
Quantum Speed-ups for
Semidefinite Programming

Fernando	G.S.L.	Brandão
Caltech

QIP	2017

Krysta	Svore
Microsoft	Research

Quantum	Algorithms

Exponential	speed-ups:
Simulate	quantum	physics,	factor	big	numbers	(Shor’s	algorithm),	…,

Polynomial	Speed-ups:	
Searching	(Grover’s	algorithm),	...

Heuristics:
Quantum	annealing,	adiabatic	optimization,		...

Quantum	Algorithms

Exponential	speed-ups:
Simulate	quantum	physics,	factor	big	numbers	(Shor’s	algorithm),	…,

Polynomial	Speed-ups:	
Searching	(Grover’s	algorithm),	...

Heuristics:
Quantum	annealing,	adiabatic	optimization,	...

This	Talk:	
Solving	Semidefinite	Programming	belongs	here

Semidefinite	Programming
…	is	an	important	class	of	convex	optimization	problems

Input:	n	x	n, s-sparse	matrices	C,	A1,	...,	Am and	numbers	b1,	...,	bm
Output:	X

Some	Applications:	operations	research	(location	probems,	scheduing,	
...),	bioengineering	(flux	balance	analysis,	...),	approximating	NP-hard	
problems	(max-cut,	...),	field	theory	(conformal	bootstraping),	...

Algorithms					Interior	points:																		O((m2nr	+	mn2)log(1/ε))
Multilicative	Weights:					O((mnr/ε2))

Lower	bound:	No	faster	than	Ω(nm),	for	constant	ε	and r

Semidefinite	Programming
…	is	an	important	class	of	convex	optimization	problems

Input:	n	x	n, s-sparse	matrices	C,	A1,	...,	Am and	numbers	b1,	...,	bm
Output:	X

Linear	Programming:	special	case
Many	applications	 (combinatorial	optimization,	operational	research,)	
Natural	in	quantum	(density	matrices,	...)

Algorithms					Interior	points:																			O((m2ns	+	mn2)log(1/ε))
Multiplicative	Weights:				O((mns	(⍵R)/ε2))

Lower	bound:	No	faster	than	Ω(nm),	for	constant	ε	and r

Semidefinite	Programming
…	is	an	important	class	of	convex	optimization	problems

Input:	n	x	n, s-sparse	matrices	C,	A1,	...,	Am and	numbers	b1,	...,	bm
Output:	X

Linear	Programming:	special	case
Many	applications	 (combinatorial	optimization,	operational	research,)	
Natural	in	quantum	(density	matrices,	...)

Algorithms					Interior	points:																			O((m2ns	+	mn2)log(1/δ))
Multiplicative	Weights:				O((mns	(⍵R)/δ2))

Lower	bound:	No	faster	than	Ω(nm),	for	constant	ε	and rwidth
size	of	solution

error

Semidefinite	Programming
…	is	an	important	class	of	convex	optimization	problems

Input:	n	x	n, s-sparse	matrices	C,	A1,	...,	Am and	numbers	b1,	...,	bm
Output:	X

Linear	Programming:	special	case
Many	applications	 (combinatorial	optimization,	operational	research,)	
Natural	in	quantum	(density	matrices)

Algorithms					Interior	points:																			O((m2ns	+	mn2)log(1/δ))
Multiplicative	Weights:				O((mns	(⍵R)/δ2))

Lower	bound:	No	faster	than	Ω(nm),	for	constant	ε	and rwidth
size	of	solution

error

Are	there	quantum	speed-ups	for	
SDPs/LPs?

Natural	question.	But	unexplored	so	far

SDP	Duality

Primal:

Dual:	

Under	mild	conditions:		Optprimal =	Optdual

y:		m-dimensional	vector	

Size	of	Solutions

Primal:

Dual:	

R	parameter:			Tr(Xopt)	≤	R

r parameter:			∑i (yopt)i ≤	r

SDP	Lower	Bounds	

Even	to	write	down	optimal	solutions	take	time:

Primal (n x	n PSD	matrix	X):		Ω(n2)
Dual (m dim	vector	y):											Ω(m)

If	wants	to	compute	only	optimal	value	can	sometimes	beat	bound
E.g.		Multiplicative	Weights	algorithm:	O((mns	(⍵R)/δ2))	time

But	to	even	just	to	compute	optimal	value	requires:

Classical:								Ω(n+m)																	(for	constant	r,	R,	s,	δ)
Quantum:						Ω(n1/2 +	m1/2)							(for	constant	r,	R,	s,	δ)

