a function $F=\min _{x_{0}, \ldots, x_{w}} \sum_{j=0} f^{(0)}\left(x_{j}, x_{j+1}\right)$ by eliminating half of the variables at each step $f^{(t+1)}(x, y)=\min _{z}\left(f^{(t)}(x, z)+f^{(t)}(z, y)\right)$

Translationally invariant BI

- Idea: Minimize a function $F=\min _{x_{0}, \ldots, x_{w}} \sum_{j=0} f^{(0)}\left(x_{j}, x_{j+1}\right)$ by eliminating half of the variables at each step $f^{(t+1)}(x, y)=\min _{z}\left(f^{(t)}(x, z)+f^{(t)}(z, y)\right)$

Translationally invariant BI

- Idea: Minimize a function $F=\min _{x_{0}, \ldots, x_{w}} \sum_{j=0} f^{(0)}\left(x_{j}, x_{j+1}\right)$ by eliminating half of the variables at each step $f^{(t+1)}(x, y)=\min _{z}\left(f^{(t)}(x, z)+f^{(t)}(z, y)\right)$

Translationally invariant BI

- Idea: Minimize a function $F=\min _{x_{0}, \ldots, x_{w}} \sum_{j=0} f^{(0)}\left(x_{j}, x_{j+1}\right)$ by eliminating half of the variables at each step $f^{(t+1)}(x, y)=\min _{z}\left(f^{(t)}(x, z)+f^{(t)}(z, y)\right)$

Exponential speedup

Translationally invariant BI

- Idea: Minimize a function $F=\min _{x_{0}, \ldots, x_{w}} \sum_{j=0} f^{(0)}\left(x_{j}, x_{j+1}\right)$ by eliminating half of the variables at each step $f^{(t+1)}(x, y)=\min _{z}\left(f^{(t)}(x, z)+f^{(t)}(z, y)\right)$

Application to an inequality with $R>1$

Application to an inequality with $R>1$

- To reach the form $F=\min _{x_{0}, \ldots, x_{w}}^{\sum_{j=0}^{w-1}} f^{w(0)}\left(x_{j}, x_{j+1}\right)$

Application to an inequality with $R>1$

- To reach the form $F=\min _{x_{0}, \ldots, x_{w}} \sum_{j=0}^{w-1} f^{(0)}\left(x_{j}, x_{j+1}\right)$

Application to an inequality with $R>1$

- To reach the form $F=\min _{x_{0}, \ldots, x_{w}}^{\sum_{j=0}^{w-1}} \sum_{j=0}^{w(0)}\left(x_{j}, x_{j+1}\right)$

Translationally invariant Hamiltonian

(I)

Translationally invariant Hamiltonian

$$
\mathcal{H}=\sum_{i=0}^{n-1}\left(t^{(i)} \sigma_{z}^{(i)}+\sum_{r=1}^{R} \sum_{\alpha, \beta \in\{x, y\}}^{(\mathbf{I})}{ }_{\alpha, \beta}^{\left.t_{\alpha, \beta}^{(i, r)} \operatorname{str}_{\alpha, \beta}^{(i, r)}\right)}\right.
$$

Translationally invariant Hamiltonian

$$
\mathcal{H}=\sum_{i=0}^{n-1}\left(t^{(i)} \sigma_{z}^{(i)}+\sum_{r=1}^{R} \sum_{\alpha, \beta \in\{x, y\}}^{(\mathbf{I})} t_{\alpha, \beta}^{(i, r)} \operatorname{trt}_{\alpha, \beta}^{(i, r)}\right)
$$

- $t^{(i)}, t_{\alpha, \beta}^{(i, r)}$ are independent of i

Translationally invariant Hamiltonian

$$
\mathcal{H}=\sum_{i=0}^{n-1}\left(t^{(i)} \sigma_{z}^{(i)}+\sum_{r=1}^{R} \sum_{\alpha, \beta \in\{x, y\}} t_{\alpha, \beta}^{(i, r)} \operatorname{Str}_{\alpha, \beta}^{(i, r)}\right)
$$

- $t^{(i)}, t_{\alpha, \beta}^{(i, r)}$ are independent of i

$$
\hat{\mathcal{H}}=\frac{\dot{\mathbb{i}}}{2} \sum_{i, j=0}^{n-1} \sum_{\alpha, \beta=0}^{1} H_{i, \alpha ; j, \beta} \hat{c}_{i, \alpha} \hat{c}_{j, \beta} \quad H_{i, \alpha ; j, \beta}=H_{i+r, \alpha ; j+r, \beta}
$$

Translationally invariant Hamiltonian

(I)

$$
\mathcal{H}=\sum_{i=0}^{n-1}\left(t^{(i)} \sigma_{z}^{(i)}+\sum_{r=1}^{R} \sum_{\alpha, \beta \in\{x, y\}}{ }^{\left.\left(t_{\alpha, \beta}^{(i, r)}\right) \operatorname{trr}_{\alpha, \beta}^{(i, r)}\right)}\right.
$$

- $t^{(i)}, t_{\alpha, \beta}^{(i, r)}$ are independent of i

$$
\hat{\mathcal{H}}=\frac{i}{2} \sum_{i, j=0}^{n-1} \sum_{\alpha, \beta=0}^{1} H_{i, \alpha ; j, \beta, \beta} \hat{c}_{i, \alpha} \hat{c}_{j, \beta} \quad H_{i, \alpha ; j, \beta}=H_{i+r, \alpha ; j+r, \beta}
$$

- H is real, anti-symmetric, block-circulant

Translationally invariant Hamiltonian

(I)

$$
\mathcal{H}=\sum_{i=0}^{n-1}\left(t^{(i)} \sigma_{z}^{(i)}+\sum_{r=1}^{R} \sum_{\alpha, \beta \in\{x, y\}} t_{\alpha, \beta}^{(i, r)} \operatorname{Str}_{\alpha, \beta}^{(i, r)}\right)
$$

