Iordanis Kerenidis ¹ Anupam Prakash ²

¹CNRS, Université Paris Diderot, Paris, France.

²Nanyang Technological University, Singapore.

January 17, 2017

• Utilize intrinsic linear algebra capabilities of quantum computers for *exponential* speedups.

- Utilize intrinsic linear algebra capabilities of quantum computers for *exponential* speedups.
- Vector state $|x\rangle = \sum_{i} x_{i} |i\rangle$ where $x \in \mathbb{R}^{n}$ is a unit vector.

- Utilize intrinsic linear algebra capabilities of quantum computers for exponential speedups.
- Vector state $|x\rangle = \sum_{i} x_{i} |i\rangle$ where $x \in \mathbb{R}^{n}$ is a unit vector.
- Given sparse matrix $A \in \mathbb{R}^{n \times n}$ and $|b\rangle$ there is a quantum algorithm to prepare $|A^{-1}b\rangle$ in time polylog(n). [Harrow, Hassidim, Lloyd]

- Utilize intrinsic linear algebra capabilities of quantum computers for exponential speedups.
- Vector state $|x\rangle = \sum_i x_i |i\rangle$ where $x \in \mathbb{R}^n$ is a unit vector.
- Given sparse matrix $A \in \mathbb{R}^{n \times n}$ and $|b\rangle$ there is a quantum algorithm to prepare $|A^{-1}b\rangle$ in time polylog(n). [Harrow, Hassidim, Lloyd]
- Assumptions: $|b\rangle$ can be prepared polylog(n) time and A is polylog(n) sparse.

- Utilize intrinsic linear algebra capabilities of quantum computers for exponential speedups.
- Vector state $|x\rangle = \sum_{i} x_{i} |i\rangle$ where $x \in \mathbb{R}^{n}$ is a unit vector.
- Given sparse matrix $A \in \mathbb{R}^{n \times n}$ and $|b\rangle$ there is a quantum algorithm to prepare $|A^{-1}b\rangle$ in time polylog(n). [Harrow, Hassidim, Lloyd]
- Assumptions: $|b\rangle$ can be prepared polylog(n) time and A is polylog(n) sparse.
- Incomparable to classical linear system solver which returns vector $x \in \mathbb{R}^n$ as opposed to $|x\rangle$.

• *HHL* led to several proposals for quantum machine learning algorithms.

- HHL led to several proposals for quantum machine learning algorithms.
- Principal components analysis, classification with ℓ_2 -SVMs, k-means clustering, perceptron, nearest neighbors... [Lloyd, Mohseni, Rebentrost, Wiebe, Kapoor, Svore]

- HHL led to several proposals for quantum machine learning algorithms.
- Principal components analysis, classification with ℓ_2 -SVMs, k-means clustering, perceptron, nearest neighbors... [Lloyd, Mohseni, Rebentrost, Wiebe, Kapoor, Svore]
- Algorithms achieve exponential speedups only for sparse/well-conditioned data.

- HHL led to several proposals for quantum machine learning algorithms.
- Principal components analysis, classification with ℓ_2 -SVMs, k-means clustering, perceptron, nearest neighbors... [Lloyd, Mohseni, Rebentrost, Wiebe, Kapoor, Svore]
- Algorithms achieve exponential speedups only for sparse/well-conditioned data.
- Sometimes a variant of the classical problem is solved: ℓ_1 vs $\ell_2\text{-SVM}.$

- HHL led to several proposals for quantum machine learning algorithms.
- Principal components analysis, classification with ℓ_2 -SVMs, k-means clustering, perceptron, nearest neighbors... [Lloyd, Mohseni, Rebentrost, Wiebe, Kapoor, Svore]
- Algorithms achieve exponential speedups only for sparse/well-conditioned data.
- Sometimes a variant of the classical problem is solved: ℓ_1 vs $\ell_2\text{-SVM}.$
- Incomparable with classical.

• Open problem: A quantum machine learning algorithm with exponential worst case speedup for classical problem.