Easy	reduction	to	search	problem

(Apeldoorn,	Gilyen,	Gribling,	de	Wolf)										See	poster	this	afternoon
Quantum:						Ω(nm)		if n	≅m				(for	constant	R,	s,	δ)

Ω(nm)

SDP	Lower	Bounds	

Even	to	write	down	optimal	solutions	take	time:

Primal (n x	n PSD	matrix	X):		Ω(n2)
Dual (m dim	vector	y):											Ω(m)

Even	just	to	compute	optimal	value	requires:
Classical:								Ω(n+m)																									(for	constant	r,	R,	s,	δ)
Quantum:						Ω(n1/2 +	m1/2)															(for	constant	r,	R,	s,	δ)

Easy	reduction	to	search	problem

(Apeldoorn,	Gilyen,	Gribling,	de	Wolf)										See	poster	this	afternoon
Quantum:				Ω(nm)		if n	≅m																								(R,	s,	δ	=	O(1)	but	not r)

min(m,	n)	(max(m,	n))1/2			 (R,	s,	δ	=	O(1)	but	not r)

Quantum	Algorithm	for	SDP

Result	1: There	is	a	quantum	algorithm	for	solving	SDPs	
running	in	time	n1/2	m1/2	s2 poly(log(n,	m),	R,	r,	δ)

Input:	n	x	n, s-sparse	matrices	C,	A1,	...,	Am and	numbers	b1,	...,	bm

Quantum	Algorithm	for	SDP

Result	1: There	is	a	quantum	algorithm	for	solving	SDPs	
running	in	time	n1/2	m1/2	s2 poly(log(n,	m),	R,	r,	δ)

Input:	n	x	n, s-sparse	matrices	C,	A1,	...,	Am and	numbers	b1,	...,	bm

Normalization:	||Ai||,	||C||	≤	1

Output:	Samples	from	y/||y||1 and	value ||y||1 and/or
Quantum	Samples	from	X/tr(X) and	value	tr(X)	

Value	opt	± δ

(output	form	similar	to	HHL	Q.	Algorithm	for	linear	equations)

Quantum	Algorithm	for	SDP

Result	1: There	is	a	quantum	algorithm	for	solving	SDPs	
running	in	time	n1/2	m1/2	s2 poly(log(n,	m),	R,	r,	δ)

Oracle	Model:	We	assume	there’s	an	oracle	that	outputs	a	
chosen	non-zero	entry	of	C,	A1,	...,	Am at	unit	cost:

choice	of	Aj row	k l non-zero	element

Quantum	Algorithm	for	SDP

Result	1: There	is	a	quantum	algorithm	for	solving	SDPs	
running	in	time	n1/2	m1/2	s2 poly(log(n,	m),	R,	r,	δ)

The	good:		
Unconditional	Quadratic	speed-ups	in	terms	of	n and	m

Close	to	optimal:	Ω(n1/2 +	m1/2)	 lower	bound

Quantum	Algorithm	for	SDP

Result	1: There	is	a	quantum	algorithm	for	solving	SDPs	
running	in	time	n1/2	m1/2	s2 poly(log(n,	m),	R,	r,	δ)

The	good:		
Unconditional	Quadratic	speed-ups	in	terms	of	n and	m

Close	to	optimal:	Ω(n1/2 +	m1/2)	 q.	lower	bound

The	bad:				
Terrible	dependence	on	other	parameters:
poly(log(n,	m),	R,	r,	δ)	≤	(Rr)32	δ-18

Close	to	optimal:	no	general	super-polynomial	speed-ups

Quantum	Algorithm	for	SDP

Result	1: There	is	a	quantum	algorithm	for	solving	SDPs	
running	in	time	n1/2	m1/2	s2 poly(log(n,	m),	R,	r,	δ)

Special	case:

If	the	SDP	is	s.t. bi	≥	1	for	all	i,	
there	is	no	dependence	on	r	(size	of	dual	solution)	

Larger	Speed-ups?

Result	2: There	is	a	quantum	algorithm	for	solving	SDPs	
running	in	time	TGibbs m1/2poly(log(n,	m),	s,	R,	r,	δ)

Larger	Speed-ups?

Result	2: There	is	a	quantum	algorithm	for	solving	SDPs	
running	in	time	TGibbs m1/2poly(log(n,	m),	s,	R,	r,	δ)

TGibbs :=	Time	to	prepare	on	quantum	computer	Gibbs	states	of	the	form

for	real	numbers	|νi|	≤	O(log(n),	poly(1/δ))		

Larger	Speed-ups?