- $t^{(i)}, t_{\alpha, \beta}^{(i, r)}$ are independent of i

$$
\hat{\mathcal{H}}=\frac{\dot{i}}{2} \sum_{i, j=0}^{n-1} \sum_{\alpha, \beta=0}^{1} H_{i, \alpha ; j, \beta} \hat{c}_{i, \alpha} \hat{c}_{j, \beta} \quad H_{i, \alpha ; j, \beta}=H_{i+r, \alpha ; j+r, \beta}
$$

- H is real, anti-symmetric, block-circulant

Translationally invariant Hamiltonian

 (I)$$
\mathcal{H}=\sum_{i=0}^{n-1}\left(t^{(i)} \sigma_{z}^{(i)}+\sum_{r=1}^{R} \sum_{\alpha, \beta \in\{x, y\}}{ }^{(i)} t_{\alpha, \beta}^{(i, r)} \operatorname{tar}_{\alpha, \beta}^{(i, r)}\right)
$$

- $t^{(i)}, t_{\alpha, \beta}^{(i, r)}$ are independent of i
$\hat{\mathcal{H}}=\frac{\dot{\mathbb{I}}}{2} \sum_{i, j=0}^{n-1} \sum_{\alpha, \beta=0}^{1} H_{i, \alpha ; j, \beta} \hat{c}_{i, \alpha} \hat{c}_{j, \beta} \quad H_{i, \alpha ; j, \beta}=H_{i+r, \alpha ; j+r, \beta}$
- H is real, anti-symmetric, block-circulant

If the fermion system has parity -1

Translationally invariant Hamiltonian

 (I)$$
\mathcal{H}=\sum_{i=0}^{n-1}\left(t^{(i)} \sigma_{z}^{(i)}+\sum_{r=1}^{R} \sum_{\alpha, \beta \in\{x, y\}} t_{\alpha, \beta}^{(i, r)} \operatorname{Str}_{\alpha, \beta}^{(i, r)}\right)
$$

- $t^{(i)}, t_{\alpha, \beta}^{(i, r)}$ are independent of i

$$
\hat{\mathcal{H}}=\frac{1}{2} \sum_{i, j=0}^{n-1} \sum_{\alpha, \beta=0}^{1} H_{i, \alpha ; j, \beta} \hat{c}_{i, \alpha} \hat{c}_{j, \beta} \quad H_{i, \alpha ; j, \beta}=H_{i+r, \alpha ; j+r, \beta}
$$

- H is real, anti-symmetric, block-circulant

If the fermion system has parity -1
Discrete Fourier Transform will diagonalize it

Translationally invariant Hamiltonian

(I)

$$
\mathcal{H}=\sum_{i=0}^{n-1}\left(t^{(i)} \sigma_{z}^{(i)}+\sum_{r=1}^{R} \sum_{\alpha, \beta \in\{x, y\}} t_{\alpha, \beta}^{(i, r)} \operatorname{Str}_{\alpha, \beta}^{(i, r)}\right)
$$

- $t^{(i)}, t_{\alpha, \beta}^{(i, r)}$ are independent of i

$$
\hat{\mathcal{H}}=\frac{\dot{i}}{2} \sum_{i, j=0}^{n-1} \sum_{\alpha, \beta=0}^{1} H_{i, \alpha ; j, \beta} \hat{c}_{i, \alpha} \hat{c}_{j, \beta} \quad H_{i, \alpha ; j, \beta}=H_{i+r, \alpha ; j+r, \beta}
$$

- H is real, anti-symmetric, block-circulant

H:

Jordi Tura QIP 2017
If the fermion system has parity -1
Discrete Fourier Transform will diagonalize it

$$
\left(\mathcal{F}_{n}\right)_{k l}:=\frac{1}{\sqrt{n}} \omega^{k \cdot l}, \quad \omega^{n}=1
$$

Translationally invariant Hamiltonian (II)

Translationally invariant Hamiltonian (II)

If the fermion system has parity 1

Translationally invariant Hamiltonian

If the fermion system has parity 1
it is no longer circulant, but

Translationally invariant Hamiltonian

If the fermion system has parity 1
it is no longer circulant, but
$H \longrightarrow\left(\begin{array}{cc}H & -H \\ -H & H\end{array}\right)$ is.

Translationally invariant Hamiltonian

If the fermion system has parity 1 it is no longer circulant, but $H \longrightarrow\left(\begin{array}{cc}H & -H \\ -H & H\end{array}\right)$ is.

Translationally invariant Hamiltonian

 it is no longer circulant, but

Diagonalizable using $\mathcal{F}_{2 n}$

Translationally invariant Hamiltonian

If the fermion system has parity 1 it is no longer circulant, but

Diagonalizable using $\mathcal{F}_{2 n}$

$\zeta^{2 n}=1$ Block-diagonalizes H

Translationally invariant Hamiltonian

If the fermion system has parity 1 it is no longer circulant, but

Diagonalizable using $\mathcal{F}_{2 n}$

- Simple super-selection rule

$$
p=(-1)^{\left\lfloor\frac{n+(p-1) / 2}{2}\right\rfloor} \prod_{k=0}^{n-1} s_{k}
$$

$$
\zeta^{2 n}=1 \text { Block-diagonalizes } H
$$

Translationally invariant Hamiltonian

 it is no longer circulant, but

- Simple super-selection rule

$$
p=(-1)^{\left\lfloor\frac{n+(p-1) / 2}{2}\right\rfloor} \prod_{k=0}^{n-1} s_{k}
$$

$$
\zeta^{2 n}=1 \text { Block-diagonalizes } H
$$

- Analytical solution

Translationally invariant Hamiltonian

(II)

$\} R$ If the fermion system has parity 1 it is no longer circulant, but

Diagonalizable using $\mathcal{F}_{2 n}$

- Simple super-selection rule

$$
p=(-1)^{\left\lfloor\frac{n+(p-1) / 2}{2}\right\rfloor} \prod_{k=0}^{n-1} s_{k}
$$

$\zeta^{2 n}=1$ Block-diagonalizes H

- Analytical solution

$$
\varepsilon_{k, \pm}=a_{k}+c_{k} \pm \sqrt{\left(a_{k}-c_{k}\right)^{2}+4\left(b_{k}^{2}+x_{k}^{2}\right)}
$$

