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combinatorial optimization

Traveling Salesman Problem:

Given 𝑛 cities {1,2,… , 𝑛} and costs 𝑐𝑖𝑗 ≥ 0 for traveling between 
cities 𝑖 and 𝑗, find the permutation 𝜋 of 1,2,… , 𝑛 that minimizes

𝑐𝜋 1 𝜋 2 + 𝑐𝜋 2 𝜋 3 +⋯+ 𝑐𝜋 𝑛 𝜋 1

Gian Carlo Rota, 1969
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combinatorial optimization

Traveling Salesman Problem:

Given 𝑛 cities {1,2,… , 𝑛} and costs 𝑐𝑖𝑗 ≥ 0 for traveling between 
cities 𝑖 and 𝑗, find the permutation 𝜋 of 1,2,… , 𝑛 that minimizes

𝑐𝜋 1 𝜋 2 + 𝑐𝜋 2 𝜋 3 +⋯+ 𝑐𝜋 𝑛 𝜋 1

TSP𝑛 = conv 1𝜏 ∈ 0,1
𝑛
2 ∶ 𝜏 is a tour ⊆ ℝ

𝑛
2

Can find an optimal tour by minimizing a linear 
function over TSP𝑛:    min 𝑐, 𝑥 ∶ 𝑥 ∈ TSP𝑛

Problem:  TSP𝑛 has exponentially many facets!

One can tell the same (short) story for many polytopes associated to NP-complete problems.



lifts and shadows

ST𝑛 = conv 1𝜏 ∈ 0,1
𝑛
2 ∶ 𝜏 is a spanning tree

There is a lift of ST𝑛 in 𝑛3 dimensions with only 𝑂 𝑛3 facets.
[Martin 1991]

Minimum Spanning Tree:

Given 𝑛 cities {1,2,… , 𝑛} and costs 𝑐𝑖𝑗 ≥ 0 between cities 𝑖 and 𝑗, 
find a spanning tree of minimum cost.

Again, has exponentially many facets.



a general model of (small) linear programs

Lifts of polytopes:
A lift 𝑄 of a polytope 𝑃 ⊆ ℝ𝑑 is a polytope 𝑄 ⊆ ℝ𝑁 for 𝑁 ≥ 𝑑 such that 𝑄 linearly 
projects to 𝑃.  If we can optimize linear functions over 𝑄, then we can optimize over 𝑃.

LP design point of view:
A lift corresponds to introducing (arbitrary) new variables and inequalities.

# facets in the lift ⇔ # inequality constraints in the LP 

Extension complexity:
The extension complexity of 𝑃 is the minimal # of facets in a lift of 𝑃.

Examples with exponential savings:
Spanning trees, 𝑠-𝑡 flows, the permutahedron, …



a general model of (small) linear programs

Lifts of polytopes:
A lift 𝑄 of a polytope 𝑃 ⊆ ℝ𝑑 is a polytope 𝑄 ⊆ ℝ𝑁 for 𝑁 ≥ 𝑑 such that 𝑄 linearly 
projects to 𝑃.  If we can optimize linear functions over 𝑄, then we can optimize over 𝑃.

Powerful model of computation.
Even more powerful when we allow approximation.

Indication of power:
Dominant technique in the design of approximation algorithms.
Integrality gaps for LPs often lead to NP-hardness of approximation.

On the other hand:
Polynomial-size LPs for NP-hard problems would show that 
NP ⊆ P/poly.  [Rothvoss 2013]



a brief history of extended formulations

1980s:  Fellow tries to prove that 𝑃 = 𝑁𝑃 by giving a linear program for TSP.

1989:  Yannakakis (the referee) shows that every symmetric LP for TSP must have
exponential size.

. . .

2012:  Fiorini, Massar, Pokutta, Tiwary, de Wolf show that every LP for TSP must have 
exponential size.

2013:  Chan, L, Raghavendra, Steurer show that no polynomial-size LP can approximate 
MAX-CUT within a factor better than 2.
[Goemans-Williamson 1998:  SDPs can do factor ≈ 1.139.]

2014:  Rothvoss shows that every LP for the matching polytope must have exponential size.

What about semidefinite programs?

2011:  Different set of fellows try to prove that 𝑃 = 𝑁𝑃 by giving an asymmetric LP for TSP



semidefinite programs aka spectrahedral lifts

Let 𝒮𝑘+ denote the cone of 𝑘 × 𝑘 symmetric, positive semidefinite matrices.

