Quantum Speed-ups for Semidefinite Programming

Fernando G.S.L. Brandão

Caltech

Krysta Svore

Microsoft Research

QIP 2017

Quantum Algorithms

Exponential speed-ups:

Simulate quantum physics, factor big numbers (Shor's algorithm), ...,

Polynomial Speed-ups: Searching (Grover's algorithm), ...

Heuristics: Quantum annealing, adiabatic optimization, ...

Quantum Algorithms

Exponential speed-ups:

Simulate quantum physics, factor big numbers (Shor's algorithm), ...,

Polynomial Speed-ups: Searching (Grover's algorithm), ... Heuristics: Quantum annealing, adiabatic optimization, ... This Talk: Solving Semidefinite Programming belongs here

... is an important class of convex optimization problems

$$\max \operatorname{tr}(CX)$$
$$\forall j \in [m], \qquad \operatorname{tr}(A_j X) \le b_j$$
$$X \ge 0.$$

Input: n x n, s-sparse matrices C, A₁, ..., A_m and numbers b₁, ..., b_m Output: X

... is an important class of convex optimization problems

$$\max \operatorname{tr}(CX) \forall j \in [m], \qquad \operatorname{tr}(A_j X) \le b_j X \ge 0.$$

Input: n x n, s-sparse matrices C, A₁, ..., A_m and numbers b₁, ..., b_m Output: X

Linear Programming: special case Many applications (combinatorial optimization, operational research,) Natural in quantum (density matrices, ...)

... is an important class of convex optimization problems

$$\max \operatorname{tr}(CX) \forall j \in [m], \qquad \operatorname{tr}(A_j X) \le b_j X \ge 0.$$

Input: n x n, s-sparse matrices C, A₁, ..., A_m and numbers b₁, ..., b_m Output: X

Linear Programming: special case Many applications (combinatorial optimization, operational research,) Natural in quantum (density matrices, ...)

AlgorithmsInterior points: $O((m^2ns + mn^2)log(1/\delta))$ Multiplicative Weights: $O((mns (\omega R)/\delta^2))$ widthisize of solution

... is an important class of convex optimization problems

 $\max \operatorname{tr}(CX)$ $\operatorname{tr}(A_j X) \le b_j$ $\forall j \in [m],$ Are there quantum speed-ups for Input: n b_m SDPs/LPs? **Output:** Linear Pr Natural question. But unexplored so far Many ap) Natural in quarter $O((m^2ns + mn^2)log(1/\delta))$ Algorithms Interior points: Multiplicative Weights: $O((mns (\omega R)/\delta^2))$ width error size of solution

SDP Duality

Primal: $\forall j \in [m], \qquad \max \operatorname{tr}(CX)$ $X \ge 0.$

Under mild conditions: Opt_{primal} = Opt_{dual}

Size of Solutions

Primal: $\forall j \in [m], \quad \operatorname{tr}(A_j X) \leq b_j$ $X \geq 0.$

R parameter: $Tr(X_{opt}) \leq R$

Dual:

$$\min_{\substack{m \ j=1}}^{m} y_j A_j \ge C$$
$$y \ge 0.$$

r parameter: $\sum_{i} (y_{opt})_{i} \leq r$

SDP Lower Bounds

Even to write down optimal solutions take time:

Primal ($n \ge n$ PSD matrix X): Ω(n^2)Dual (m dim vector y): Ω(m)

SDP Lower Bounds

Even to write down optimal solutions take time:

Primal (*n* x *n* PSD matrix X): $\Omega(n^2)$ **Dual** (*m* dim vector *y*): $\Omega(m)$

Even just to compute optimal value requires:

Classical: $\Omega(n+m)$ (for constant r, R, s, δ)Quantum: $\Omega(n^{1/2} + m^{1/2})$ (for constant r, R, s, δ)

Easy reduction to search problem

(Apeldoorn, Gilyen, Gribling, de Wolf) **Quantum:** $\Omega(nm)$ if $n \cong m$ $min(m, n) (max(m, n))^{1/2}$

