Quantum Speed-ups for Semidefinite Programming

Fernando G.S.L. Brandão

Caltech

Krysta Svore
Microsoft Research

Quantum Algorithms

Exponential speed-ups:
Simulate quantum physics, factor big numbers (Shor's algorithm), ...,

Polynomial Speed-ups:
Searching (Grover's algorithm), ...

Heuristics:
Quantum annealing, adiabatic optimization, ...

Quantum Algorithms

Exponential speed-ups:
Simulate quantum physics, factor big numbers (Shor's algorithm), ...,

This Talk:
Solving Semidefinite Programming belongs here

Semidefinite Programming

... is an important class of convexoptimization problems

$$
\begin{array}{ll}
& \max \operatorname{tr}(C X) \\
\forall j \in[m], \quad & \operatorname{tr}\left(A_{j} X\right) \leq b_{j} \\
& X \geq 0
\end{array}
$$

Input: nxn , s -sparse matrices $\mathrm{C}, \mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}$ and numbers $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{m}}$ Output: X

Semidefinite Programming

... is an important class of convexoptimization problems

$$
\begin{array}{ll}
& \max \operatorname{tr}(C X) \\
\forall j \in[m], \quad & \operatorname{tr}\left(A_{j} X\right) \leq b_{j} \\
& X \geq 0
\end{array}
$$

Input: nxn , s -sparse matrices $\mathrm{C}, \mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}$ and numbers $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{m}}$ Output: X

Linear Programming: special case
Many applications (combinatorial optimization, operational research,)
Natural in quantum (density matrices, ...)

Semidefinite Programming

... is an important class of convex optimization problems

$$
\begin{array}{ll}
& \max \operatorname{tr}(C X) \\
\forall j \in[m], & \operatorname{tr}\left(A_{j} X\right) \leq b_{j} \\
& X \geq 0 .
\end{array}
$$

Input: $\mathrm{n} \times \mathrm{n}, \mathrm{s}$-sparse matrices $\mathrm{C}, \mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}$ and numbers $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{m}}$ Output: X

Linear Programming: special case
Many applications (combinatorial optimization, operational research,)
Natural in quantum (density matrices, ...)
Algorithms Interior points:
$\mathrm{O}\left(\left(m^{2} \mathrm{~ns}+m n^{2}\right) \log (1 / \delta)\right)$
Multiplicative Weights: $\mathrm{O}\left(\left(\mathrm{mns}(\omega \mathrm{R}) / \delta^{2}\right)\right)$

Semidefinite Programming

... is an important class of convex optimization problems

$$
\max \operatorname{tr}(C X)
$$

$$
\forall j \in[m], \quad \operatorname{tr}\left(A_{j} X\right) \leq b_{j}
$$

Algorithms Interiorpoints:
$\mathrm{O}\left(\left(m^{2} n s+m n^{2}\right) \log (1 / \delta)\right)$
Multiplicative Weights: $\mathrm{O}\left(\left(\mathrm{mns}(\omega \mathrm{R}) / \delta^{2}\right)\right)$

SDP Duality

$\max \operatorname{tr}(C X)$

Primal: $\forall j \in[m], \quad \operatorname{tr}\left(A_{j} X\right) \leq b_{j}$
$X \geq 0$.

Dual:

$$
\begin{aligned}
& \min b . y \\
& \sum_{j=1}^{m} y_{j} A_{j} \geq C \\
& y \geq 0 .
\end{aligned}
$$

y : m-dimensional vector

Under mild conditions: Opt $t_{\text {primal }}=O p t_{\text {dual }}$

Size of Solutions

$\max \operatorname{tr}(C X)$

Primal: $\forall j \in[m], \quad \operatorname{tr}\left(A_{j} X\right) \leq b_{j}$ $X \geq 0$.