Translationally invariant Hamiltonian

 (II)$H:$
 it is no longer circulant, but

Diagonalizable using $\mathcal{F}_{2 n}$

- Simple super-selection rule

$$
p=(-1)^{\left\lfloor\frac{n+(p-1) / 2}{2}\right\rfloor} \prod_{k=0}^{n-1} s_{k}
$$

$\zeta^{2 n}=1$ Block-diagonalizes H
$\left\{\begin{array}{l}x_{k}=H_{00 ; 01}+\sum_{r=1}^{R} \cos \left(\nu_{k, r}\right)\left(H_{00 ; r 1}-H_{01 ; r 0}\right)\end{array}\right.$

- Analytical solution

$$
\varepsilon_{k, \pm}=a_{k}+c_{k} \pm \sqrt{\left(a_{k}-c_{k}\right)^{2}+4\left(b_{k}^{2}+x_{k}^{2}\right)}
$$

Examples (la)

Examples (la)

- The projected polytope approach

Examples (la)

- The projected polytope approach

Finding all Bell inequalities \longleftrightarrow Convex Hull problem

Examples (la)

- The projected polytope approach

Finding all Bell inequalities \longleftrightarrow Convex Hull problem

Examples (la)

- The projected polytope approach

Finding all Bell inequalities
4 Convex Hull problem
(n, m, d) scenario

Examples (la)

- The projected polytope approach

Finding all Bell inequalities \longleftrightarrow Convex Hull problem

$$
(n, m, d) \text { scenario }
$$

Dimension of the Local Polytope $D \approx(m d)^{n}$

Examples (la)

- The projected polytope approach

Finding all Bell inequalities \longleftrightarrow Convex Hull problem
(n, m, d) scenario
Dimension of the Local Polytope $D \approx(m d)^{n}$ Number of vertices $v=d^{m n}$

Examples (la)

- The projected polytope approach

Finding all Bell inequalities
4 Convex Hull problem
(n, m, d) scenario
Dimension of the Local Polytope $D \approx(m d)^{n}$
Number of vertices $v=d^{m n}$

Examples (la)

- The projected polytope approach

Finding all Bell inequalities
4 Convex Hull problem
(n, m, d) scenario
Dimension of the Local Polytope $D \approx(m d)^{n}$
Number of vertices $v=d^{m n}$

Complexity of dual description: $O\left(v^{\lfloor D / 2\rfloor}+v \log v\right)$
[B. Chazelle, An optimal convex hull algorithm in any fixed dimension, Discrete Comput. Geom. 10377409 (1993)]

Examples (la)

- The projected polytope approach

Finding all Bell inequalities \longleftrightarrow Convex Hull problem (n, m, d) scenario

Dimension of the Local Polytope $D \approx(m d)^{n}$
Number of vertices $v=d^{m n}$

Complexity of dual description: $O\left(v^{\lfloor D / 2\rfloor}+v \log v\right)$
[B. Chazelle, An optimal convex hull algorithm in any fixed dimension, Discrete Comput. Geom. 10377409 (1993)]

Examples

Examples (la)

- The projected polytope approach

Finding all Bell inequalities \longleftrightarrow Convex Hull problem (n, m, d) scenario

Dimension of the Local Polytope $D \approx(m d)^{n}$
Number of vertices $v=d^{m n}$

Complexity of dual description: $O\left(v^{\lfloor D / 2\rfloor}+v \log v\right)$
[B. Chazelle, An optimal convex hull algorithm in any fixed dimension, Discrete Comput. Geom. 10377409 (1993)]

Examples

```
(2,2,2) \longrightarrowO(ms)
```


Examples (la)

- The projected polytope approach

Finding all Bell inequalities \longleftrightarrow Convex Hull problem (n, m, d) scenario

Dimension of the Local Polytope $D \approx(m d)^{n}$
Number of vertices $v=d^{m n}$

Complexity of dual description: $O\left(v^{\lfloor D / 2\rfloor}+v \log v\right)$
[B. Chazelle, An optimal convex hull algorithm in any fixed dimension, Discrete Comput. Geom. 10377409 (1993)]

Examples

Examples (la)

- The projected polytope approach

Finding all Bell inequalities
 (n, m, d) scenario

Dimension of the Local Polytope $D \approx(m d)^{n}$
Number of vertices $v=d^{m n}$

Complexity of dual description: $O\left(v^{\lfloor D / 2\rfloor}+v \log v\right)$
[B. Chazelle, An optimal convex hull algorithm in any fixed dimension, Discrete Comput. Geom. 10377409 (1993)]

Examples

Examples (la)

- The projected polytope approach

Finding all Bell inequalities
 (n, m, d) scenario

Dimension of the Local Polytope $D \approx(m d)^{n}$
Number of vertices $v=d^{m n}$

Complexity of dual description: $O\left(v^{\lfloor D / 2\rfloor}+v \log v\right)$
[B. Chazelle, An optimal convex hull algorithm in any fixed dimension, Discrete Comput. Geom. 10377409 (1993)]

Examples

Examples (la)

- The projected polytope approach

Finding all Bell inequalities

$$
(n, m, d) \text { scenario }
$$

Dimension of the Local Polytope $D \approx(m d)^{n}$
Number of vertices $v=d^{m n}$

Complexity of dual description: $O\left(v^{\lfloor D / 2\rfloor}+v \log v\right)$
[B. Chazelle, An optimal convex hull algorithm in any fixed dimension, Discrete Comput. Geom. 10377409 (1993)] Examples

[S. Dalí The persistence of memory (1931)]

Examples (lb)

Examples (lb)

- Projecting \mathbb{P}_{L} to the space of few-body, TI BI

Examples (lb)

- Projecting \mathbb{P}_{L} to the space of few-body, $\mathrm{TI}_{-1} \mathrm{BI}$

$$
I=\gamma \mathcal{T}_{2}+\sum_{k, l \in\{0,1\}}\left(\gamma_{k, l} \mathcal{T}_{k, l}+\gamma_{k, 2, l} \mathcal{T}_{k, 2, l}\right) \quad T_{k_{1}, \ldots, k_{r}}=\sum_{i=0}^{n-1} M_{\left(k_{1}, \ldots, k_{r}\right)}^{(i, r)}
$$