See poster this afternoon (R, s, δ = O(1) but *not* r) (R, s, $\delta = O(1)$ but *not* r)

Result 1: There is a quantum algorithm for solving SDPs running in time $n^{1/2} m^{1/2} s^2 poly(log(n, m), R, r, \delta)$

Input: n x n, s-sparse matrices C, A₁, ..., A_m and numbers b₁, ..., b_m

Result 1: There is a quantum algorithm for solving SDPs running in time $n^{1/2} m^{1/2} s^2 poly(log(n, m), R, r, \delta)$

Input: n x n, s-sparse matrices C, A₁, ..., A_m and numbers b₁, ..., b_m

Normalization: $||A_i||$, $||C|| \le 1$

Output: Samples from $y/||y||_1$ and value $||y||_1$ and/or Quantum Samples from X/tr(X) and value tr(X)Value opt $\pm \delta$

(output form similar to HHL Q. Algorithm for linear equations)

Result 1: There is a quantum algorithm for solving SDPs running in time $n^{1/2} m^{1/2} s^2 poly(log(n, m), R, r, \delta)$

Oracle Model: We assume there's an oracle that outputs a chosen non-zero entry of C, A_1 , ..., A_m at unit cost:

$$|j,k,l,z\rangle \rightarrow |j,k,l,z \oplus (A_j)_{kf_{jk}(l)}\rangle \qquad \qquad f_{jk}:[r] \rightarrow [n]$$

choice of A_i row k / non-zero element

Result 1: There is a quantum algorithm for solving SDPs running in time $n^{1/2} m^{1/2} s^2 poly(log(n, m), R, r, \delta)$

The good: Unconditional Quadratic speed-ups in terms of n and m Close to optimal: $\Omega(n^{1/2} + m^{1/2})$ lower bound

Result 1: There is a quantum algorithm for solving SDPs running in time $n^{1/2} m^{1/2} s^2 poly(log(n, m), R, r, \delta)$

The good:

Unconditional Quadratic speed-ups in terms of n and m Close to optimal: $\Omega(n^{1/2} + m^{1/2})$ q. lower bound

The bad:

Terrible dependence on other parameters: poly(log(n, m), R, r, δ) \leq (**Rr**)³² δ ⁻¹⁸

Close to optimal: no general super-polynomial speed-ups

Result 1: There is a quantum algorithm for solving SDPs running in time $n^{1/2} m^{1/2} s^2 poly(log(n, m), R, r, \delta)$

Special case:

If the SDP is s.t. $b_i \ge 1$ for all *i*, there is no dependence on r (size of dual solution)

Larger Speed-ups?

Result 2: There is a quantum algorithm for solving SDPs running in time $T_{Gibbs} m^{1/2} poly(log(n, m), s, R, r, \delta)$

Larger Speed-ups?

Result 2: There is a quantum algorithm for solving SDPs running in time $T_{Gibbs} m^{1/2} poly(log(n, m), s, R, r, \delta)$

T_{Gibbs} := Time to prepare on quantum computer Gibbs states of the form

$$\exp\left(\sum_{i=1}^{m}\nu_{i}A_{i}+\nu_{0}C\right)/\mathrm{tr}(\ldots)$$

for real numbers $|v_i| \le O(\log(n), poly(1/\delta))$

Larger Speed-ups?

Result 2: There is a quantum algorithm for solving SDPs running in time $T_{Gibbs} m^{1/2} poly(log(n, m), s, R, r, \delta)$

T_{Gibbs} := Time to prepare on quantum computer Gibbs states of the form

$$\exp\left(\sum_{i=1}^{m}\nu_{i}A_{i}+\nu_{0}C\right)/\mathrm{tr}(\ldots)$$

for real numbers $|v_i| \le O(\log(n), poly(1/\delta))$

Can use **Quantum Gibbs Sampling** (e.g. Quantum Metropolis) as heuristic. Exponential Speed-up if thermalization is quick (poly #qubits = polylog(n))

Gives application of quantum Gibbs sampling outside simulating physical systems

Larger Speed-ups with "quantum data"