R parameter: $\operatorname{Tr}\left(\mathrm{X}_{\text {opt }}\right) \leq R$

Dual: | | $\min b . y$ |
| :--- | :--- |
| | $\sum_{j=1}^{m} y_{j} A_{j} \geq C$ |
| | $y \geq 0$. |

r parameter: $\sum_{i}\left(y_{\text {opt }}\right)_{i} \leq r$

SDP Lower Bounds

Even to write down optimal solutions take time:
$\begin{array}{ll}\text { Primal (} n \times n \text { PSD matrix } X): & \Omega\left(n^{2}\right) \\ \text { Dual (} m \text { dim vector } y \text {): } & \Omega(m)\end{array}$

SDP Lower Bounds

Even to write down optimal solutions take time:
Primal ($n \times n$ PSD matrix X): $\Omega\left(n^{2}\right)$
Dual (m dim vector y): $\quad \Omega(m)$

Even just to compute optimal value requires:
$\begin{array}{lll}\text { Classical: } & \Omega(n+m) & \text { (for constant } r, R, s, \delta) \\ \text { Quantum: } & \Omega\left(n^{1 / 2}+m^{1 / 2}\right) & \text { (for constant } r, R, s, \delta)\end{array}$
Easy reduction to search problem
(Apeldoorn, Gilyen, Gribling, de Wolf)
Quantum: $\Omega(\mathrm{nm})$ if $\mathrm{n} \cong \mathrm{m}$
$\min (m, n)(\max (m, n))^{1 / 2}$

See poster this afternoon
($R, s, \delta=O(1)$ but not r)
($R, s, \delta=O(1)$ but not r)

Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs running in time $n^{1 / 2} m^{1 / 2} s^{2}$ poly $(\log (n, m), R, r, \delta)$

Input: $n \times n, s$-sparse matrices C, A_{1}, \ldots, A_{m} and numbers b_{1}, \ldots, b_{m}

Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs running in time $n^{1 / 2} m^{1 / 2} s^{2}$ poly $(\log (n, m), R, r, \delta)$

Input: $n \times n$, s-sparse matrices C, A_{1}, \ldots, A_{m} and numbers b_{1}, \ldots, b_{m}

Normalization: $\left|\left|A_{i}\right|\right|,||C|| \leq 1$

Output: Samples from $y /\|y \mid\|_{1}$ and value $\left||y| \|_{1}\right.$ and/or Quantum Samples from $X / \operatorname{tr}(X)$ and value $\operatorname{tr}(X)$ Value opt $\pm \delta$
(output form similar to HHL Q. Algorithm for linear equations)

Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs running in time $\mathbf{n}^{1 / 2} \mathrm{~m}^{1 / 2} \mathrm{~s}^{2}$ poly $(\log (\mathrm{n}, \mathrm{m}), \mathrm{R}, \mathrm{r}, \delta)$

Oracle Model: We assume there's an oracle that outputs a chosen non-zero entry of C, A_{1}, \ldots, A_{m} at unit cost:

$$
|j, k, l, z\rangle \rightarrow \mid j, k, l, z \oplus\left(A_{j}\right)_{\left.k_{f_{j k}(l)}\right\rangle} \quad f_{j k}:[r] \rightarrow[n]
$$

choice of A_{j} row $k \quad I$ non-zero element

Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs running in time $n^{1 / 2} \mathrm{~m}^{1 / 2} \mathrm{~s}^{2}$ poly $(\log (\mathrm{n}, \mathrm{m}), \mathrm{R}, \mathrm{r}, \delta)$

The good:
Unconditional Quadratic speed-ups in terms of n and m
Close to optimal: $\Omega\left(\mathrm{n}^{1 / 2}+\mathrm{m}^{1 / 2}\right)$ lower bound

Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs running in time $\mathbf{n}^{1 / 2} \mathrm{~m}^{1 / 2} \mathrm{~s}^{2}$ poly $(\log (\mathrm{n}, \mathrm{m}), \mathrm{R}, \mathrm{r}, \delta)$

The good:
Unconditional Quadratic speed-ups in terms of n and m
Close to optimal: $\Omega\left(n^{1 / 2}+m^{1 / 2}\right)$ q. lower bound
The bad:
Terrible dependence on other parameters:
poly $(\log (n, m), R, r, \delta) \leq(\operatorname{Rr})^{32} \delta^{-18}$
Close to optimal: no general super-polynomial speed-ups

Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs running in time $n^{1 / 2} \mathrm{~m}^{1 / 2} \mathrm{~s}^{2}$ poly $(\log (\mathrm{n}, \mathrm{m}), \mathrm{R}, \mathrm{r}, \delta)$

Special case:

If the SDP is s.t. $b_{i} \geq 1$ for all i, there is no dependence on r (size of dual solution)

Larger Speed-ups?