A spectrahedron is the intersection 𝒮𝑘+ ∩ ℒ for some affine subspace ℒ.

This is precisely the feasible region of an SDP.

Definition: A polytope 𝑃 admits a PSD lift of size 𝑘 if 𝑃 is a linear 
projection of a spectrahedron 𝒮𝑘+ ∩ ℒ.

• Easy to see that minimal size of PSD lift is ≤ minimal size of polyhedral lift

• Assuming the Unique Games Conjecture, integrality gaps for SDPs translate
mechanically into NP-hardness of approximation results.

[Khot-Kindler-Mossel-O’Donnell 2004, Austrin 2007, Raghavendra 2008]

• Sometimes PSD lifts of polytopes are smaller than any polyhedral lift
Gap of 𝑂(𝑑 log 𝑑) vs Ω(𝑑2) [Fawzi-Saunderson-Parrilo 2015]
Exponential gaps known for approximation problems like MAX-CUT [Kothari-Meka-Raghavendra 2017]



SDP lifts cannot prove that 𝑃 = 𝑁𝑃

Lower bounds on PSD lift size

The TSP𝑛, CUT𝑛, and STAB 𝐺𝑛 polytopes do not admit PSD lifts of size 𝑐𝑛2/11

(for some constant 𝑐 > 1 and some family {𝐺𝑛} of 𝑛-vertex graphs)

Approximation hardness for constraint satisfaction problems

For max-constraint satisfaction problems, SDPs of polynomial size are 
equivalent in power to those arising from degree-𝑂(1) SoS relaxations.

For instance, no family of polynomial-size SDP relaxations can achieve 
better than a 7/8-approximation for MAX 3-SAT.

High level:  Starting with a small SDP for some problem, we quantum learn a roughly 
equivalent sum-of-squares SDP on a subset of the variables.

From [L-Raghavendra-Steurer 2015]:



communication (in expectation) model

Alice Bob

A function 𝐹:𝒜 × ℬ → ℝ+

𝑎 ∈ 𝒜 𝑏 ∈ ℬ

𝑴𝑎

Successful protocol:
Bob outputs a random number 𝑩 𝑏,𝑴𝑎 ≥ 0
such that for all 𝑎 ∈ 𝒜, 𝑏 ∈ ℬ,

𝔼 𝑩 𝑏,𝑴𝑎 = 𝐹(𝑎, 𝑏)
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In this model, one-way communication and 
arbitrary communication are equivalent.
[Kaniewski-T. Lee-de Wolf 2014]

𝑴 𝑣,𝑏



query protocols (𝑘-hapless Bob)

( Ԧ𝑣, 𝑏) ∈ ℝ𝑛+1 𝑥 ∈ 0,1 𝑛

𝐹 Ԧ𝑣, 𝑏 , 𝑥 = 𝑏 − 〈 Ԧ𝑣, 𝑥〉

𝑃 ⊆ ℝ𝑛

𝑥 ∈ 0,1 𝑛

( Ԧ𝑣, 𝑏) ∈ ℝ𝑛+1

𝑴 𝑣,𝑏

1 1 1 1 1 10 0 0 0 0 0

Suppose Alice’s message says:
Look at 𝑘 bits of your input in positions:  
𝑖1, 𝑖2, … , 𝑖𝑘 and output 1 if you see values 
𝑦1, 𝑦2, … , 𝑦𝑘

1 10 0 0

Alice specifies 𝑘 bits
⇔ 𝑃 has a “Sherali Adams” lift of size 𝑛

𝑘
2𝑘

Alice specifies 𝑘 bits in superposition + Bob measures 
⇔ 𝑃 has a “sum of squares” lift of degree 2𝑘

[Kaniewski-T. Lee-de Wolf 2014]



query protocols (𝑘-hapless Bob)

( Ԧ𝑣, 𝑏) ∈ ℝ𝑛+1 𝑥 ∈ 0,1 𝑛

𝐹 Ԧ𝑣, 𝑏 , 𝑥 = 𝑏 − 〈 Ԧ𝑣, 𝑥〉

𝑃 ⊆ ℝ𝑛

𝑥 ∈ 0,1 𝑛

( Ԧ𝑣, 𝑏) ∈ ℝ𝑛+1

𝑴 𝑣,𝑏

Alice sends



𝑆 =𝑘



𝑦∈ 0,1 𝑘

𝑎𝑆,𝑦 |𝑆, 𝑦〉

Bob computes



𝑆 =𝑘



𝑦∈ 0,1 𝑘

𝑎𝑆,𝑦 |𝑆, 𝑦〉|𝟏𝑥|𝑆=𝑦〉

and then does a computation + 
measurement (independent of 𝑥).