Result 3: There is a quantum algorithm for solving SDPs running in time m^{1/2}poly(log(n, m), s, R, r, δ, rank) with data in quantum form

Quantum Oracle Model: There is an oracle that given *i*, outputs the eigenvalues of A_i and its eigenvectors as quantum states rank := max (max_i rank(A_i), rank(C))

Larger Speed-ups with "quantum data"

Result 3: There is a quantum algorithm for solving SDPs running in time m^{1/2}poly(log(n, m), s, R, r, δ, rank) with data in quantum form

Quantum Oracle Model: There is an oracle that given *i*, outputs the eigenvalues of A_i and its eigenvectors as quantum states rank := max (max_i rank(A_i), rank(C))

Idea: in this case one can easily perform the Gibbs sampling in poly(log(n), rank) time

Limitation: Not clear the relevance of the model. How to compare with classical methods in a meaningful way?

Special Case: Max Eigenvalue

Computing the max eigenvalue of C is a SDP $\max \operatorname{tr}(CX)$: $\operatorname{tr}(X) = 1$, $X \ge 0$

Special Case: Max Eigenvalue

Computing the max eigenvalue of C is a SDP $\max \operatorname{tr}(CX)$: $\operatorname{tr}(X) = 1$, $X \ge 0$

This is a well studied problem:

Quantum Annealing (cool down -C):

If we can prepare $e^{\beta C}/\text{tr}(e^{\beta C})$ for $\beta = O(\log(n)/\delta)$ can compute max eigenvalue to error δ

Special Case: Max Eigenvalue

(Poulin, Wocjan '09) Can prepare $e^{\beta C}/\mathrm{tr}(e^{\beta C})$ for s-sparse C in time $\tilde{O}(s n^{1/2})$ on quantum computer

Idea: Phase estimation + Amplitude amplification

$$\begin{split} C|\psi_i\rangle &= E_i|\psi_i\rangle\\ \sum_i |\psi_i\rangle|\psi_i^*\rangle &\xrightarrow{}_i |\psi_i\rangle|\psi_i^*\rangle|E_i\rangle \rightarrow \sum_i e^{-E_i/2}|\psi_i\rangle|\psi_i^*\rangle|E_i\rangle|0\rangle + \dots\\ \text{phase estimation} \end{split}$$

Post-selecting on "0" gives a purification of Gibbs state with Pr > O(1/n)

Using amplitude amplification can boost Pr > 1-o(1) with O(n^{1/2}) iterations

General Case: Quantizing Arora-Kale Algorithm

The quantum algorithm is based on a classical algorithm for SDP due to Arora and Kale (2007) based on the multiplicative weight method. Let's review their method

Assumptions:

We assume $b_i \ge 1$.

Can reduce general case to this with blow up of poly(r) in complexity

We also assume w.l.o.g. $A_1 = I, b_1 = R$

The Oracle

The Arora-Kale algorithm has an auxiliary algorithm (the ORACLE) which solves a simple linear programming:

 $\mathsf{ORACLE}(\rho)$

Searches for a vector y s.t.

i)
$$y \in D_{\alpha} := \{y : y \ge 0, \ b.y \le \alpha\}$$

ii) $\sum_{j=1}^{m} \operatorname{tr}(A_{j}\rho)y_{j} - \operatorname{tr}(C\rho) \ge 0$

Arora-Kale Algorithm

$$\rho^{1} = I/n, \ \varepsilon = \frac{\delta}{2R}, \ \varepsilon' = -\ln(1-\varepsilon), \ T = \frac{8R^{2}\ln(n)}{\delta^{2}}$$

For $t = 1, \dots, T$
1. $y^{t} \leftarrow \text{ORACLE}(\rho^{t})$
2. $M^{t} = \left(\sum_{j=1}^{m} y_{j}^{t}A_{j} - C + RI\right)/2R$
3. $W^{t+1} = \exp\left(-\varepsilon'\left(\sum_{\tau=1}^{t}M^{\tau}\right)\right)$
4. $\rho^{t+1} = W^{t+1}/\text{tr}(W^{t+1})$
Output: $\overline{y} = \frac{\delta\alpha}{R}e_{1} + \frac{1}{T}\sum_{t=1}^{T}y^{t}$ $e_{1} = (1, 0, \dots, 0)$