Result 2: There is a quantum algorithm for solving SDPs running in time $T_{\text {Gibbs }} m^{1 / 2}$ poly $(\log (n, m), s, R, r, \delta)$

Larger Speed-ups?

Result 2: There is a quantum algorithm for solving SDPs running in time $T_{\text {Gibbs }} m^{1 / 2} \operatorname{poly}(\log (n, m), s, R, r, \delta)$
$\mathrm{T}_{\text {Gibbs }}:=$ Time to prepare on quantum computer Gibbs states of the form

$$
\exp \left(\sum_{i=1}^{m} \nu_{i} A_{i}+\nu_{0} C\right) / \operatorname{tr}(\ldots)
$$

for real numbers $\left|\mathrm{v}_{\mathrm{i}}\right| \leq \mathrm{O}(\log (\mathrm{n})$, poly $(1 / \delta))$

Larger Speed-ups?

Result 2: There is a quantum algorithm for solving SDPs running in time $T_{\text {Gibbs }} m^{1 / 2}$ poly $(\log (n, m), s, R, r, \delta)$
$\mathrm{T}_{\text {Gibbs }}:=$ Time to prepare on quantum computer Gibbs states of the form

$$
\exp \left(\sum_{i=1}^{m} \nu_{i} A_{i}+\nu_{0} C\right) / \operatorname{tr}(\ldots)
$$

for real numbers $\left|v_{i}\right| \leq 0(\log (n)$, poly $(1 / \delta))$

Can use Quantum Gibbs Sampling (e.g. Quantum Metropolis) as heuristic. Exponential Speed-up if thermalization is quick (poly \#qubits = polylog(n))

Gives application of quantum Gibbs sampling outside simulating physical systems

Larger Speed-ups with "quantum data"

Result 3: There is a quantum algorithm for solving SDPs running in time $m^{1 / 2}$ poly $(\log (n, m), s, R, r, \delta, r a n k)$ with data in quantum form

Quantum Oracle Model: There is an oracle that given i, outputs the eigenvalues of A_{i} and its eigenvectors as quantum states
$\operatorname{rank}:=\max \left(\max _{\mathrm{i}} \operatorname{rank}\left(\mathrm{A}_{\mathrm{i}}\right), \operatorname{rank}(\mathrm{C})\right)$

Larger Speed-ups with "quantum data"

Result 3: There is a quantum algorithm for solving SDPs running in time $\mathrm{m}^{1 / 2}$ poly $(\log (\mathrm{n}, \mathrm{m}), \mathrm{s}, \mathrm{R}, \mathrm{r}, \delta$, rank) with data in quantum form

Quantum Oracle Model: There is an oracle that given i, outputs the eigenvalues of A_{i} and its eigenvectors as quantum states
$\operatorname{rank}:=\max \left(\max _{\mathrm{i}} \operatorname{rank}\left(\mathrm{A}_{\mathrm{i}}\right), \operatorname{rank}(\mathrm{C})\right)$
Idea: in this case one can easily perform the Gibbs sampling in poly($\log (n)$, rank) time

Limitation: Not clear the relevance of the model. How to compare with classical methods in a meaningful way?

Special Case: Max Eigenvalue

Computing the max eigenvalue of C is a SDP $\max \operatorname{tr}(C X): \operatorname{tr}(X)=1, \quad X \geq 0$

Special Case: Max Eigenvalue

Computing the max eigenvalue of C is a SDP $\max \operatorname{tr}(C X): \operatorname{tr}(X)=1, \quad X \geq 0$

This is a well studied problem:
Quantum Annealing (cool down -C):
If we can prepare $e^{\beta C} / \operatorname{tr}\left(e^{\beta C}\right)$ for $\beta=\mathrm{O}(\log (\mathrm{n}) / \delta)$ can compute max eigenvalue to error δ

Special Case: Max Eigenvalue

(Poulin, Wocjan ‘09) Can prepare $e^{\beta C} / \operatorname{tr}\left(e^{\beta C}\right)$ for s-sparse C in time $0 \widetilde{\left(s n^{1 / 2}\right.}$) on quantum computer