Alice specifies 𝑘 bits
⇔ 𝑃 has a “Sherali Adams” lift of size 𝑛

𝑘
2𝑘

Alice specifies 𝑘 bits in superposition + Bob measures 
⇔ 𝑃 has a “sum of squares” lift of degree 2𝑘

[Kaniewski-T. Lee-de Wolf 2014]



query protocols (𝑘-hapless Bob)

( Ԧ𝑣, 𝑏) ∈ ℝ𝑛+1 𝑥 ∈ 0,1 𝑛

𝐹 Ԧ𝑣, 𝑏 , 𝑥 = 𝑏 − 〈 Ԧ𝑣, 𝑥〉

𝑃 ⊆ ℝ𝑛

𝑥 ∈ 0,1 𝑛

( Ԧ𝑣, 𝑏) ∈ ℝ𝑛+1

𝑴 𝑣,𝑏
Low-degree sum of squares lifts are well-
studied objects in optimization and proof 
complexity.

Alice specifies 𝑘 bits
⇔ 𝑃 has a “Sherali Adams” lift of size 𝑛

𝑘
2𝑘

Alice specifies 𝑘 bits in superposition + Bob measures 
⇔ 𝑃 has a “sum of squares” lift of degree 2𝑘

[Kaniewski-T. Lee-de Wolf 2014]

Goal:
Relate complexity of arbitrary quantum 
protocol to complexity of query protocols



simulation by a query protocol

( Ԧ𝑣, 𝑏) ∈ ℝ𝑛+1 𝑥 ∈ 0,1 𝑛

𝐹 Ԧ𝑣, 𝑏 , 𝑥 = 𝑏 − 〈 Ԧ𝑣, 𝑥〉

𝑃 ⊆ ℝ𝑛

𝑥 ∈ 0,1 𝑛

( Ԧ𝑣, 𝑏) ∈ ℝ𝑛+1

𝑴 𝑣,𝑏

Translator Bob

෩𝑴

Translator converts Alice’s message 
into a “query protocol” message

If a good enough translator exists, then 
general protocols ≈ query protocols
⇒ general PSD lifts ≈ SoS lifts

Converts Alice’s 𝑚-bit 
message to an ≈ 𝑚-bit 
query message



simulation by a query protocol

( Ԧ𝑣, 𝑏) ∈ ℝ𝑛+1 𝑥 ∈ 0,1 𝑛

𝐹 Ԧ𝑣, 𝑏 , 𝑥 = 𝑏 − 〈 Ԧ𝑣, 𝑥〉

𝑃 ⊆ ℝ𝑛

𝑥 ∈ 0,1 𝑛

( Ԧ𝑣, 𝑏) ∈ ℝ𝑛+1

𝑴 𝑣,𝑏

Translator Bob

෩𝑴

Strategy 1:  Be smart
Look at Alice’s message, make a judgement about 
what “bits” are most influential (now in a quantum 
sense), query them, condition(?), measure(?), 
recurse on the conditional(?) quantum state. 

Converts Alice’s 𝑚-bit 
message to an ≈ 𝑚-bit 
query message



simulation by a query protocol

( Ԧ𝑣, 𝑏) ∈ ℝ𝑛+1 𝑥 ∈ 0,1 𝑛

𝐹 Ԧ𝑣, 𝑏 , 𝑥 = 𝑏 − 〈 Ԧ𝑣, 𝑥〉

𝑃 ⊆ ℝ𝑛

𝑥 ∈ 0,1 𝑛

( Ԧ𝑣, 𝑏) ∈ ℝ𝑛+1

𝑴 𝑣,𝑏

Translator Bob

෩𝑴

Strategy 2:  Uhh… machine learning?