Arora-Kale Algorithm

$$\rho^{1} = I/n, \ \varepsilon = \frac{\delta}{2R}, \ \varepsilon' = -\ln(1-\varepsilon), \qquad = \frac{8R^{2}\ln(n)}{\delta^{2}}$$
For $t = 1, \dots, T$
1. $y^{t} \leftarrow \text{OPACLE}(e^{t})$
2. Thm (Arora-Kale '07) \bar{y} .b $\leq (1+\delta) \alpha$
Can find optimal value by binary search
3. $(\overline{\zeta_{\tau=1}} \ f)f$
4. $\rho^{t+1} = W^{t+1}/\text{tr}(W^{t+1})$
Output: $\bar{y} = \frac{\delta\alpha}{R}e_{1} + \frac{1}{T}\sum_{t=1}^{T}y^{t}$ $e_{1} = (1, 0, \dots, 0)$

Why Arora-Kale works?

Since
$$y_t \in D_{\alpha} := \{y : y \ge 0, b.y \le \alpha\}$$

 $\overline{y}.b \le \frac{\delta\alpha}{R}b_1 + \frac{1}{T}\sum_{t=1}^T y^t.b \le (1+\delta)\alpha$

Must check \overline{y} is feasible

From Oracle, for all *t*: tr
$$\left(\left(\sum_{j=1}^{m} y_j^t A_j - C \right) \rho^t \right) \ge 0$$

We need: $\lambda_{\min} \left(\left(\sum_{j=1}^{m} \left(\frac{1}{T} \sum_{t=1}^{T} y_j^t \right) A_j - C \right) \right) \ge 0$

Matrix Multiplicative Weight

MMW (Arora, Kale '07) Given n x n matrices $0 < M^t < I$ and $\varepsilon < \frac{1}{2}$,

$$\frac{1}{T}\sum_{t=1}^{T} \operatorname{tr}(M^{t}\rho^{t}) \leq \left(\frac{1+\varepsilon}{T}\right)\lambda_{n}\left(\sum_{t=1}^{T}M^{t}\right) + \frac{\ln(n)}{T\varepsilon}$$

with
$$\rho^t = \frac{\exp(-\varepsilon'(\sum_{\tau=1}^{t-1} M^{\tau}))}{\operatorname{tr}(...)}$$
 and $\varepsilon' = -\ln(1-\varepsilon)$
 $\lambda_n : \min \text{ eigenvalue}$

2-player zero-sum game interpretation:

- Player A chooses density matrix X^t
- Player B chooses matrix 0 < M^t<I Pay-off: tr(X^t M^t)

" $X^t = \rho^t$ strategy almost as good as global strategy"

Matrix Multiplicative Weight

MMW (Arora, Kale '07) Given n x n matrices M^t and $\varepsilon < \frac{1}{2}$,

$$\frac{1}{T}\sum_{t=1}^{T}\operatorname{tr}(M^{t}\rho^{t}) \leq \left(\frac{1+\varepsilon}{T}\right)\lambda_{n}\left(\sum_{t=1}^{T}M^{t}\right) + \frac{\ln(n)}{T\varepsilon}$$

with
$$\rho^t = \frac{\exp(-\varepsilon'(\sum_{\tau=1}^{t-1} M^{\tau}))}{\operatorname{tr}(\ldots)}$$
 and $\varepsilon' = -\ln(1-\varepsilon)$
 $\lambda_n : \min \text{ eigenvalue}$

From Oracle: tr
$$\left(\left(\sum_{j=1}^{m} y_j^t A_j - C \right) \rho^t \right) \ge 0$$

By MMW: $\lambda_{\min} \left(\left(\sum_{j=1}^{m} \left(\frac{1}{T} \sum_{t=1}^{T} y_j^t \right) A_j - C \right) \right) \ge 0$

Quantizing Arora-Kale Algorithm

We make it quantum as follows:

- 1. Implement ORACLE by Gibbs Sampling to produce y^t and apply amplitude amplification to solve it in time $\tilde{O}(s^2 n^{1/2} m^{1/2})$
- 2. Sparsify M^t to be a sum of O(log(m)) terms:

$$\overline{M}^t = \left(\|y^t\|_1 Q^{-1} \sum_{j=1}^Q A_{i_j} - C + RI \right) / 2R \qquad \overline{M}^t \approx M^t$$
$$(i_1, \dots, i_Q) \sim y^t / \|y^t\|_1, \ Q = O(\log(m))$$

3. Quantum Gibbs Sampling + amplitude amplification to prepare

$$\overline{\rho}^t = \exp\left(-\varepsilon' \sum_{\tau=1}^t \overline{M}^\tau\right) / \operatorname{tr}(\ldots) \qquad \overline{\rho}^t \approx \rho^t$$

in time $\tilde{O}(s^2 n^{1/2})$.

Quantizing Arora-Kale Algorithm

We make it quantum as follows:

1. Implement ORACLE by Gibbs Sampling to produce y^t and apply amplitude amplification to solve it in time $\tilde{O}(s^2 n^{1/2} m^{1/2})$

We'll show there is a feasible y^t of the form $y^t = Nq^t$ with $q^t := exp(h)/tr(exp(h))$ and

$$h = \sum_{i=1}^{m} \left(\lambda \operatorname{tr}(A_i \rho^t) + \mu b_i \right) |i\rangle \langle i|$$

We need to simulate an oracle to the entries of h. We do it by measuring ρ^t with $A_i.$

To prepare each ρ^t takes time $\tilde{O}(s^2 n^{1/2})$. To sample from q^t requires $\tilde{O}(m^{1/2})$ calls to oracle for h. So total time is $\tilde{O}(s^2 n^{1/2} m^{1/2})$

Quantizing Arora-Kale Algorithm

We make it quantum as follows:

- 1. Implement ORACLE by Gibbs Sampling to produce y^t and apply amplitude amplification to solve it in time $\tilde{O}(s^2 n^{1/2} m^{1/2})$
- 2. Sparsify M^t to be a sum of O(log(m)) terms:

$$\overline{M}^t = \left(\|y^t\|_1 Q^{-1} \sum_{j=1}^Q A_{i_j} - C + RI \right) / 2R \qquad \overline{M}^t \approx M^t$$

$$(i_1, \dots, i_Q) \sim y^t / \|y^t\|_1, \ Q = O(\log(m))$$

Can show it works by Matrix Hoeffding bound: Z_1 , ..., Z_k independent n x n Hermitian matrices s.t. $E(Z_i)=0$, $||Z_i||<\lambda$. Then

$$\Pr\left(\left\|\frac{1}{k}\sum_{i=1}^{k} Z_i\right\| \ge \varepsilon\right) \le n.\exp\left(-\frac{k\varepsilon^2}{8\lambda^2}\right)$$

Quantum Arora-Kale, Roughly

Let
$$\rho^{1} = I/n$$
, $\varepsilon = \frac{\delta \alpha}{2\omega R}$, $\varepsilon' = -\ln(1-\varepsilon)$, $T = \frac{8\omega^{2}R^{2}\ln(n)}{\delta^{2}\alpha^{2}}$
For $t = 1, ..., T$
1. $y^{t} \leftarrow \text{ORACLE}(\rho^{t})$ Gibbs Sampling
2. $M^{t} = \sum_{j=1}^{m} (y_{j}^{t}A_{j} - C + \omega I)/2\omega$
3. Sparsify M^t to (M')^t
4. $\rho^{t+1} = \exp\left(-\varepsilon'\left(\sum_{\tau=1}^{t} (M')^{\tau}\right)\right)/\text{tr}(...)$ Gibbs Sampling
Output: $\overline{y} = \frac{\delta \alpha}{R}e_{1} + \frac{1}{T}\sum_{t=1}^{T}y^{t}$

Implementing Oracle by Gibbs Sampling

 $\mathsf{ORACLE}(\rho)$

Searches for a vector y s.t.