- Open problem: A quantum machine learning algorithm with exponential worst case speedup for classical problem.
- Quantum recommendation systems.

- Open problem: A quantum machine learning algorithm with exponential worst case speedup for classical problem.
- Quantum recommendation systems.
- An exponential speedup over classical with similar assumptions and guarantees.

- Open problem: A quantum machine learning algorithm with exponential worst case speedup for classical problem.
- Quantum recommendation systems.
- An exponential speedup over classical with similar assumptions and guarantees.
- An end to end application with no assumptions on the data set.

- Open problem: A quantum machine learning algorithm with exponential worst case speedup for classical problem.
- Quantum recommendation systems.
- An exponential speedup over classical with similar assumptions and guarantees.
- An end to end application with no assumptions on the data set.
- Solves the 'same' problem as a classical recommendation system.

THE RECOMMENDATION PROBLEM

• The preference matrix P.

	P_1	P_2	P_3	P_4	• • •	• • •	P_{n-1}	P_n
U_1	.1	.4	?	?			?	.9
U_2	.2	?	.6	?			.85	?
U_3	?	?	.8	.9	• • •		?	.2
÷		•	•••		•••			
U_m	?	.75	?	?		•••	?	.2

THE RECOMMENDATION PROBLEM

• The preference matrix P.

	P_1	P_2	P_3	P_4	• • •	• • •	P_{n-1}	P_n
U_1	.1	.4	?	?	•••	• •	?	.9
U_2	.2	?	.6	?		• • •	.85	?
U_3	?	?	.8	.9	• • •	•••	?	.2
:	• • •	• •	• • •	• • •	•••	•••		
U_m	?	.75	?	?		• • •	?	.2

• P_{ij} is the value of item j for user i. Samples from P arrive in an online manner.

THE RECOMMENDATION PROBLEM

• The preference matrix P.

	P_1	P_2	P_3	P_4	•••	•••	P_{n-1}	P_n
U_1	.1	.4	?	?	• • •		?	.9
U_2	.2	?	.6	?			.85	?
U_3	?	?	.8	.9		• • •	?	.2
:	• • •	• •	•••	• • •	• • •	• • •	•••	
U_m	?	.75	?	?	• • •	•••	?	.2

- P_{ij} is the value of item j for user i. Samples from P arrive in an online manner.
- The assumption that P has a good rank-k approximation for small k is widely used.

THE NETFLIX PROBLEM

Netflix Prize

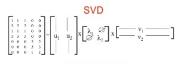
What we were interested in:

High quality recommendations

Proxy question:

- Accuracy in predicted rating
- Improve by 10% = \$1million!

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$



Results

Top 2 algorithms still in production

RBM

• Matrix reconstruction algorithms reconstruct $\widetilde{P} \approx P$ using the low rank assumption and require time poly(mn).

- Matrix reconstruction algorithms reconstruct $\widetilde{P} \approx P$ using the low rank assumption and require time poly(mn).
- A reconstruction based recommendation system requires time poly(n), even with pre-computation.

- Matrix reconstruction algorithms reconstruct $\widetilde{P} \approx P$ using the low rank assumption and require time poly(mn).
- A reconstruction based recommendation system requires time poly(n), even with pre-computation.
- Matrix sampling suffices to obtain good recommendations.

- Matrix reconstruction algorithms reconstruct $\widetilde{P} \approx P$ using the low rank assumption and require time poly(mn).
- A reconstruction based recommendation system requires time poly(n), even with pre-computation.
- Matrix sampling suffices to obtain good recommendations.
- Quantum algorithms can perform matrix sampling.

- Matrix reconstruction algorithms reconstruct $\widetilde{P} \approx P$ using the low rank assumption and require time poly(mn).
- A reconstruction based recommendation system requires time poly(n), even with pre-computation.
- Matrix sampling suffices to obtain good recommendations.
- Quantum algorithms can perform matrix sampling.

THEOREM

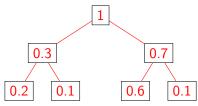
There is a quantum recommendation algorithm with running time O(poly(k)polylog(mn)).