Idea: Phase estimation + Amplitude amplification

$$
\begin{aligned}
C\left|\psi_{i}\right\rangle & =E_{i}\left|\psi_{i}\right\rangle \\
\sum_{i}\left|\psi_{i}\right\rangle\left|\psi_{i}^{*}\right\rangle & \rightarrow \sum_{i}\left|\psi_{i}\right\rangle\left|\psi_{i}^{*}\right\rangle\left|E_{i}\right\rangle \rightarrow \sum_{i} e^{-E_{i} / 2}\left|\psi_{i}\right\rangle\left|\psi_{i}^{*}\right\rangle\left|E_{i}\right\rangle|0\rangle+\ldots
\end{aligned}
$$

Post-selecting on " 0 " gives a purification of Gibbs state with Pr > O(1/n)

Using amplitude amplification can boost $\operatorname{Pr}>1-0(1)$ with $\mathrm{O}\left(\mathrm{n}^{1 / 2}\right)$ iterations

General Case:

Quantizing Arora-Kale Algorithm

The quantum algorithm is based on a classical algorithm for SDP due to Arora and Kale (2007) based on the multiplicative weight method. Let's review their method

Assumptions:

We assume $b_{i} \geq 1$.
Can reduce general case to this with blow up of poly(r) in complexity

We also assume w.l.o.g. $A_{1}=I, b_{1}=R$

The Oracle

The Arora-Kale algorithm has an auxiliary algorithm
(the ORACLE) which solves a simple linear programming:
ORACLE (ρ)
Searches for a vector y s.t.
i) $y \in D_{\alpha}:=\{y: y \geq 0, b . y \leq \alpha\}$
ii) $\sum_{j=1}^{m} \operatorname{tr}\left(A_{j} \rho\right) y_{j}-\operatorname{tr}(C \rho) \geq 0$

Arora-Kale Algorithm

$\rho^{1}=I / n, \varepsilon=\frac{\delta}{2 R}, \varepsilon^{\prime}=-\ln (1-\varepsilon), T=\frac{8 R^{2} \ln (n)}{\delta^{2}}$
For $t=1, \ldots, T$

1. $y^{t} \leftarrow \operatorname{ORACLE}\left(\rho^{t}\right)$
2. $M^{t}=\left(\sum_{j=1}^{m} y_{j}^{t} A_{j}-C+R I\right) / 2 R$
3. $W^{t+1}=\exp \left(-\varepsilon^{\prime}\left(\sum_{\tau=1}^{t} M^{\tau}\right)\right)$
4. $\rho^{t+1}=W^{t+1} / \operatorname{tr}\left(W^{t+1}\right)$

Output: $\bar{y}=\frac{\delta \alpha}{R} e_{1}+\frac{1}{T} \sum_{t=1}^{T} y^{t}$

Arora-Kale Algorithm

$\rho^{1}=I / n, \varepsilon=\frac{\delta}{2 R}, \varepsilon^{\prime}=-\ln (1-\varepsilon) . \quad=\frac{8 R^{2} \ln (n)}{\delta^{2}}$
For $t=1, \ldots, T$

1. $y^{t, ~ ค D \wedge r I E\left(a^{t}\right)}$

Thm (Arora-Kale '07) $\overline{\mathrm{y}} . \mathrm{b} \leq(1+\delta) \alpha$
Can find optimal value by binary search
3.

$$
\left.\left\langle{ }_{\tau=1} \quad\right|\right)
$$

4. $\rho^{t+1}=W^{t+1} / \operatorname{tr}\left(W^{t+1}\right)$

Output: $\bar{y}=\frac{\delta \alpha}{R} e_{1}+\frac{1}{T} \sum_{t=1}^{T} y^{t}$

$$
e_{1}=(1,0, \ldots, 0)
$$

Why Arora-Kale works?