Result	2: There	is	a	quantum	algorithm	for	solving	SDPs	
running	in	time	TGibbs m1/2poly(log(n,	m),	s,	R,	r,	δ)

TGibbs :=	Time	to	prepare	on	quantum	computer	Gibbs	states	of	the	form

for	real	numbers	|νi|	≤	O(log(n),	poly(1/δ))		

Can	use	Quantum	Gibbs	Sampling	(e.g.	Quantum	Metropolis)	as	heuristic.	
Exponential	Speed-up	if	thermalization is	quick	(poly	#qubits	=	polylog(n))

Gives	application	of	quantum	Gibbs	sampling	outside	simulating	physical	
systems

Larger	Speed-ups	with	“quantum	data”

Result	3: There	is	a	quantum	algorithm	for	solving	SDPs	
running	in	time	m1/2poly(log(n,	m),	s,	R,	r,	δ,	rank)	with	
data	in	quantum	form

Quantum	Oracle	Model:	There	is	an	oracle	that	given	i, outputs	
the	eigenvalues	of	Ai and	its	eigenvectors	as	quantum	states	

rank	:=	max	(maxi rank(Ai),	rank(C))

Larger	Speed-ups	with	“quantum	data”

Result	3: There	is	a	quantum	algorithm	for	solving	SDPs	
running	in	time	m1/2poly(log(n,	m),	s,	R,	r,	δ,	rank)	with	
data	in	quantum	form

Quantum	Oracle	Model:	There	is	an	oracle	that	given	i, outputs	
the	eigenvalues	of	Ai and	its	eigenvectors	as	quantum	states	

rank	:=	max	(maxi rank(Ai),	rank(C))

Idea:	in	this	case	one	can	easily	perform	the	Gibbs	sampling	in
poly(log(n),	rank)	time

Limitation:	Not	clear	the	relevance	of	the	model.	
How	to	compare	with	classical	methods	in	a	meaningful	way?

Special	Case:	Max	Eigenvalue

Computing	the	max	eigenvalue	of	C	is	a	SDP
:																											,	

Special	Case:	Max	Eigenvalue

Computing	the	max	eigenvalue	of	C	is	a	SDP
:																											,	

This	is	a	well	studied	problem:	

Quantum	Annealing	(cool	down	-C):

If	we	can	prepare																													for	β	=	O(log(n)/δ)	can	compute	
max	eigenvalue	to	error	δ

Special	Case:	Max	Eigenvalue

(Poulin,	Wocjan ‘09)	Can	prepare																											for	s-sparse	C
in	time	Õ(s	n1/2)	on	quantum	computer

Idea:	Phase	estimation	+	Amplitude	amplification

phase	estimation

Post-selecting	on	“0”	gives	a	purification	of	Gibbs	state	with	
Pr >	O(1/n)

Using	amplitude	amplification	can	boost	Pr >	1-o(1)	with	
O(n1/2) iterations		

General	Case:	
Quantizing	Arora-Kale	Algorithm
The	quantum	algorithm	is	based	on	a	classical	algorithm	for	
SDP	due	to	Arora	and	Kale	(2007)	based	on	the	multiplicative	
weight	method.	Let’s	review	their	method

Assumptions:

We	assume	bi ≥	1.	
Can	reduce	general	case	to	this	with	blow	up	of	poly(r)	in	
complexity	

We	also	assume	w.l.o.g.		

The	Oracle

Searches	for	a	vector	y s.t.

i)

ii)

The	Arora-Kale	algorithm	has	an	auxiliary	algorithm	
(the	ORACLE)	which	solves	a	simple	linear	programming:

Arora-Kale	Algorithm

1.	

2.

3.

4.

Arora-Kale	Algorithm

1.	

2.

3.

4.

Thm (Arora-Kale	‘07)			ȳ.b ≤	(1+δ)	α

Can	find	optimal	value	by	binary	search	

Why	Arora-Kale	works?

Since

Must	check							is	feasible

From	Oracle,	for	all	t:

We	need:		

Matrix	Multiplicative	Weight
MMW (Arora,	Kale	‘07)		Given	n	x	n	matrices	0<	Mt	<I	and	ε <	½,	

with																																																																		and		

2-player	zero-sum	game	interpretation:

- Player	A	chooses	density	matrix	Xt
- Player	B	chooses	matrix	0	<	Mt<I
Pay-off:	tr(Xt Mt)									

“Xt =	⍴t strategy	almost	as	good	as	global	strategy”

λn :	min	eigenvalue

Matrix	Multiplicative	Weight
MMW (Arora,	Kale	‘07)		Given	n	x	n	matrices	Mt and	ε <	½,	

with																																																																		and		

λn :	min	eigenvalue

From	Oracle:

By	MMW:																																																		

Quantizing	Arora-Kale	Algorithm

We	make	it	quantum	as	follows:

1. Implement	ORACLE	by	Gibbs	Sampling	to	produce	yt and	apply	
amplitude	amplification	to	solve	it	in	time	Õ(s2 n1/2 m1/2)

2. Sparsify Mt to	be	a	sum	of	O(log(m))	terms:		

3. Quantum	Gibbs	Sampling	+	amplitude	amplification	to	prepare

in	time	Õ(s2 n1/2).