i)
$$y \in D_{\alpha} := \{y : y \ge 0, \ b.y \le \alpha\}$$

ii) $\sum_{j=1}^{m} \operatorname{tr}(A_{j}\rho)y_{j} - \operatorname{tr}(C\rho) \ge 0$

Implementing Oracle by Gibbs Sampling

Searches for (non-normalized) probability distribution y satisfying two linear constraints:

$$\operatorname{tr}(BY) \leq \alpha, \quad \operatorname{tr}(AY) \geq \operatorname{tr}(C\rho)$$
$$Y = \sum_{i} y_{i} |i\rangle \langle i|, B = \sum_{i} b_{i} |i\rangle \langle i|, A = \sum_{i} \operatorname{tr}(A_{i}\rho) |i\rangle \langle i|$$

Claim: We can take Y to be Gibbs: There are constants N, λ , μ s.t. $Y = N \frac{\exp(\lambda A + \mu B)}{\operatorname{tr}(\ldots)}$

Jaynes' Principle

(Jaynes 57) Let ρ be a quantum state s.t. $\operatorname{tr}(\rho M_i) = c_i$ Then there is a Gibbs state of the form $\exp\left(\sum_i \lambda_i M_i\right) / \operatorname{tr}(...)$ with same expectation values.

Drawback: no control over size of the λ_i 's.

Finitary Jaynes' Principle

(Lee, Raghavendra, Steurer '15) Let ρ s.t. $\operatorname{tr}(\rho M_i) = c_i$ Then there is a $\sigma := \frac{\exp\left(\sum_i \lambda_i M_i\right)}{\operatorname{tr}(\ldots)}$ with $|\lambda_i| \leq 2\ln(\dim(\rho))/\varepsilon$ s.t. $|\operatorname{tr}(M_i\sigma) - c_i| \leq \varepsilon$

(Note: Used to prove limitations of SDPs for approximating constraints satisfaction problems; **see James Lee's talk**)

Implementing Oracle by Gibbs Sampling

Claim There is a Y of the form $Y = N \frac{\exp(\lambda A + \mu B)}{\operatorname{tr}(\ldots)}$ with $\lambda, \mu < \log(n)/\varepsilon$ and $N < \alpha$ s.t. $\operatorname{tr}(BY) \le \alpha + N\varepsilon, \quad \operatorname{tr}(AY) \ge \operatorname{tr}(C\rho) - N\varepsilon$ $Y = \sum_{i} y_{i} |i\rangle \langle i|, B = \sum_{i} b_{i} |i\rangle \langle i|, A = \sum_{i} \operatorname{tr}(A_{i}\rho) |i\rangle \langle i|$

Implementing Oracle by Gibbs Sampling

Claim There is a Y of the form $Y = N \frac{\exp(\lambda A + \mu B)}{\operatorname{tr}(\ldots)}$

with λ , $\mu < \log(n)/\epsilon$ and $N < \alpha$ s.t.

$$\operatorname{tr}(BY) \le \alpha + N\varepsilon, \ \operatorname{tr}(AY) \ge \operatorname{tr}(C\rho) - N\varepsilon$$

Can implement oracle by exhaustive searching over x, y, N for a Gibbs distribution satisfying constraints above

(only $\alpha \log^2(n)/\epsilon^3$ different triples needed to be checked)

Conclusion and Open Problems

Quantum computers provide speed-up for SDPs

Many open questions:

- Can we improve the parameters (in terms of R, r, δ)?
- Can we find optimal algorithm in terms of n, m and s?
- Can we find relevant settings with superpoly speed-ups?
- Robustness to error?
- Q. computer only used for Gibbs Sampling. Application of small-sized q. computer?

Conclusion and Open Problems

Quantum computers provide speed-up for SDPs

Many open questions:

- Can we improve the parameters (in terms of R, r, δ)?
- Can we find optimal algorithm in terms of n, m and s?
- Can we find relevant settings with superpoly speed-ups?
- Robustness to error?
- Q. computer only used for Gibbs Sampling. Application of small-sized q. computer? Thanks!