Examples (lb)

- Projecting \mathbb{P}_{L} to the space of few-body, $\mathrm{TI}_{-1} \mathrm{BI}$ $I=\sim \sqrt{2}+2, l \in\{$
$\left(\gamma_{k, l} \mathcal{T}_{k, l}+\gamma_{k, 2, l} \mathcal{T}_{k, 2, l}\right)$
$T_{k_{1}, \ldots, k_{r}}=\sum_{i=0} M_{\left(k_{1}, \ldots, k_{r}\right)}^{(i, r)}$

Examples (lb)

- Projecting \mathbb{P}_{L} to the space of few-body, $\mathrm{TI}_{-1} \mathrm{BI}$

Examples (lb)

- Projecting \mathbb{P}_{L} to the space of few-body, $\mathrm{TI}_{-1} \mathrm{BI}$ $I=\gamma \mathcal{T}_{2}+\sum_{k, l \in\{0,1\}}\left(\gamma_{k, l} \mathcal{T}_{k, l}+\gamma_{k, 2, l} \mathcal{T}_{k, 2, l}\right) \quad T_{k_{1}, \ldots, k_{r}}=\sum_{i=0} M_{\left(k_{1}, \ldots, k_{r}\right)}^{(i, r)}$

Examples (lb)

- Projecting \mathbb{P}_{L} to the space of few-body, $\mathrm{TI}_{-1} \mathrm{BI}$

$$
I=\gamma \mathcal{T}_{2}+\sum_{k, l \in\{0,1\}}\left(\gamma_{k, l} \mathcal{T}_{k, l}+\gamma_{k, 2, l} \mathcal{T}_{k, 2, l}\right) \quad T_{k_{1}, \ldots, k_{r}}=\sum_{i=0} M_{\left(k_{1}, \ldots, k_{r}\right)}^{(i, r)}
$$

Examples (lb)

- Projecting \mathbb{P}_{L} to the space of few-body, $\mathrm{TI}_{n-1} \mathrm{BI}$

$$
I=\gamma \mathcal{T}_{2}+\sum_{k, l \in\{0,1\}}\left(\gamma_{k, l} \mathcal{T}_{k, l}+\gamma_{k, 2, l} \mathcal{T}_{k, 2, l}\right) \quad T_{k_{1}, \ldots, k_{r}}=\sum_{i=0} M_{\left(k_{1}, \ldots, k_{r}\right)}^{(i, r)}
$$

- Computationally expensive

Examples (lb)

- Projecting \mathbb{P}_{L} to the space of few-body, $\mathrm{TI}_{n-1} \mathrm{BI}$

$$
I=\gamma \mathcal{T}_{2}+\sum_{k, l \in\{0,1\}}\left(\gamma_{k, l} \mathcal{T}_{k, l}+\gamma_{k, 2, l} \mathcal{T}_{k, 2, l}\right) \quad T_{k_{1}, \ldots, k_{r}}=\sum_{i=0} M_{\left(k_{1}, \ldots, k_{r}\right)}^{(i, r)}
$$

- Computationally expensive
- Nonlocality is detected for

Examples (lb)

- Projecting \mathbb{P}_{L} to the space of few-body, $\mathrm{TI}_{n-1} \mathrm{BI}$

$$
I=\gamma \mathcal{T}_{2}+\sum_{k, l \in\{0,1\}}\left(\gamma_{k, l} \mathcal{T}_{k, l}+\gamma_{k, 2, l} \mathcal{T}_{k, 2, l}\right) \quad T_{k_{1}, \ldots, k_{r}}=\sum_{i=0} M_{\left(k_{1}, \ldots, k_{r}\right)}^{(i, r)}
$$

- Computationally expensive
- Nonlocality is detected for $n \in\{3,4,5,8\}$

Examples (lb)

- Projecting \mathbb{P}_{L} to the space of few-body, $\mathrm{TI}_{n-1} \mathrm{BI}$

$$
I=\gamma \mathcal{T}_{2}+\sum_{k, l \in\{0,1\}}\left(\gamma_{k, l} \mathcal{T}_{k, l}+\gamma_{k, 2, l} \mathcal{T}_{k, 2, l}\right) \quad T_{k_{1}, \ldots, k_{r}}=\sum_{i=0} M_{\left(k_{1}, \ldots, k_{r}\right)}^{(i, r)}
$$

- Computationally expensive
- Nonlocality is detected for $n \in\{3,4,5,8\}$

By taking $\gamma=0, \gamma_{00}=\gamma_{10}=-\gamma_{01}=-\gamma_{11}=2,-\gamma_{020}=-\gamma_{021}=\gamma_{120}=\gamma_{121}=1$,

Examples (lb)

- Projecting \mathbb{P}_{L} to the space of few-body, $\mathrm{TI}_{n-1} \mathrm{BI}$

$$
I=\gamma \mathcal{T}_{2}+\sum_{k, l \in\{0,1\}}\left(\gamma_{k, l} \mathcal{T}_{k, l}+\gamma_{k, 2, l} \mathcal{T}_{k, 2, l}\right) \quad T_{k_{1}, \ldots, k_{r}}=\sum_{i=0}^{n-1} M_{\left(k_{1}, \ldots, k_{r}\right)}^{(i, r)}
$$

- Computationally expensive
- Nonlocality is detected for $n \in\{3,4,5,8\}$

By taking $\gamma=0, \gamma_{00}=\gamma_{10}=-\gamma_{01}=-\gamma_{11}=2,-\gamma_{020}=-\gamma_{021}=\gamma_{120}=\gamma_{121}=1$, we find a classical bound of $\beta_{C}=32$

Examples (lb)

