A Complete Characterization of Unitary Quantum Space Bill Fefferman (QuICS, University of Maryland) Joint with Cedric Lin (QuICS)

Based on arXiv:1604.01384

Our motivation: How powerful are quantum computers with a small number of qubits?

- Our results: Give two natural problems characterize the power of quantum computation with any bound on the number of qubits

1. Precise Succinct Hamiltonian problem
2. Well-conditioned Matrix Inversion problem

- These characterizations have many applications
- QMA proof systems and Hamiltonian complexity
- The power of preparing PEPS states vs ground states of Local Hamiltonians
- Classical Logspace complexity

Quantum space complexity

- BQSPACE[k(n)] is the class of promise problems $\mathrm{L}=\left(\mathrm{L}_{\text {yes }} \mathrm{L}_{\mathrm{n} 0}\right)$ that can be decided by a bounded error quantum algorithm acting on $\mathrm{k}(\mathrm{n})$ qubits.
- i.e., Exists uniformly generated family of quantum circuits $\left\{Q_{x}\right\}_{x \in\{0,1\}^{*}}$ each acting on $\mathrm{O}(\mathrm{k}(|\mathrm{x}|))$ qubits:
- "If answer is yes, the circuit Q_{x} accepts with high probability"

$$
x \in L_{\text {yes }} \Rightarrow\left\langle 0^{k}\right| Q_{x}^{\dagger}|\hat{1}\rangle\left\langle\left. 1\right|_{\text {out }} Q_{x} \mid 0^{k}\right\rangle \geq 2 / 3
$$

- "If answer is no, the circuit Q_{x} accepts with low probability"

$$
x \in L_{n o} \Rightarrow\left\langle 0^{k}\right| Q_{x}^{\dagger}|1\rangle\left\langle\left. 1\right|_{\text {out }} Q_{x} \mid 0^{k}\right\rangle \leq 1 / 3
$$

- Our results show two natural complete problems for BQSPACE[k(n)]
- For any $k(n)$ so that $\log (n) \leq k(n) \leq p o l y(n)$
- Our reductions use classical $k(n)$ space and poly(n) time
- Subtlety: This is "unitary quantum space"
- No intermediate measurements
- Not known if "deferring" intermediate measurements can be done space efficiently

Quantum Merlin-Arthur

- Problems whose solutions can be verified quantumly given a quantum state as witness
- $\mathbf{Q M A}(c, s)$ is the class of promise problems $\mathrm{L}=\left(\mathrm{L}_{\text {nes }}, \mathrm{L}_{\text {no }}\right)$ so that:

$$
\begin{aligned}
& x \in L_{\text {yes }} \Rightarrow \exists|\psi\rangle \operatorname{Pr}[V(x,|\psi\rangle)=1] \geq c \\
& x \in L_{n o} \Rightarrow \forall|\psi\rangle \operatorname{Pr}[V(x,|\psi\rangle)=1] \leq s
\end{aligned}
$$

- QMA = QMA(2/3,1/3) $=\mathrm{U}_{\mathrm{c}>0} \mathbf{Q M A}(\mathrm{c}, \mathrm{c}-1 /$ poly)
- k-Local Hamiltonian problem is QMA-complete (when $k \geq 2$)[Kitaev '00]
- Input: $H=\sum_{i=1}^{M} H_{i}$, each term H_{i} is k-local
- Promise either:
- Minimum eigenvalue $\lambda_{\text {min }}(\mathrm{H})>$ b or $\lambda_{\text {min }}(\mathrm{H})<\mathrm{a}$
- Where $b-a \geq 1 / \operatorname{poly}(n)$
- Which is the case?
- Generalizations of QMA:

1. PreciseQMA $=U_{c>0} \mathbf{Q M A}(c, c-1 /$ exp)
2. k-bounded QMA (c, s)

- Arthur's verification circuit acts on k qubits

- Merlin sends an m qubit witness

Characterization 1:
Precise Succinct Hamiltonian problem

The Precise Succinct Hamiltonian Problem

- Definition: "Succinct Encoding"
- We say a classical Turing machine M is a Succinct Encoding for $2^{k(n)} \times 2^{k(n)}$ matrix A if:
- On input $i \in\{0,1\}^{k(n)}, M$ outputs non-zero elements in i-th row of A
- Using at most poly(n) time and $k(n)$ space
- k(n)-Precise Succinct Hamiltonian problem
- Input: Size n Succinct Encoding of $2^{k(n)} \times 2^{k(n)}$ Hermitian PSD matrix A
- Promised either:
- Minimum eigenvalue $\lambda_{\text {min }}(A)>b$ or $\lambda_{\text {min }}(A)<a$
- Where $b-a>2^{-0(k(n))}$
- Which is the case?
- Compared to the Local Hamiltonian problem...
- Input is Succinctly Encoded instead of Local
- Precision needed to determine the promise is $1 / 2^{\mathrm{k}}$ instead of $1 /$ poly(n)
- Our Result: $\mathrm{k}(\mathrm{n})$-P.S Hamiltonian problem is complete for BQSPACE[k(n)]

Upper bound (1/2):

$k(n)$-P.S Ham. $\in k(n)$-bounded QMA $_{k(n)}\left(c, c-2^{-k(n)}\right)$

- Recall: $\mathrm{k}(\mathrm{n})$-Precise Succinct Hamiltonian problem
- Given Succinct Encoding of $2^{k(n)} \times 2^{k(n)}$ Hermitian PSD matrix A, is $\lambda_{\text {min }}(A) \leq a$ or $\lambda_{\text {min }}(A) \geq b$ where $b-a \geq 2^{-O(k(n))}$?
- Merlin send eigenstate $|\psi\rangle$ with minimum eigenvalue
- Arthur runs phase estimation with one ancilla qubit on $\mathrm{e}^{-\mathrm{iA}}$ and $|\psi\rangle$

- Measure ancilla and accept iff " 0 "
- Easy to see that we get " 0 " outcome with probability that's slightly $\left(2^{-0(k)}\right)$ higher if $\lambda_{\text {min }}(A)<a$ than if $\lambda_{\text {min }}(A)>b$
- But this is exactly what's needed to establish the claimed bound!
- Remaining question: how do we implement $\mathrm{e}^{-\mathrm{iA}}$?
- We need to implement this operator with precision 2^{-k}, since otherwise the error in simulation overwhelms the gap!
- Luckily, we can invoke recent "precise Hamiltonian simulation" results of [Childs et. al'14]
- Implement $\mathrm{e}^{-\mathrm{A}}$ to within precision ε in space that scales with $\log (1 / \varepsilon)$ and time $\operatorname{polylog}(1 / \varepsilon)$
- See also Guang Hao Low's talk on Thursday!
- Using these results, can implement Arthur's circuit in poly(n) time and $O(k(n))$ space

Upper bound (2/2): $k(n)$-bounded $\mathrm{QMA}_{k(n)}\left(c, c-2^{-k(n)}\right) \subseteq \operatorname{BQSPACE}[k(n)]$

1. Error amplify the PreciseQMA protocol

- Goal: Obtain a protocol with error inverse exponential in the witness length, k(n)
- We want to do this while simultaneously preserving verifier space $O(k(n))$
- We develop new "space-preserving" QMA amplification procedures
- By combining ideas from "in-place" amplification [Marriott \& Watrous '04] with phase estimation

2. "Guess the witness"!

- Consider this amplified verification protocol run on a maximally mixed state on $k(n)$ qubits
- Not hard to see that this new "no witness" protocol has a "precise" gap of $\mathrm{O}\left(2^{-k(n)}\right)$!

3. Amplify again!

- Use our "space-efficient" QMA error amplification technique again!
- Obtain bounded error, at a cost of exponential time
- But the space remains $O(k(n))$, establishing the BQSPACE[k(n)] upper bound
- Space-efficient amplification also used to prove hardness!
- k(n)-P.S Hamiltonian is BQSPACE[k(n)]-hard
- Follows from first using our space-bounded amplification, and then Kitaev's clock-construction to build sparse Hamiltonian from the amplified circuit

Application: PreciseQMA=PSPACE

- Question: How does the power of QMA scale with the completenesssoundness gap?
- Recall: PreciseQMA= $\mathrm{U}_{\mathrm{c}>0}$ QMA(c,c-2-poly(n) $)$
- Both upper and lower bounds follow from our completeness result, together with BQPSPACE=PSPACE [Watrous'03]
- Corollary: "precise k-Local Hamiltonian problem" is PSPACE-complete
- Extension: "Perfect Completeness case": QMA(1,1-2-poly(n) $)=$ PSPACE
- Corollary: checking if a local Hamiltonian has zero ground state energy is PSPACEcomplete

Where is this power coming from?

