spectrahedral lifts (SDPs) and quantum learning

University of Washington

spectrahedral lifts (SDPs) and quantum learning

University of Washington

combinatorial optimization

Traveling Salesman Problem:

Given n cities $\{1,2, \ldots, n\}$ and costs $c_{i j} \geq 0$ for traveling between cities i and j, find the permutation π of $\{1,2, \ldots, n\}$ that minimizes

$$
c_{\pi(1) \pi(2)}+c_{\pi(2) \pi(3)}+\cdots+c_{\pi(n) \pi(1)}
$$

Attempts to solve the traveling salesman problem and related problems of discrete minimization have led to a revival and a great development of the theory of polyhedra in spaces of n dimensions, which lay practically untouched - except for isolated results - since Archimedes. Recent work has created a field of unsuspected beauty and power, which is far from being exhausted.

combinatorial optimization

Traveling Salesman Problem:

Given n cities $\{1,2, \ldots, n\}$ and costs $c_{i j} \geq 0$ for traveling between cities i and j, find the permutation π of $\{1,2, \ldots, n\}$ that minimizes

$$
c_{\pi(1) \pi(2)}+c_{\pi(2) \pi(3)}+\cdots+c_{\pi(n) \pi(1)}
$$

combinatorial optimization

Traveling Salesman Problem:

Given n cities $\{1,2, \ldots, n\}$ and costs $c_{i j} \geq 0$ for traveling between cities i and j, find the permutation π of $\{1,2, \ldots, n\}$ that minimizes

$$
c_{\pi(1) \pi(2)}+c_{\pi(2) \pi(3)}+\cdots+c_{\pi(n) \pi(1)}
$$

$$
\operatorname{TSP}_{n}=\operatorname{conv}\left(\left\{1_{\tau} \in\{0,1\}^{\binom{n}{2}}: \tau \text { is a tour }\right\}\right) \subseteq \mathbb{R}^{\binom{n}{2}}
$$

Can find an optimal tour by minimizing a linear function over $\operatorname{TSP}_{n}: \min \left\{\langle c, x\rangle: x \in \operatorname{TSP}_{n}\right\}$

Problem: TSP_{n} has exponentially many facets!

One can tell the same (short) story for many polytopes associated to NP-complete problems.

lifts and shadows

Minimum Spanning Tree:

Given n cities $\{1,2, \ldots, n\}$ and costs $c_{i j} \geq 0$ between cities i and j, find a spanning tree of minimum cost.

$$
\mathrm{ST}_{n}=\operatorname{conv}\left(\left\{1_{\tau} \in\{0,1\}^{\binom{n}{2}}: \tau \text { is a spanning tree }\right\}\right)
$$

Again, has exponentially many facets.
There is a lift of ST_{n} in n^{3} dimensions with only $O\left(n^{3}\right)$ facets.
[Martin 1991]

a general model of (small) linear programs

Lifts of polytopes:

A lift Q of a polytope $P \subseteq \mathbb{R}^{d}$ is a polytope $Q \subseteq \mathbb{R}^{N}$ for $N \geq d$ such that Q linearly projects to P. If we can optimize linear functions over Q, then we can optimize over P.

LP design point of view:

A lift corresponds to introducing (arbitrary) new variables and inequalities. \# facets in the lift \Leftrightarrow \# inequality constraints in the LP

Extension complexity:

The extension complexity of P is the minimal \# of facets in a lift of P.

Examples with exponential savings:

Spanning trees, s - t flows, the permutahedron, ...

a general model of (small) linear programs

Lifts of polytopes:

A lift Q of a polytope $P \subseteq \mathbb{R}^{d}$ is a polytope $Q \subseteq \mathbb{R}^{N}$ for $N \geq d$ such that Q linearly projects to P. If we can optimize linear functions over Q, then we can optimize over P.

Powerful model of computation.

Even more powerful when we allow approximation.

Indication of power:

Dominant technique in the design of approximation algorithms. Integrality gaps for LPs often lead to NP-hardness of approximation.

On the other hand:

Polynomial-size LPs for NP-hard problems would show that NP \subseteq P/poly. [Rothvoss 2013]

a brief history of extended formulations

1980s: Fellow tries to prove that $P=N P$ by giving a linear program for TSP.
1989: Yannakakis (the referee) shows that every symmetric LP for TSP must have exponential size.