Since $\quad y_{t} \in D_{\alpha}:=\{y: y \geq 0, b . y \leq \alpha\}$

$$
\bar{y} \cdot b \leq \frac{\delta \alpha}{R} b_{1}+\frac{1}{T} \sum_{t=1}^{T} y^{t} . b \leq(1+\delta) \alpha
$$

Must check \bar{y} is feasible
From Oracle, for all $t: \operatorname{tr}\left(\left(\sum_{j=1}^{m} y_{j}^{t} A_{j}-C\right) \rho^{t}\right) \geq 0$
We need: $\quad \lambda_{\text {min }}\left(\left(\sum_{j=1}^{m}\left(\frac{1}{T} \sum_{t=1}^{T} y_{j}^{t}\right) A_{j}-C\right)\right) \geq 0$

Matrix Multiplicative Weight

MMW (Arora, Kale ‘07) Given $\mathrm{n} \times \mathrm{n}$ matrices $0<\mathrm{M}^{\mathrm{t}}<1$ and $\varepsilon<1 / 2$,

$$
\frac{1}{T} \sum_{t=1}^{T} \operatorname{tr}\left(M^{t} \rho^{t}\right) \leq\left(\frac{1+\varepsilon}{T}\right) \lambda_{n}\left(\sum_{t=1}^{T} M^{t}\right)+\frac{\ln (n)}{T \varepsilon}
$$

with $\rho^{t}=\frac{\exp \left(-\varepsilon^{\prime}\left(\sum_{\tau=1}^{t-1} M^{\tau}\right)\right)}{\operatorname{tr}(\ldots)}$ and $\varepsilon^{\prime}=-\ln (1-\varepsilon)$ λ_{n} : min eigenvalue

2-player zero-sum game interpretation:

- Player A chooses density matrix X^{t}
- Player B chooses matrix $0<M^{t}<1$

Pay-off: $\operatorname{tr}\left(\mathrm{X}^{t} \mathrm{M}^{t}\right)$
" $X^{t}=\rho^{t}$ strategy almost as good as global strategy"

Matrix Multiplicative Weight

MMW (Arora, Kale '07) Given $\mathrm{n} \times \mathrm{n}$ matrices M^{t} and $\varepsilon<1 / 2$,

$$
\frac{1}{T} \sum_{t=1}^{T} \operatorname{tr}\left(M^{t} \rho^{t}\right) \leq\left(\frac{1+\varepsilon}{T}\right) \lambda_{n}\left(\sum_{t=1}^{T} M^{t}\right)+\frac{\ln (n)}{T \varepsilon}
$$

with $\rho^{t}=\frac{\exp \left(-\varepsilon^{\prime}\left(\sum_{\tau=1}^{t-1} M^{\tau}\right)\right)}{\operatorname{tr}(\ldots)}$ and $\varepsilon^{\prime}=-\ln (1-\varepsilon)$ λ_{n} : min eigenvalue

From Oracle: $\operatorname{tr}\left(\left(\sum_{j=1}^{m} y_{j}^{t} A_{j}-C\right) \rho^{t}\right) \geq 0$
By MMW: $\quad \lambda_{\min }\left(\left(\sum_{j=1}^{m}\left(\frac{1}{T} \sum_{t=1}^{T} y_{j}^{t}\right) A_{j}-C\right)\right) \geq 0$

Quantizing Arora-Kale Algorithm

We make it quantum as follows:

1. Implement ORACLE by Gibbs Sampling to produce y^{t} and apply amplitude amplification to solve it in time $\tilde{O}\left(\mathrm{~s}^{2} \mathrm{n}^{1 / 2} \mathrm{~m}^{1 / 2}\right)$
2. Sparsify M^{t} to be a sum of $\mathrm{O}(\log (\mathrm{m}))$ terms:

$$
\begin{aligned}
& \bar{M}^{t}=\left(\left\|y^{t}\right\|_{1} Q^{-1} \sum_{j=1}^{Q} A_{i_{j}}-C+R I\right) / 2 R \quad \bar{M}^{t} \approx M^{t} \\
& \left(i_{1}, \ldots, i_{Q}\right) \sim y^{t} /\left\|y^{t}\right\|_{1}, \quad Q=O(\log (m))
\end{aligned}
$$

3. Quantum Gibbs Sampling + amplitude amplification to prepare

$$
\bar{\rho}^{t}=\exp \left(-\varepsilon^{\prime} \sum_{\tau=1}^{t} \bar{M}^{\tau}\right) / \operatorname{tr}(\ldots) \quad \bar{\rho}^{t} \approx \rho^{t}
$$

in time $0\left(s^{2} n^{1 / 2}\right)$.