- Could QMA=PreciseQMA=PSPACE?
- Unlikely since QMA=PreciseQMA \Rightarrow PSPACE=PP
- Using QMA \subseteq PP
- How powerful is PreciseMA, the classical analogue of PreciseQMA?
- Crude upper bound: PreciseMA \subseteq NPPP \subseteq PSPACE
- And believed to be strictly less powerful, unless the "Counting Hiearchy" collapses
- So the power of PreciseQMA seems to come from both the quantum witness and the small gap, together!

Understanding "Precise" complexity classes

- We can answer questions in the "precise" regime that we have no idea how to answer in the "bounded-error" regime
- Example 1: How powerful is QMA(2)?
- PreciseQMA=PSPACE (our result)
- PreciseQMA(2)=NEXP [Blier \& Tapp‘07, Pereszlényi‘12]
- So, PreciseQMA(2) = PreciseQMA, unless NEXP=PSPACE
- Example 2: How powerful are quantum vs classical witnesses?
- PreciseQCMA \subseteq NP ${ }^{\text {PP }}$
- So, PreciseQMA $=$ PreciseQCMA, unless PSPACE \subseteq NPPP
- Example 3: How powerful is QMA with perfect completeness?
- PreciseQMA=PreciseQMA ${ }_{1}=$ PSPACE

Characterization 2:
Well-Conditioned Matrix Inversion

The Classical Complexity of Matrix Inversion

- The Matrix Inversion problem
- Input: nonsingular $\mathrm{n} \times \mathrm{n}$ matrix A with integer entries, promised either:
- $A^{-1}[0,0]>2 / 3$ or
- $\mathrm{A}^{-1}[0,0]<1 / 3$
- Which is the case?

$$
\mathbf{A}=\left(\begin{array}{cc}
a_{0,0} & a_{0,1} \cdots \\
\vdots & \\
a_{n, 0} & a_{n, 1} \cdots
\end{array}\right) \quad \mathbf{A}^{-1}=\left(\begin{array}{cc}
? \ldots & ? \\
\vdots \\
? \ldots & ?
\end{array}\right)
$$

- This problem can be solved in classical $O\left(\log ^{2}(n)\right)$ space [Csanky'76]
- Not believed to be solvable classically in $\mathrm{O}(\log (\mathrm{n}))$ space
- If it is, then $\mathbf{L = N L}$ (Logspace equivalent of $\mathbf{P}=\mathbf{N P}$)

Can we do better quantumly?

- "Well-Conditioned Matrix Inversion" can be solved in non-unitary BQSPACE[$\log (\mathrm{n})$]! [Ta-Shma'12] building on [HHL’O8]
- i.e., same problem with poly(n) upper bound on the condition number, к, so that $\mathrm{k}^{-1} 1<\mathrm{A}<1$
- Appears to attain quadratic speedup in space usage over classical algorithms
- Begs the question: how important is this "well-conditioned" restriction?
- Can we also solve the general Matrix Inversion problem in quantum space $\mathrm{O}(\log (\mathrm{n})$)?

Our results on Matrix Inversion

- Well-conditioned Matrix Inversion is complete for unitary BQSPACE[log(n)]!

1. We give a new quantum algorithm for Well-conditioned Matrix Inversion avoiding intermediate measurements

- Combines techniques from [HHL’O8] with amplitude amplification

2. We also prove BQSPACE[log(n)] hardness- suggesting that "well-conditioned" constraint is necessary for quantum Logspace algorithms

Can generalize from $\log (n)$ to $k(n)$ qubits...

- Result 3: $\mathrm{k}(\mathrm{n})$-Well-conditioned Matrix Inversion is complete for BQSPACE[k(n)]
- Input: Succinct Encoding of $2^{k} \times 2^{k}$ PSD matrix A
- Upper bound $k<2^{0(k(n))}$ on the condition number so that $\kappa^{-1} \backslash A<1$
- Promised either $\left|A^{-1}[0,0]\right| \geq 2 / 3$ or $\leq 1 / 3$
- Decide which is the case?
- Additionally, by varying the dimension and the bound on the condition number, can use Matrix Inversion problem to characterize the power of quantum computation with simultaneously bounded time and space!

Open questions

- Can we use our PreciseQMA=PSPACE characterization to give a PSPACE upper bound for other complexity classes?
- For example, QMA(2)?
- How powerful is PreciseQIP?
- Natural complete problems for non-unitary quantum space?

Thanks!