- Projecting \mathbb{P}_{L} to the space of few-body, $\mathrm{TI}_{n-1} \mathrm{BI}$

$$
I=\gamma \mathcal{T}_{2}+\sum_{k, l \in\{0,1\}}\left(\gamma_{k, l} \mathcal{T}_{k, l}+\gamma_{k, 2, l} \mathcal{T}_{k, 2, l}\right) \quad T_{k_{1}, \ldots, k_{r}}=\sum_{i=0}^{n-1} M_{\left(k_{1}, \ldots, k_{r}\right)}^{(i, r)}
$$

- Computationally expensive
- Nonlocality is detected for $n \in\{3,4,5,8\}$

By taking $\gamma=0, \gamma_{00}=\gamma_{10}=-\gamma_{01}=-\gamma_{11}=2,-\gamma_{020}=-\gamma_{021}=\gamma_{120}=\gamma_{121}=1$, we find a classical bound of $\beta_{C}=32$
and a quantum value $\beta_{Q}=8(\sqrt{2}+2 \cos (\pi / 8)+2 \sin (\pi / 8)) \approx 32.2187$

Examples (lb)

- Projecting \mathbb{P}_{L} to the space of few-body, $\mathrm{TI}_{n-1} \mathrm{BI}$

$$
I=\gamma \mathcal{T}_{2}+\sum_{k, l \in\{0,1\}}\left(\gamma_{k, l} \mathcal{T}_{k, l}+\gamma_{k, 2, l} \mathcal{T}_{k, 2, l}\right) \quad T_{k_{1}, \ldots, k_{r}}=\sum_{i=0}^{n-1} M_{\left(k_{1}, \ldots, k_{r}\right)}^{(i, r)}
$$

- Computationally expensive
- Nonlocality is detected for $n \in\{3,4,5,8\}$

By taking $\gamma=0, \gamma_{00}=\gamma_{10}=-\gamma_{01}=-\gamma_{11}=2,-\gamma_{020}=-\gamma_{021}=\gamma_{120}=\gamma_{121}=1$, we find a classical bound of $\beta_{C}=32$ and a quantum value $\beta_{Q}=8(\sqrt{2}+2 \cos (\pi / 8)+2 \sin (\pi / 8)) \approx 32.2187$ which exceeds the classical bound, showing that the correlations are nonlocal

Examples (Ila)

Examples (IIa)

- Building a quasi-TI class

Examples (Ila)

- Building a quasi-TI class
- Uniparametric ε

Examples (Ila)

- Building a quasi-TI class
- Uniparametric ε
- Large n

Examples (Ila)

- Building a quasi-TI class
- Uniparametric ε

- Large n

Examples (Ila)

- Building a quasi-TI class
- Uniparametric ε

- Large n

Take the Braunstein-Caves (BC) chained inequality for m measurement settings
[Braunstein and Caves, Ann. Phys. 202, 22 (1990)]

Examples (Ila)

- Building a quasi-TI class
- Uniparametric ε
- Large n

Take the Braunstein-Caves (BC) chained inequality for m measurement settings

$$
I_{\mathrm{BC}}=\sum_{k=0}^{m-1}\left(A_{m-k-2} B_{k}+A_{m-k-1} \begin{array}{c}
\text { [Braunstein and Caves, Ann. Phys. 202, } 22(1990)]
\end{array} A_{1-1}=-A_{m-1}\right.
$$

Examples (Ila)

- Building a quasi-TI class
- Uniparametric ε
- Large n

Take the Braunstein-Caves (BC) chained inequality for m measurement settings

$$
I_{\mathrm{BC}}=\sum_{k=0}^{m-1}\left(A_{m-k-2} B_{k}+A_{m-k-1} \begin{array}{c}
\text { [Braunstein and Caves, Ann. Phys. 202, 22(1990)] }
\end{array}\right) \quad A_{-1}=-A_{m-1}
$$

For $m=2$, it is simply the CHSH inequality $A_{0} B_{0}+A_{0} B_{1}+A_{1} B_{0}-A_{1} B_{1}$
[Clauser et al., Phys. Rev. Lett. 23, 880 (1969)]

Examples (Ila)

- Building a quasi-TI class
- Uniparametric ε
- Large n

Take the Braunstein-Caves (BC) chained inequality for m measurement settings

$$
I_{\mathrm{BC}}=\sum_{k=0}^{m-1}\left(A_{m-k-2} B_{k}+A_{m-k-1}^{[\text {Braunstein and Caves, Ann. Phys. 202, 22(1990)] }} B_{1}\right) \quad A_{-1}=-A_{m-1}
$$

For $m=2$, it is simply the CHSH inequality $A_{0} B_{0}+A_{0} B_{1}+A_{1} B_{0}-A_{1} B_{1}$
[Clauser et al., Phys. Rev. Lett. 23, 880 (1969)]

- Always nonlocal when $\varepsilon= \pm 1$

Examples (Ila)

- Building a quasi-TI class
- Uniparametric ε
- Large n

Take the Braunstein-Caves (BC) chained inequality for m measurement settings

$$
I_{\mathrm{BC}}=\sum_{k=0}^{m-1}\left(A_{m-k-2} B_{k}+A_{m-k-1}^{[\text {Braunstein and Caves, Ann. Phys. 202, 22(1990)] }} B_{1}\right) \quad A_{-1}=-A_{m-1}
$$

For $m=2$, it is simply the CHSH inequality $A_{0} B_{0}+A_{0} B_{1}+A_{1} B_{0}-A_{1} B_{1}$
[Clauser et al., Phys. Rev. Lett. 23, 880 (1969)]

- Always nonlocal when $\varepsilon= \pm 1$
- Monogamy of correlations dominates when $\varepsilon=0$
[Wang et al., arXiv:1608.03485v3 (2016)]

Examples (IIb)

Examples (llb)

- Bell operator is an XY-like Hamiltonian

Examples (llb)

- Bell operator is an XY-like Hamiltonian

$$
\mathcal{H}=m \sum_{i=0}^{n-1}\left[1+(-1)^{i} \varepsilon\right]\left(\sigma_{\pi / 2 m}^{(i)} \sigma_{\pi / 2 m}^{(i+1)}-\sigma_{y}^{(i)} \sigma_{y}^{(i+1)}\right)
$$

Examples (llb)