Quantizing	Arora-Kale	Algorithm

We	make	it	quantum	as	follows:

1. Implement	ORACLE	by	Gibbs	Sampling	to	produce	yt and	apply	
amplitude	amplification	to	solve	it	in	time	Õ(s2 n1/2 m1/2)

We’ll	show	there	is	a	feasible	 yt of	the	form	yt =	Nqt with
qt :=	exp(h)/tr(exp(h))	and

We	need	to	simulate	an	oracle	to	the	entries	of	h.	We	do	it	by	
measuring	⍴t with	Ai.	

To	prepare	each ⍴t takes	time	Õ(s2 n1/2).	To	sample	from	qt
requires	Õ(m1/2)	calls	to	oracle	for	h.	So	total	time	is	Õ(s2 n1/2 m1/2)

Quantizing	Arora-Kale	Algorithm

We	make	it	quantum	as	follows:

1. Implement	ORACLE	by	Gibbs	Sampling	to	produce	yt and	apply	
amplitude	amplification	to	solve	it	in	time	Õ(s2 n1/2 m1/2)

2. Sparsify Mt to	be	a	sum	of	O(log(m))	terms:		

Can	show	it	works	by	Matrix	Hoeffding bound:	Z1,	…,	Zk independent	
n	x	n	Hermitian	matrices	s.t.	E(Zi)=0,	||Zi||<λ.	Then	

Quantum	Arora-Kale,	Roughly

1.	

2.

3.	 Sparsify Mt	to	(M’)t

4.				

Gibbs	Sampling

Gibbs	Sampling

Implementing	Oracle	by	Gibbs	
Sampling

Searches	for	a	vector	y s.t.

i)

ii)

Implementing	Oracle	by	Gibbs	
Sampling

Searches	for	(non-normalized)	probability	distribution	y satisfying	
two	linear	constraints:

Claim:		We	can	take	Y	to	be	Gibbs:	There	are	constants	N,	λ,	μ	s.t.

Jaynes’	Principle

(Jaynes	57)	Let	⍴ be	a	quantum	state	s.t.

Then	there	is	a	Gibbs	state	of	the	form

with	same	expectation	values.

Drawback:	no	control	over	size	of	the	λi’s.				

Finitary	Jaynes’	Principle

(Lee,	Raghavendra,	Steurer ‘15)	Let	⍴ s.t.

Then	there	is	a

with

s.t.

(Note:	Used	to	prove	limitations	of	SDPs	for	approximating	
constraints	satisfaction	problems;	see	James	Lee’s	talk)

Implementing	Oracle	by	Gibbs	
Sampling

Claim		There	is	a	Y	of	the	form

with	λ,	μ	<	log(n)/ε and	N	<	α	s.t.

Implementing	Oracle	by	Gibbs	
Sampling

Claim		There	is	a	Y	of	the	form

with	λ,	μ	<	log(n)/ε and	N	<	α	s.t.

Can	implement	oracle	by	exhaustive	searching	over	x,	y,	N	for	a	
Gibbs	distribution	satisfying	constraints	above	

(only	α	log2(n)/ε3 different	triples	needed	to	be	checked)	

Conclusion	and	Open	Problems

Quantum	computers	provide	speed-up	for	SDPs

Many	open	questions:

- Can	we	improve	the	parameters	(in	terms	of	R,	r,	δ)?

- Can	we	find	optimal	algorithm	in	terms	of	n,	m	and	s?

- Can	we	find	relevant	settings	with	superpoly speed-ups?	

- Robustness	to	error?	

- Q.	computer	only	used	for	Gibbs	Sampling.	Application	of	
small-sized	q.	computer?

Conclusion	and	Open	Problems

Quantum	computers	provide	speed-up	for	SDPs

Many	open	questions:

- Can	we	improve	the	parameters	(in	terms	of	R,	r,	δ)?

- Can	we	find	optimal	algorithm	in	terms	of	n,	m	and	s?

- Can	we	find	relevant	settings	with	superpoly speed-ups?	

- Robustness	to	error?	

- Q.	computer	only	used	for	Gibbs	Sampling.	Application	of	
small-sized	q.	computer?												Thanks!