Converts Alice’s 𝑚-bit 
message to an ≈ 𝑚-bit 
query message



the approximation of Blob

Represent Bob as a QC state:

ΦBob = 

𝑥∈ 0,1 𝑛

𝑥 𝑥 ⊗ 𝜌𝐵
𝑥

Key property:

𝒟 ΦBob ‖ 𝒰 ≤ 𝑂(𝑚)

𝒟 is the relative von Neumann entropy, 
𝒰 is the maximally mixed state

Recall:  𝑚 is the # of qubits in Alice’s message.

This holds when 𝐹 (the function they are 
computing) is (mildly) reasonable.

≈



the approximation of Blob

≈
ΦBob = 

𝑥∈ 0,1 𝑛

𝑥 𝑥 ⊗ 𝜌𝐵
𝑥

𝒟 ΦBob ‖ 𝒰 ≤ 𝑂(𝑚)

𝒟 is the relative von Neumann entropy, 
𝒰 is the maximally mixed state

Notion of approximation:

It’s enough that Alice cannot 
distinguish Bob from ෪Bob.

Bob… you look just as 
good as before the 
accident!

By the min-max theorem, Alice encodes a set of 
QC measurements that ensure validity of any 
potential Bob Φ:

Tr 𝐴1Φ ≈ 𝜖1
Tr 𝐴2Φ ≈ 𝜖2
Tr 𝐴3Φ ≈ 𝜖3

⋯

𝐴 = 

𝑥∈ 0,1 𝑛

𝑥 〈𝑥| 

𝑣,𝑏

𝛼 𝑣,𝑏 𝑥 𝜌𝐴
𝑣,𝑏



Jaynes’ principle of maximum entropy

≈
ΦBob = 

𝑥∈ 0,1 𝑛

𝑥 𝑥 ⊗ 𝜌𝐵
𝑥

𝒟 ΦBob ‖ 𝒰 ≤ 𝑂(𝑚)

𝒟 is the relative von Neumann entropy, 
𝒰 is the maximally mixed state

[validity tests for potential Bob Φ]

Tr 𝐴1Φ ≈ 𝜖1
Tr 𝐴2Φ ≈ 𝜖2
Tr 𝐴3Φ ≈ 𝜖3

⋯

𝐴 = 

𝑥∈ 0,1 𝑛

𝑥 〈𝑥| 

𝑣,𝑏

𝛼 𝑣,𝑏 𝑥 𝜌𝐴
𝑣,𝑏

Minimize     𝒟(Φ ‖ 𝒰)

subject to:

Find the “simplest” Bob that passes all the tests:

Tr Φ = 1

Φ ≽ 0
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𝑥

𝒟 ΦBob ‖ 𝒰 ≤ 𝑂(𝑚)

𝒟 is the relative von Neumann entropy, 
𝒰 is the maximally mixed state

[validity tests for potential Bob Φ]

𝐴 = 

𝑥∈ 0,1 𝑛
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𝑣,𝑏

𝛼 𝑣,𝑏 𝑥 𝜌𝐴
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Minimize     𝒟(Φ ‖ 𝒰)

subject to:

Find the “simplest” ෪Bob that passes all the tests:

Tr Φ = 1

Φ ≽ 0

Tr 𝐴1Φ ≈ Tr 𝐴1ΦBob

Tr 𝐴2Φ ≈ Tr 𝐴2ΦBob

Tr 𝐴3Φ ≈ Tr 𝐴3ΦBob

⋯

… and just hope?



Jaynes’ principle of maximum entropy

≈
ΦBob = 

𝑥∈ 0,1 𝑛

𝑥 𝑥 ⊗ 𝜌𝐵
𝑥

𝒟 ΦBob ‖ 𝒰 ≤ 𝑂(𝑚)

𝒟 is the relative von Neumann entropy, 
𝒰 is the maximally mixed state

[validity tests for potential Bob Φ]

Minimize     𝒟(Φ ‖ 𝒰)

subject to:

Find the “simplest” ෪Bob that passes all the tests:
… and just hope?

Tr Φ = 1

Φ ≽ 0

Tr ෪𝐴1Φ ≈ Tr ෪𝐴1ΦBob

Tr ෪𝐴2Φ ≈ Tr ෪𝐴2ΦBob

Tr ෪𝐴3Φ ≈ Tr ෪𝐴3ΦBob

⋯

ሚ𝐴 = 

𝑥∈ 0,1 𝑛

𝑥 〈𝑥| 

𝑣,𝑏

𝛼 𝑣,𝑏 𝑥 𝜌𝐴
𝑣,𝑏

If we hope to learn a 𝑘-hapless Bob, 
then any such Bob is orthogonal to 
the Fourier expansion of 𝛼 𝑣,𝑏

above degree 𝑘.