- Bell operator is an XY-like Hamiltonian

$$
\mathcal{H}=m \sum_{i=0}^{n-1}\left[1+(-1)^{i} \varepsilon\right]\left(\sigma_{\pi / 2 m}^{(i)} \sigma_{\pi / 2 m}^{(i+1)}-\sigma_{y}^{(i)} \sigma_{y}^{(i+1)}\right)
$$

Examples (llb)

- Bell operator is an XY-like Hamiltonian

$$
\mathcal{H}=m \sum_{i=0}^{n-1}\left[1+(-1)^{i} \varepsilon\right]\left(\sigma_{\pi / 2 m}^{(i)} \sigma_{\pi / 2 m}^{(i+1)}-\sigma_{y}^{(i)} \sigma_{y}^{(i+1)}\right)
$$

Asymptotic contributions per particle
to quantum value and classical bound

Examples (llb)

- Bell operator is an XY-like Hamiltonian

$$
\mathcal{H}=m \sum_{i=0}^{i=1}\left[1+(-1)^{i} \varepsilon\right]\left(\sigma_{\pi / 2 m}^{(i)} \sigma_{\pi / 2 m}^{(i+1)}-\sigma_{y}^{(i)} \sigma_{y}^{(i+1)}\right)
$$

Asymptotic contributions per particle
to quantum value and classical bound

Examples (llb)

- Bell operator is an XY-like Hamiltonian

$$
\mathcal{H}=m \sum_{i=0}^{i=1}\left[1+(-1)^{i} \varepsilon\right]\left(\sigma_{\pi / 2 m}^{(i)} \sigma_{\pi / 2 m}^{(i+1)}-\sigma_{y}^{(i)} \sigma_{y}^{(i+1)}\right)
$$

Asymptotic contributions per particle
to quantum value and classical bound

Examples (llb)

- Bell operator is an XY-like Hamiltonian

$$
\mathcal{H}=m \sum_{i=0}^{i=1}\left[1+(-1)^{i} \varepsilon\right]\left(\sigma_{\pi / 2 m}^{(i)} \sigma_{\pi / 2 m}^{(i+1)}-\sigma_{y}^{(i)} \sigma_{y}^{(i+1)}\right)
$$

Asymptotic contributions per particle to quantum value and classical bound

$\tilde{\beta_{C}}=2 \max \{1,|\varepsilon|\}$
4^{ϵ}
Ground state is nonlocal
$\mathrm{E}(\mathrm{t}) \rightarrow$ Elliptic integral of in the blue parameter region

The optimal number of measurements is $m=2$, i.e., when BC is the CHSH inequality

Examples (III)

Examples (III)

- Spin glass displays Bell correlations in some parameter region

Examples (III)

- Spin glass displays Bell correlations in some parameter region

Examples (III)

- Spin glass displays Bell correlations in some parameter region

$$
\mathcal{H}=\sum_{i=0}^{n-1} J_{\mu, \sigma}^{(i)}\left(\sigma_{\pi / 4}^{(i)} \sigma_{\pi / 4}^{(i+1)}-\sigma_{y}^{(i)} \sigma_{y}^{(i+1)}\right)
$$

Examples (III)

- Spin glass displays Bell correlations in some parameter region

$$
\mathcal{H}=\sum_{i=0}^{n-1} J_{\mu, \sigma}^{(i)}\left(\sigma_{\pi / 4}^{(i)} \sigma_{\pi / 4}^{(i+1)}-\sigma_{y}^{(i)} \sigma_{y}^{(i+1)}\right)
$$

100 spins
TI Gaussian distribution
1000 realizations average

Examples (III)

- Spin glass displays Bell correlations in some parameter region

Let's generalize

Let's generalize

- Up to now, we have considered Hamiltonians solvable via the JW transformation

Let's generalize

- Up to now, we have considered Hamiltonians solvable via the JW transformation
- But the method is not limited to that

Let's generalize

- Up to now, we have considered Hamiltonians solvable via the JW transformation
- But the method is not limited to that
- If you can, somehow, access the ground state energy, it is enough

Let's generalize

- Up to now, we have considered Hamiltonians solvable via the JW transformation
- But the method is not limited to that
- If you can, somehow, access the ground state energy, it is enough
- Spin system

Let's generalize

- Up to now, we have considered Hamiltonians solvable via the JW transformation
- But the method is not limited to that
- If you can, somehow, access the ground state energy, it is enough
- Spin system
- Short-range interactions

Let's generalize

- Up to now, we have considered Hamiltonians solvable via the JW transformation
- But the method is not limited to that
- If you can, somehow, access the ground state energy, it is enough
- Spin system
- Short-range interactions
- One spatial dimension

Let's generalize

- Up to now, we have considered Hamiltonians solvable via the JW transformation
- But the method is not limited to that
- If you can, somehow, access the ground state energy, it is enough
- Spin system
- Short-range interactions
- One spatial dimension
- Up to one's imagination!

Examples (IVa)

Examples (IVa)

- The XXZ-model and Gisin's elegant inequality

Examples (IVa)

- The XXZ-model and Gisin's elegant inequality

$$
I=\left(\begin{array}{llll}
A_{0} & A_{1} & A_{2} & A_{3}
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & \Delta \\
1 & -1 & -\Delta \\
-1 & 1 & -\Delta \\
-1 & -1 & \Delta
\end{array}\right)\left(\begin{array}{l}
B_{0} \\
B_{1} \\
B_{2}
\end{array}\right)
$$

Examples (IVa)

- The XXZ-model and Gisin's elegant inequality

$$
I=\left(\begin{array}{llll}
A_{0} & A_{1} & A_{2} & A_{3}
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & \Delta \\
1 & -1 & -\Delta \\
-1 & 1 & -\Delta \\
-1 & -1 & \Delta
\end{array}\right)\left(\begin{array}{l}
B_{0} \\
B_{1} \\
B_{2}
\end{array}\right)
$$

Examples (IVa)