2011: Different set of fellows try to prove that $P=N P$ by giving an asymmetric LP for TSP
2012: Fiorini, Massar, Pokutta, Tiwary, de Wolf show that every LP for TSP must have exponential size.
2013: Chan, L, Raghavendra, Steurer show that no polynomial-size LP can approximate MAX-CUT within a factor better than 2.
[Goemans-Williamson 1998: SDPs can do factor ≈ 1.139.]
2014: Rothvoss shows that every LP for the matching polytope must have exponential size.

semidefinite programs aka spectrahedral lifts

Let S_{k}^{+}denote the cone of $k \times k$ symmetric, positive semidefinite matrices. A spectrahedron is the intersection $\mathcal{S}_{k}^{+} \cap \mathcal{L}$ for some affine subspace \mathcal{L}.
This is precisely the feasible region of an SDP.
Definition: A polytope P admits a PSD lift of size k if P is a linear projection of a spectrahedron $\mathcal{S}_{k}^{+} \cap \mathcal{L}$.

- Easy to see that minimal size of PSD lift is \leq minimal size of polyhedral lift

- Assuming the Unique Games Conjecture, integrality gaps for SDPs translate mechanically into NP-hardness of approximation results.
[Khot-Kindler-Mossel-O'Donnell 2004, Austrin 2007, Raghavendra 2008]
- Sometimes PSD lifts of polytopes are smaller than any polyhedral lift

Gap of $O(d \log d)$ vs $\Omega\left(d^{2}\right)$ [Fawzi-Saunderson-Parrilo 2015] Exponential gaps known for approximation problems like MAX-CUT [Kothari-Meka-Raghavendra 2017]

SDP lifts cannot prove that $P=N P$

From [L-Raghavendra-Steurer 2015]:

Lower bounds on PSD lift size

The $\operatorname{TSP}_{n}, \operatorname{CUT}_{n}$, and $\operatorname{STAB}\left(G_{n}\right)$ polytopes do not admit PSD lifts of size $c^{n^{2 / 11}}$ (for some constant $c>1$ and some family $\left\{G_{n}\right\}$ of n-vertex graphs)

Approximation hardness for constraint satisfaction problems

For max-constraint satisfaction problems, SDPs of polynomial size are equivalent in power to those arising from degree- $O(1) \mathrm{SoS}$ relaxations.

For instance, no family of polynomial-size SDP relaxations can achieve better than a 7/8-approximation for MAX 3-SAT.

High level: Starting with a small SDP for some problem, we quantum learn a roughly equivalent sum-of-squares SDP on a subset of the variables.

communication (in expectation) model

A function $F: \mathcal{A} \times \mathcal{B} \rightarrow \mathbb{R}_{+}$

communication (in expectation) model

M m-bit classical message \Leftrightarrow P has a polyhedral lift of size 2^{m}

M m-qubit quantum message \Leftrightarrow P has an SDP lift of size 2^{m}

Yannakakis factorization theorem
[+ Fiorini-Massar-Pokutta-Tiwary-de Wolf]

communication (in expectation) model

communication (in expectation) model

query protocols (k-hapless Bob)

query protocols (k-hapless Bob)

$$
(\vec{v}, b) \in \mathbb{R}^{n+1}
$$

$$
F((\vec{v}, b), x)=b-\langle\vec{v}, x\rangle
$$

$x \in\{0,1\}^{n}$

Alice sends

$$
\sum_{|S|=k} \sum_{y \in\{0,1\}^{k}} a_{S, y}|S, y\rangle
$$

Bob computes

$$
\sum_{|S|=k} \sum_{y \in\{0,1\}^{k}} a_{S, y}|S, y\rangle\left|\mathbb{1}_{\left.x\right|_{S}=y}\right\rangle
$$

and then does a computation + measurement (independent of x).

query protocols (k-hapless Bob)

simulation by a query protocol

simulation by a query protocol

Represent Bob as a QC state:

$$
\Phi_{\text {Bob }}=\sum_{x \in\{0,1\}^{n}}|x\rangle\langle x| \otimes \rho_{B}^{x}
$$

Key property:

$$
\mathcal{D}\left(\Phi_{\text {Bob }} \| \mathcal{U}\right) \leq O(m)
$$

\mathcal{D} is the relative von Neumann entropy, U is the maximally mixed state

Recall: m is the \# of qubits in Alice's message.
This holds when F (the function they are computing) is (mildly) reasonable.

the approximation of Blob

$$
\begin{gathered}
\Phi_{\text {Bob }}=\sum_{x \in\{0,1\}^{n}}|x\rangle\langle x| \otimes \rho_{B}^{x} \\
\mathcal{D}\left(\Phi_{\text {Bob }} \| \mathcal{U}\right) \leq O(m)
\end{gathered}
$$