Jaynes’ principle of maximum entropy

≈
ΦBob = 

𝑥∈ 0,1 𝑛

𝑥 𝑥 ⊗ 𝜌𝐵
𝑥

𝒟 ΦBob ‖ 𝒰 ≤ 𝑂(𝑚)

𝒟 is the relative von Neumann entropy, 
𝒰 is the maximally mixed state

[validity tests for potential Bob Φ]

Minimize     𝒟(Φ ‖ 𝒰)

subject to:

Find the “simplest” ෪Bob that passes all the tests:

Tr Φ = 1

Φ ≽ 0

Tr ෪𝐴1Φ ≈ Tr ෪𝐴1ΦBob

Tr ෪𝐴2Φ ≈ Tr ෪𝐴2ΦBob

Tr ෪𝐴3Φ ≈ Tr ෪𝐴3ΦBob

⋯

ሚ𝐴 = 

𝑥∈ 0,1 𝑛

𝑥 〈𝑥| 

𝑣,𝑏

𝛼 𝑣,𝑏 𝑥 𝜌𝐴
𝑣,𝑏

Optimal solution:

Φ∗ ∝ exp 

𝑗≥1

𝜆𝑗 ෪𝐴𝑗

= exp 

𝑗≥1

𝜆𝑗
෪𝐴𝑗

2

2

≈ poly 

𝑗≥1

𝜆𝑗 ෪𝐴𝑗

2



Jaynes’ principle of maximum entropy

≈
ΦBob = 

𝑥∈ 0,1 𝑛

𝑥 𝑥 ⊗ 𝜌𝐵
𝑥

𝒟 ΦBob ‖ 𝒰 ≤ 𝑂(𝑚)

𝒟 is the relative von Neumann entropy, 
𝒰 is the maximally mixed state

[validity tests for potential Bob Φ]

Minimize     𝒟(Φ ‖ 𝒰)

subject to:
Approximation is an 𝑂 𝑚2 -hapless Bob.

Tr Φ = 1

Φ ≽ 0

Tr ෪𝐴1Φ ≈ Tr ෪𝐴1ΦBob

Tr ෪𝐴2Φ ≈ Tr ෪𝐴2ΦBob

Tr ෪𝐴3Φ ≈ Tr ෪𝐴3ΦBob

⋯

ሚ𝐴 = 

𝑥∈ 0,1 𝑛

𝑥 〈𝑥| 

𝑣,𝑏

𝛼 𝑣,𝑏 𝑥 𝜌𝐴
𝑣,𝑏

Optimal solution:

Φ∗ ∝ exp 

𝑗≥1

𝜆𝑗 ෪𝐴𝑗

= exp 

𝑗≥1

𝜆𝑗
෪𝐴𝑗

2

2

≈ poly 

𝑗≥1

𝜆𝑗 ෪𝐴𝑗

2

Find the “simplest” ෪Bob that passes all the tests:



model is more complex than the training data

Hapless simpletons!

𝑚

𝑚 𝑚
𝑚

𝑚2



the use of symmetry

𝑛 variables

𝑂 𝑚2 ≪ 𝑛 queries
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𝑛 variables

𝑂 𝑚2 ≪ 𝑛 queries



into the future

Application from yesterday:
“Small SDPs are bad at recognizing separable states”
[Harrow, Natarajan, Wu 2016]

Open problem: Are there small SDP lifts of the perfect matching polytope?
Exponential lower bounds for approximating CSPs?
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“Small SDPs are bad at recognizing separable states”
[Harrow, Natarajan, Wu 2016]

Open problem: Are there small SDP lifts of the perfect matching polytope?
Exponential lower bounds for approximating CSPs?

[Kothari-Meka-Raghavendra 2017] do this in the LP setting.
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into the future

Open problem: Are there small SDP lifts of the perfect matching polytope?
Exponential lower bounds for approximating CSPs?

Log rank conjecture:
[FMPTW’12] observed that for Boolean communication problems, this is 
equivalent to classical-quantum simulation with polynomial overhead.

“quantum simplicity”