- The XXZ-model and Gisin's elegant inequality
$I=\left(\begin{array}{llll}A_{0} & A_{1} & A_{2} & A_{3}\end{array}\right)\left(\begin{array}{rrr}1 & 1 & \Delta \\ 1 & -1 & -\Delta \\ -1 & 1 & -\Delta \\ -1 & -1 & \Delta\end{array}\right)\left(\begin{array}{l}B_{0} \\ B_{1} \\ B_{2}\end{array}\right)$

Examples (IVa)

- The XXZ-model and Gisin's elegant inequality
$I=\left(\begin{array}{llll}A_{0} & A_{1} & A_{2} & A_{3}\end{array}\right)\left(\begin{array}{rrr}1 & 1 & \Delta \\ 1 & -1 & -\Delta \\ -1 & 1 & -\Delta \\ -1 & -1 & \Delta\end{array}\right)\left(\begin{array}{l}B_{0} \\ B_{1} \\ B_{2}\end{array}\right)$

∇a_{1}

Examples (IVa)

- The XXZ-model and Gisin's elegant inequality
$I=\left(\begin{array}{llll}A_{0} & A_{1} & A_{2} & A_{3}\end{array}\right)\left(\begin{array}{rrr}1 & 1 & \Delta \\ 1 & -1 & -\Delta \\ -1 & 1 & -\Delta \\ -1 & -1 & \Delta\end{array}\right)\left(\begin{array}{l}B_{0} \\ B_{1} \\ B_{2}\end{array}\right)$

∇a_{1}

$$
\mathcal{B}=\sigma_{x} \sigma_{x}+\sigma_{y} \sigma_{y}+\Delta \sigma_{z} \sigma_{z}
$$

Jordi Tura

Examples (IVa)

- The XXZ-model and Gisin's elegant inequality

$$
I=\left(\begin{array}{llll}
A_{0} & A_{1} & A_{2} & A_{3}
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & \Delta \\
1 & -1 & -\Delta \\
-1 & 1 & -\Delta \\
-1 & -1 & \Delta
\end{array}\right)\left(\begin{array}{l}
B_{0} \\
B_{1} \\
B_{2}
\end{array}\right)
$$

v a_{1}

$$
\mathcal{B}=\sigma_{x} \sigma_{x}+\sigma_{y} \sigma_{y}+\Delta \sigma_{z} \sigma_{z}
$$

Bell operator is permutationally invariant

Examples (IVa)

- The XXZ-model and Gisin's elegant inequality

$$
I=\left(\begin{array}{llll}
A_{0} & A_{1} & A_{2} & A_{3}
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & \Delta \\
1 & -1 & -\Delta \\
-1 & 1 & -\Delta \\
-1 & -1 & \Delta
\end{array}\right)\left(\begin{array}{l}
B_{0} \\
B_{1} \\
B_{2}
\end{array}\right) \begin{aligned}
& \text { Not symmetric (even } \\
& \text { a different number of } \\
& \text { measurements) }
\end{aligned}
$$

∇a_{1}

$$
\mathcal{B}=\sigma_{x} \sigma_{x}+\sigma_{y} \sigma_{y}+\Delta \sigma_{z} \sigma_{z}
$$

Bell operator is permutationally invariant

Examples (IVa)

- The XXZ-model and Gisin's elegant inequality

$$
I=\left(\begin{array}{llll}
A_{0} & A_{1} & A_{2} & A_{3}
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & \Delta \\
1 & -1 & -\Delta \\
-1 & 1 & -\Delta \\
-1 & -1 & \Delta
\end{array}\right)\left(\begin{array}{c}
B_{0} \\
B_{1} \\
B_{2}
\end{array}\right) \begin{aligned}
& \text { Not symmetric (even } \\
& \text { a different number of } \\
& \text { measurements) }
\end{aligned}
$$

∇a_{1}

$$
\mathcal{B}=\sigma_{x} \sigma_{x}+\sigma_{y} \sigma_{y}+\Delta \sigma_{z} \sigma_{z}
$$

Bell operator is permutationally invariant

Correspondence can be non-obvious

Examples (IVb)

Examples (IVb)

- Using Dynamic Programming, we find the classical bound of $A \frac{1+\varepsilon}{1} B \frac{1-\varepsilon}{1} C \frac{1+\varepsilon}{1} D \frac{1-\varepsilon}{1} E$

Examples (IVb)

- Using Dynamic Programming, we find the classical bound of $A \frac{1+\varepsilon}{1} B \frac{1-\varepsilon}{1} C \frac{1+\varepsilon}{1} D \frac{1-\varepsilon}{1} E$

ICFO

Examples (IVb)

- Using Dynamic Programming, we find the classical bound of $A \frac{1+\varepsilon}{1} B \frac{1-\varepsilon}{I}$ C $\frac{1+\varepsilon}{I}$ D $\frac{1-\varepsilon}{I} E$

$$
\begin{array}{ll}
\beta_{C, \mathrm{I}} & =-n(4+2|\Delta|) \\
\beta_{C, \text { II }} & =-4 n|\Delta| \\
\beta_{C, \text { III }} & =-8-4|\Delta|-(4 n-8)|\epsilon|-(2 n-4)|\Delta||\epsilon| \\
\beta_{C, \mathrm{IV}} & =-8|\Delta|-(4 n-8)|\epsilon||\Delta| \\
\beta_{C, \mathrm{~V}} & =-4 n|\epsilon|-(2 n-8)|\epsilon||\Delta| \\
\beta_{C, \mathrm{VI}} & =-4-(4 n-4)|\epsilon|-(2 n-4)|\epsilon||\Delta| \\
\beta_{C, \mathrm{VII}} & =-4|\Delta|-(4 n-8)|\epsilon|-2 n|\epsilon||\Delta| \\
\beta_{C, \mathrm{VIII}} & =-8|\epsilon|-4|\Delta|-(4 n-8)|\epsilon||\Delta|
\end{array}
$$

Jordi Tura
QIP 2017

Examples (IVc)

Examples (IVc)

- Using Gisin's measurements, we obtain an XXZ-like Hamiltonian

Examples (IVc)