Computational Model

• Samples from P arrive in an online manner and are stored in data structure with update time $O(\log^2 mn)$.

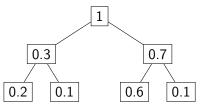
COMPUTATIONAL MODEL

- Samples from P arrive in an online manner and are stored in data structure with update time $O(\log^2 mn)$.
- The quantum algorithm has oracle access to binary tree data structure storing additional metadata.



Computational Model

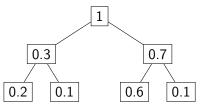
- Samples from P arrive in an online manner and are stored in data structure with update time $O(\log^2 mn)$.
- The quantum algorithm has oracle access to binary tree data structure storing additional metadata.



• We use the standard memory model used for algorithms like Grover search.

Computational Model

- Samples from P arrive in an online manner and are stored in data structure with update time $O(\log^2 mn)$.
- The quantum algorithm has oracle access to binary tree data structure storing additional metadata.



- We use the standard memory model used for algorithms like Grover search.
- Users arrive into system in an online manner and system provides recommendations in time poly(k)polylog(mn).

• The singular value decomposition for matrix A is written as $A = \sum_i \sigma_i u_i v_i^t$.

- The singular value decomposition for matrix A is written as $A = \sum_i \sigma_i u_i v_i^t$.
- The rank-k approximation $A_k = \sum_{i \in [k]} \sigma_i u_i v_i^t$ minimizes $||A A_k||_F$.

- The singular value decomposition for matrix A is written as $A = \sum_{i} \sigma_{i} u_{i} v_{i}^{t}$.
- The rank-k approximation $A_k = \sum_{i \in [k]} \sigma_i u_i v_i^t$ minimizes $||A A_k||_F$.
- Quantum singular value estimation:

- The singular value decomposition for matrix A is written as $A = \sum_{i} \sigma_{i} u_{i} v_{i}^{t}$.
- The rank-k approximation $A_k = \sum_{i \in [k]} \sigma_i u_i v_i^t$ minimizes $||A A_k||_F$.
- Quantum singular value estimation:

Theorem

There is an algorithm with running time $O(\operatorname{polylog}(\operatorname{mn})/\epsilon)$ that transforms $\sum_i \alpha_i |v_i\rangle \to \sum_i \alpha_i |v_i\rangle |\overline{\sigma_i}\rangle$ where $\overline{\sigma_i} \in \sigma_i \pm \epsilon \|A\|_F$ with probability at least $1-1/\operatorname{poly}(n)$.

MATRIX SAMPLING

• Let T be a 0/1 matrix such that $T_{ij} = 1$ if item j is 'good' recommendation for user i.

	P_1	P_2	P_3	P_4	• • •	• • •	P_{n-1}	P_n
U_1	0	0	?	?	•••		?	1
U_2	0	?	0	?	•••	• • •	1	?
U_3	?	?	1	1			?	0
:								
U_m	?	1	?	?			?	0

Matrix Sampling

• Let T be a 0/1 matrix such that $T_{ij} = 1$ if item j is 'good' recommendation for user i.

	P_1	P_2	P_3	P_4	• • •	• • •	P_{n-1}	P_n
U_1	0	0	?	?	•••	•••	?	1
U_2	0	?	0	?	•••	•••	1	?
U_3	?	?	1	1		• • •	?	0
:					• • •	• • •		
U_m	?	1	?	?	• • •		?	0

• Set the ?s to 0 and rescale to obtain a *subsample* matrix \widehat{T} .

MATRIX SAMPLING

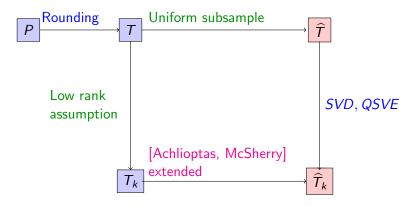


FIGURE: Matrix sampling based recommendation system.

Matrix Sampling

• *T* is the binary recommendation matrix obtained by rounding *P*.