Quantizing Arora-Kale Algorithm

We make it quantum as follows:

1. Implement ORACLE by Gibbs Sampling to produce y^{t} and apply amplitude amplification to solve it in time 0 ($\mathrm{s}^{2} \mathrm{n}^{1 / 2} \mathrm{~m}^{1 / 2}$)

We'll show there is a feasible y^{t} of the form $\mathrm{y}^{\mathrm{t}}=\mathrm{Nq}^{t}$ with $q^{t}:=\exp (h) / \operatorname{tr}(\exp (h))$ and

$$
h=\sum_{i=1}^{m}\left(\lambda \operatorname{tr}\left(A_{i} \rho^{t}\right)+\mu b_{i}\right)|i\rangle\langle i|
$$

We need to simulate an oracle to the entries of h. We do it by measuring ρ^{t} with A_{i}.

To prepare each ρ^{t} takes time $\tilde{O}\left(s^{2} n^{1 / 2}\right)$. To sample from q^{t} requires $\tilde{O}\left(m^{1 / 2}\right)$ calls to oracle for h. So total time is $\tilde{O}\left(s^{2} n^{1 / 2} m^{1 / 2}\right)$

Quantizing Arora-Kale Algorithm

We make it quantum as follows:

1. Implement ORACLE by Gibbs Sampling to produce y^{t} and apply amplitude amplification to solve it in time $\tilde{O}\left(s^{2} \mathrm{n}^{1 / 2} \mathrm{~m}^{1 / 2}\right)$
2. Sparsify M^{t} to be a sum of $\mathrm{O}(\log (\mathrm{m}))$ terms:

$$
\begin{aligned}
& \bar{M}^{t}=\left(\left\|y^{t}\right\|_{1} Q^{-1} \sum_{j=1}^{Q} A_{i_{j}}-C+R I\right) / 2 R \quad \bar{M}^{t} \approx M^{t} \\
& \left(i_{1}, \ldots, i_{Q}\right) \sim y^{t} /\left\|y^{t}\right\|_{1}, \quad Q=O(\log (m))
\end{aligned}
$$

Can show it works by Matrix Hoeffding bound: Z_{1}, \ldots, Z_{k} independent $\mathrm{n} \times \mathrm{n}$ Hermitian matrices s.t. $\mathrm{E}\left(\mathrm{Z}_{\mathrm{i}}\right)=0,\left|\left|Z_{\mathrm{i}}\right|\right|<\lambda$. Then

$$
\operatorname{Pr}\left(\left\|\frac{1}{k} \sum_{i=1}^{k} Z_{i}\right\| \geq \varepsilon\right) \leq n \cdot \exp \left(-\frac{k \varepsilon^{2}}{8 \lambda^{2}}\right)
$$

Quantum Arora-Kale, Roughly

Let $\rho^{1}=I / n, \varepsilon=\frac{\delta \alpha}{2 \omega R}, \varepsilon^{\prime}=-\ln (1-\varepsilon), T=\frac{8 \omega^{2} R^{2} \ln (n)}{\delta^{2} \alpha^{2}}$
For $t=1, \ldots, T$

1. $y^{t} \leftarrow \operatorname{ORACLE}\left(\rho^{t}\right)$

Gibbs Sampling
2. $M^{t}=\sum_{j=1}^{m}\left(y_{j}^{t} A_{j}-C+\omega I\right) / 2 \omega$
3. Sparsify M^{t} to $\left(\mathrm{M}^{\prime}\right)^{\mathrm{t}}$
4. $\rho^{t+1}=\exp \left(-\varepsilon^{\prime}\left(\sum_{\tau=1}^{t}\left(M^{\prime}\right)^{\tau}\right)\right) / \operatorname{tr}(\ldots) \quad$ Gibbs Sampling

Output: $\bar{y}=\frac{\delta \alpha}{R} e_{1}+\frac{1}{T} \sum_{t=1}^{T} y^{t}$

Implementing Oracle by Gibbs Sampling

ORACLE (ρ)

Searches for a vector y s.t.
i) $y \in D_{\alpha}:=\{y: y \geq 0, b . y \leq \alpha\}$
ii) $\sum_{j=1}^{m} \operatorname{tr}\left(A_{j} \rho\right) y_{j}-\operatorname{tr}(C \rho) \geq 0$