- Using Gisin's measurements, we obtain an XXZ-like Hamiltonian

$$
\mathcal{H}=\frac{4}{\sqrt{3}} \sum_{i=0}^{n-1}\left(1+(-1)^{i} \varepsilon\right)\left(\sigma_{x}^{(i)} \sigma_{x}^{(i+1)}+\sigma_{y}^{(i)} \sigma_{y}^{(i+1)}+\Delta \sigma_{z}^{(i)} \sigma_{z}^{(i+1)}\right)
$$

Examples (IVc)

- Using Gisin's measurements, we obtain an XXZ-like Hamiltonian
$\mathcal{H}=\frac{4}{\sqrt{3}} \sum_{i=0}^{n-1}\left(1+(-1)^{i} \varepsilon\right)\left(\sigma_{x}^{(i)} \sigma_{x}^{(i+1)}+\sigma_{y}^{(i)} \sigma_{y}^{(i+1)}+\Delta \sigma_{z}^{(i)} \sigma_{z}^{(i+1)}\right)$
- Ground state energy
- MPS
- DMRG
- Tensor Networks

Examples (IVc)

- Using Gisin's measurements, we obtain an XXZ-like Hamiltonian

$$
\mathcal{H}=\frac{4}{\sqrt{3}} \sum_{i=0}^{n-1}\left(1+(-1)^{i} \varepsilon\right)\left(\sigma_{x}^{(i)} \sigma_{x}^{(i+1)}+\sigma_{y}^{(i)} \sigma_{y}^{(i+1)}+\Delta \sigma_{z}^{(i)} \sigma_{z}^{(i+1)}\right)
$$

- Ground state energy
- MPS
- DMRG
- Tensor Networks
[ITensor - Intelligent Tensor Library, http://itensor.org]

Examples (IVc)

- Using Gisin's measurements, we obtain an XXZ-like Hamiltonian

$$
\mathcal{H}=\frac{4}{\sqrt{3}} \sum_{i=0}^{n-1}\left(1+(-1)^{i} \varepsilon\right)\left(\sigma_{x}^{(i)} \sigma_{x}^{(i+1)}+\sigma_{y}^{(i)} \sigma_{y}^{(i+1)}+\Delta \sigma_{z}^{(i)} \sigma_{z}^{(i+1)}\right)
$$

- Ground state energy
- MPS
- DMRG
- Tensor Networks
[ITensor - Intelligent Tensor Library, http://itensor.org]

Conclusions

Conclusions

- To show nonlocality in a many-body system

Conclusions

- To show nonlocality in a many-body system
- Combinatorial optimization: classical bound
- Dynamic programming

Conclusions

- To show nonlocality in a many-body system
- Combinatorial optimization: classical bound
- Dynamic programming
- The inequality is non-trivial
- Jordan Wigner
- MPS/DMRG

Conclusions

- To show nonlocality in a many-body system
- Combinatorial optimization: classical bound
- Dynamic programming
- The inequality is non-trivial
- Jordan Wigner
- MPS/DMRG
- Make it experimentally accessible
- Few- (2-)body correlators, ground state energy

Conclusions

- To show nonlocality in a many-body system
- Combinatorial optimization: classical bound
- Dynamic programming
- The inequality is non-trivial
- Jordan Wigner
- MPS/DMRG
- Make it experimentally accessible
- Few- (2-)body correlators, ground state energy
- Translationally invariant case
- Closed formulas/Speed improvement

Conclusions

- To show nonlocality in a many-body system
- Combinatorial optimization: classical bound
- Dynamic programming
- The inequality is non-trivial
- Jordan Wigner
- MPS/DMRG
- Make it experimentally accessible
- Few- (2-)body correlators, ground state energy
- Translationally invariant case
- Closed formulas/Speed improvement
- Toolset to study nonlocality in physically relevant system
- Spin systems, 1 spatial dimension, short-range interactions

Outlook

Outlook

- Contrary to the permutationally invariant case, there is no de Finetti restriction (more robust inequalities)

Outlook

- Contrary to the permutationally invariant case, there is no de Finetti restriction (more robust inequalities)
- In this work, we have seen
- Hamiltonian = particular realization of a Bell inequality

Outlook

- Contrary to the permutationally invariant case, there is no de Finetti restriction (more robust inequalities)
- In this work, we have seen
- Hamiltonian = particular realization of a Bell inequality
- One can also
- Look for the optimal Bell inequality for a given Hamiltonian
- Only the classical bound needs to be found

Outlook

- Contrary to the permutationally invariant case, there is no de Finetti restriction (more robust inequalities)
- In this work, we have seen
- Hamiltonian = particular realization of a Bell inequality
- One can also
- Look for the optimal Bell inequality for a given Hamiltonian
- Only the classical bound needs to be found
- In the fully TI case, how does monogamy of correlations affect nonlocality?

Outlook

- Contrary to the permutationally invariant case, there is no de Finetti restriction (more robust inequalities)
- In this work, we have seen
- Hamiltonian = particular realization of a Bell inequality
- One can also
- Look for the optimal Bell inequality for a given Hamiltonian
- Only the classical bound needs to be found
- In the fully TI case, how does monogamy of correlations affect nonlocality?
- Generalization to more spatial dimensions?
- Chordal extension and semi-definite programming

Outlook

- Contrary to the permutationally invariant case, there is no de Finetti restriction (more robust inequalities)
- In this work, we have seen
- Hamiltonian = particular realization of a Bell inequality
- One can also
- Look for the optimal Bell inequality for a given Hamiltonian
- Only the classical bound needs to be found
- In the fully TI case, how does monogamy of correlations affect nonlocality?
- Generalization to more spatial dimensions?
- Chordal extension and semi-definite programming
- Study persistence of nonlocality

Thanks for your attention!

$\overline{\text { MAX-PLANCK-GESELLSCHAFT }}$

Fundación
Príncipe de Asturias

Fundació Privada CELLEX

European Research Council
 d'Ajuts
Universitaris i de Recerca

AXA
Research Fund
Through Research, Protection

Der Wissenschaftsfonds.

Thanks for your attention!

[^0]: $M_{0}^{(i)}$
 $M_{1}^{(i)}$
 $M_{2}^{(i)}$