- T is the binary recommendation matrix obtained by rounding P.
- \widehat{T} is a uniform subsample of T:

$$\widehat{A}_{ij} = egin{cases} A_{ij}/p & & & [\text{with probability } p] \\ 0 & & & [\text{otherwise}] \end{cases}$$

- T is the binary recommendation matrix obtained by rounding P.
- \widehat{T} is a uniform subsample of T:

$$\widehat{A}_{ij} = \begin{cases} A_{ij}/p & \text{[with probability } p] \\ 0 & \text{[otherwise]} \end{cases}$$

• T_k and \widehat{T}_k are rank-k approximations for T and \widehat{T} .

- T is the binary recommendation matrix obtained by rounding P.
- \widehat{T} is a uniform subsample of T:

$$\widehat{A}_{ij} = \begin{cases} A_{ij}/p & [\text{with probability } p] \\ 0 & [\text{otherwise}] \end{cases}$$

- T_k and \widehat{T}_k are rank-k approximations for T and \widehat{T} .
- The low rank assumption implies that $\|T T_k\| \le \epsilon \|T\|_F$ for small k.

- T is the binary recommendation matrix obtained by rounding P.
- \widehat{T} is a uniform subsample of T:

$$\widehat{A}_{ij} = \begin{cases} A_{ij}/p & [\text{with probability } p] \\ 0 & [\text{otherwise}] \end{cases}$$

- T_k and \widehat{T}_k are rank-k approximations for T and \widehat{T} .
- The low rank assumption implies that $\|T T_k\| \le \epsilon \|T\|_F$ for small k.
- Analysis: Sampling from matrix 'close to' \widehat{T}_k yields good recommendations.

• Samples from T_k are good recommendations, for large fraction of 'typical' users.

- Samples from T_k are good recommendations, for large fraction of 'typical' users.
- Sampling from \widehat{T}_k suffices.

- Samples from T_k are good recommendations, for large fraction of 'typical' users.
- Sampling from \widehat{T}_k suffices.

THEOREM (AM02)

If \widehat{A} is obtained from a 0/1 matrix A by subsampling with probability $p = 16n/\eta \|A\|_F^2$ then with probability at least $1 - \exp(-19(\log n)^4)$, for all k,

$$||A - \widehat{A}_k||_F \le ||A - A_k||_F + 3\sqrt{\eta}k^{1/4}||A||_F$$

• The quantum algorithm samples from $\widehat{T}_{\geq \sigma,\kappa}$, a projection onto all singular values $\geq \sigma$ and some in the range $[(1-\kappa)\sigma,\sigma)$.

- The quantum algorithm samples from $\widehat{T}_{\geq \sigma,\kappa}$, a projection onto all singular values $\geq \sigma$ and some in the range $[(1-\kappa)\sigma,\sigma)$.
- We extend AM02 to this setting showing that:

$$||T - \widehat{T}_{\sigma,\kappa}||_F \le 9\epsilon ||T||_F$$

- The quantum algorithm samples from $\widehat{T}_{\geq \sigma,\kappa}$, a projection onto all singular values $\geq \sigma$ and some in the range $[(1-\kappa)\sigma,\sigma)$.
- We extend AM02 to this setting showing that:

$$||T - \widehat{T}_{\sigma,\kappa}||_F \le 9\epsilon ||T||_F$$

• For most typical users, samples from $(\widehat{T}_{\sigma,\kappa})_i$ are good recommendations with high probability.

• Prepare state $|\widehat{T}_i\rangle$ corresponding to row for user i.

- Prepare state $|\widehat{T}_i\rangle$ corresponding to row for user i.
- Apply quantum projection algorithm to $|\widehat{T}_i\rangle$ to obtain $|(\widehat{T}_{\geq \sigma,\kappa})_i\rangle$.

- Prepare state $|\widehat{T}_i\rangle$ corresponding to row for user i.
- Apply quantum projection algorithm to $|\widehat{T}_i\rangle$ to obtain $|(\widehat{T}_{\geq \sigma,\kappa})_i\rangle$.
- Measure projected state in computational basis to get recommendation.