Implementing Oracle by Gibbs Sampling

Searches for (non-normalized) probability distribution y satisfying two linear constraints:

$$
\begin{gathered}
\operatorname{tr}(B Y) \leq \alpha, \quad \operatorname{tr}(A Y) \geq \operatorname{tr}(C \rho) \\
Y=\sum_{i} y_{i}|i\rangle\langle i|, B=\sum_{i} b_{i}|i\rangle\langle i|, A=\sum_{i} \operatorname{tr}\left(A_{i} \rho\right)|i\rangle\langle i|
\end{gathered}
$$

Claim: We can take Y to be Gibbs: There are constants N, λ, μ s.t.

$$
Y=N \frac{\exp (\lambda A+\mu B)}{\operatorname{tr}(\ldots)}
$$

Jaynes' Principle

(Jaynes 57) Let ρ be a quantum state s.t. $\operatorname{tr}\left(\rho M_{i}\right)=c_{i}$
Then there is a Gibbs state of the form $\exp \left(\sum_{i} \lambda_{i} M_{i}\right) / \operatorname{tr}(\ldots)$ with same expectation values.

Drawback: no control over size of the λ_{i}^{\prime} 's.

Finitary Jaynes' Principle

(Lee, Raghavendra, Steurer '15) Let ρ s.t. $\operatorname{tr}\left(\rho M_{i}\right)=c_{i}$
Then there is a $\sigma:=\frac{\exp \left(\sum_{i} \lambda_{i} M_{i}\right)}{\operatorname{tr}(\ldots)}$
with $\left|\lambda_{i}\right| \leq 2 \ln (\operatorname{dim}(\rho)) / \varepsilon$
s.t. $\left|\operatorname{tr}\left(M_{i} \sigma\right)-c_{i}\right| \leq \varepsilon$
(Note: Used to prove limitations of SDPs for approximating constraints satisfaction problems; see James Lee's talk)

Implementing Oracle by Gibbs Sampling

Claim There is a Y of the form $Y=N \frac{\exp (\lambda A+\mu B)}{\operatorname{tr}(\ldots)}$ with $\lambda, \mu<\log (\mathrm{n}) / \varepsilon$ and $\mathrm{N}<\alpha$ s.t.

$$
\operatorname{tr}(B Y) \leq \alpha+N \varepsilon, \quad \operatorname{tr}(A Y) \geq \operatorname{tr}(C \rho)-N \varepsilon
$$

$$
Y=\sum_{i} y_{i}|i\rangle\langle i|, B=\sum_{i} b_{i}|i\rangle\langle i|, A=\sum_{i} \operatorname{tr}\left(A_{i} \rho\right)|i\rangle\langle i|
$$

Implementing Oracle by Gibbs Sampling

Claim There is a Y of the form $Y=N \frac{\exp (\lambda A+\mu B)}{\operatorname{tr}(\ldots)}$ with $\lambda, \mu<\log (\mathrm{n}) / \varepsilon$ and $\mathrm{N}<\alpha$ s.t.

$$
\operatorname{tr}(B Y) \leq \alpha+N \varepsilon, \quad \operatorname{tr}(A Y) \geq \operatorname{tr}(C \rho)-N \varepsilon
$$

Can implement oracle by exhaustive searching over $\mathrm{x}, \mathrm{y}, \mathrm{N}$ for a Gibbs distribution satisfying constraints above
(only a $\log ^{2}(\mathrm{n}) / \varepsilon^{3}$ different triples needed to be checked)

Conclusion and Open Problems

Quantum computers provide speed-up for SDPs

Many open questions:

- Can we improve the parameters (in terms of R, r, δ)?
- Can we find optimal algorithm in terms of n, m and s ?
- Can we find relevant settings with superpoly speed-ups?
- Robustness to error?
- Q. computer only used for Gibbs Sampling. Application of small-sized q. computer?

Conclusion and Open Problems

Quantum computers provide speed-up for SDPs

Many open questions:

- Can we improve the parameters (in terms of R, r, δ)?
- Can we find optimal algorithm in terms of n, m and s ?
- Can we find relevant settings with superpoly speed-ups?
- Robustness to error?
- Q. computer only used for Gibbs Sampling. Application of small-sized q. computer? Thanks!