- Prepare state $|\widehat{T}_i\rangle$ corresponding to row for user i.
- Apply quantum projection algorithm to $|\widehat{T}_i\rangle$ to obtain $|(\widehat{T}_{\geq \sigma,\kappa})_i\rangle$.
- Measure projected state in computational basis to get recommendation.
- The threshold $\sigma = \frac{\epsilon \sqrt{p} ||A||_F}{\sqrt{2k}}$ and $\kappa = \frac{1}{3}$.

- Prepare state $|\widehat{T}_i\rangle$ corresponding to row for user i.
- Apply quantum projection algorithm to $|\widehat{T}_i\rangle$ to obtain $|(\widehat{T}_{\geq \sigma,\kappa})_i\rangle$.
- Measure projected state in computational basis to get recommendation.
- The threshold $\sigma = \frac{\epsilon \sqrt{p} \|A\|_F}{\sqrt{2k}}$ and $\kappa = \frac{1}{3}$.
- Running time depends on the threshold and not the condition number.

• Let $A = \sum_i \sigma_i u_i v_i^t$ be the singular value decomposition, write input $|x\rangle = \sum_i \alpha_i |v_i\rangle$.

- Let $A = \sum_i \sigma_i u_i v_i^t$ be the singular value decomposition, write input $|x\rangle = \sum_i \alpha_i |v_i\rangle$.
- Estimate singular values $\sum_{i} \alpha_{i} |v_{i}\rangle |\overline{\sigma_{i}}\rangle$ to additive error $\kappa \sigma/2$.

- Let $A = \sum_i \sigma_i u_i v_i^t$ be the singular value decomposition, write input $|x\rangle = \sum_i \alpha_i |v_i\rangle$.
- Estimate singular values $\sum_{i} \alpha_{i} |v_{i}\rangle |\overline{\sigma_{i}}\rangle$ to additive error $\kappa \sigma/2$.
- Map to $\sum_{i} \alpha_{i} |v_{i}\rangle |\overline{\sigma_{i}}\rangle |t\rangle$ where t = 1 if $\overline{\sigma_{i}} \geq (1 \kappa/2)\sigma$ and erase $\overline{\sigma_{i}}$.

- Let $A = \sum_i \sigma_i u_i v_i^t$ be the singular value decomposition, write input $|x\rangle = \sum_i \alpha_i |v_i\rangle$.
- Estimate singular values $\sum_{i} \alpha_{i} |v_{i}\rangle |\overline{\sigma_{i}}\rangle$ to additive error $\kappa \sigma/2$.
- Map to $\sum_{i} \alpha_{i} |v_{i}\rangle |\overline{\sigma_{i}}\rangle |t\rangle$ where t = 1 if $\overline{\sigma_{i}} \geq (1 \kappa/2)\sigma$ and erase $\overline{\sigma_{i}}$.
- Post-select on t = 1.

- Let $A = \sum_i \sigma_i u_i v_i^t$ be the singular value decomposition, write input $|x\rangle = \sum_i \alpha_i |v_i\rangle$.
- Estimate singular values $\sum_{i} \alpha_{i} |v_{i}\rangle |\overline{\sigma_{i}}\rangle$ to additive error $\kappa \sigma/2$.
- Map to $\sum_{i} \alpha_{i} |v_{i}\rangle |\overline{\sigma_{i}}\rangle |t\rangle$ where t = 1 if $\overline{\sigma_{i}} \geq (1 \kappa/2)\sigma$ and erase $\overline{\sigma_{i}}$.
- Post-select on t = 1.
- The output $|A_{\geq \sigma,\kappa}x\rangle$ a projection the space of singular vectors with singular values $\geq \sigma$ and some in the range $[(1-\kappa)\sigma,\sigma)$.

OPEN QUESTIONS

• Find a classical algorithm matrix sampling based recommendation algorithm that runs in time O(poly(k)polylog(mn)).

OR

Prove a lower bound to rule out such an algorithm.

• Find more quantum machine learning algorithms.