\mathcal{D} is the relative von Neumann entropy, U is the maximally mixed state

Notion of approximation:
It's enough that Alice cannot distinguish Bob from $\widetilde{\text { Bob. }}$

By the min-max theorem, Alice encodes a set of QC measurements that ensure validity of any potential Bob Φ :

$$
\begin{aligned}
& \operatorname{Tr}\left(A_{1} \Phi\right) \approx \epsilon_{1} \\
& \operatorname{Tr}\left(A_{2} \Phi\right) \approx \epsilon_{2} \\
& \operatorname{Tr}\left(A_{3} \Phi\right) \approx \epsilon_{3}
\end{aligned}
$$

$$
\begin{gathered}
\Phi_{\text {Bob }}=\sum_{x \in\{0,1\}^{n}}|x\rangle\langle x| \otimes \rho_{B}^{x} \\
\mathcal{D}\left(\Phi_{\text {Bob }} \| \mathcal{U}\right) \leq O(m)
\end{gathered}
$$

\mathcal{D} is the relative von Neumann entropy, U is the maximally mixed state

$$
A=\sum_{x \in\{0,1\}^{n}}|x\rangle\langle x| \sum_{(\vec{v}, b)} \alpha_{(\vec{v}, b)}(x) \rho_{A}^{(\vec{v}, b)}
$$

[validity tests for potential Bob Φ]

Find the "simplest" Bob that passes all the tests:
Minimize $\mathcal{D}(\Phi \| \mathcal{U})$
subject to:

$$
\begin{array}{lc}
\operatorname{Tr}\left(A_{1} \Phi\right) \approx \epsilon_{1} & \operatorname{Tr}(\Phi)=1 \\
\operatorname{Tr}\left(A_{2} \Phi\right) \approx \epsilon_{2} & \Phi \succcurlyeq 0 \\
\operatorname{Tr}\left(A_{3} \Phi\right) \approx \epsilon_{3} &
\end{array}
$$

$$
\begin{gathered}
\Phi_{\text {Bob }}=\sum_{x \in\{0,1\}^{n}}|x\rangle\langle x| \otimes \rho_{B}^{x} \\
\mathcal{D}\left(\Phi_{\text {Bob }} \| \mathcal{U}\right) \leq O(m)
\end{gathered}
$$

\mathcal{D} is the relative von Neumann entropy, U is the maximally mixed state

$$
A=\sum_{x \in\{0,1\}^{n}}|x\rangle\langle x| \sum_{(\vec{v}, b)} \alpha_{(\vec{v}, b)}(x) \rho_{A}^{(\vec{v}, b)}
$$

[validity tests for potential Bob Φ]

$$
\begin{gathered}
\Phi_{\text {Bob }}=\sum_{x \in\{0,1\}^{n}}|x\rangle\langle x| \otimes \rho_{B}^{x} \\
\mathcal{D}\left(\Phi_{\text {Bob }} \| \mathcal{U}\right) \leq O(m)
\end{gathered}
$$

\mathcal{D} is the relative von Neumann entropy, U is the maximally mixed state

Find the "simplest" $\widetilde{\text { Bob }}$ that passes all the tests:
Minimize $\quad \mathcal{D}(\Phi \| \mathcal{U})$
subject to:

$$
\begin{aligned}
\operatorname{Tr}\left(\widetilde{A_{1}} \Phi\right) \approx \operatorname{Tr}\left(\widetilde{A_{1}} \Phi_{\text {Bob }}\right) & \operatorname{Tr}(\Phi)=1 \\
\operatorname{Tr}\left(\widetilde{A_{2}} \Phi\right) \approx \operatorname{Tr}\left(\widetilde{A_{2}} \Phi_{\text {Bob }}\right) & \Phi \succcurlyeq 0 \\
\operatorname{Tr}\left(\widetilde{A_{3}} \Phi\right) \approx \operatorname{Tr}\left(\widetilde{A_{3}} \Phi_{\text {Bob }}\right) &
\end{aligned}
$$

$\tilde{A}=\sum_{x \in\{0,1\}^{n}}|x\rangle\langle x| \sum_{(\vec{v}, b)} \tilde{\alpha}_{(\vec{v}, b)}(x) \rho_{A}^{(\vec{v}, b)}$
[validity tests for potential Bob Φ]

If we hope to learn a k-hapless Bob, then any such Bob is orthogonal to the Fourier expansion of $\alpha_{(\vec{v}, b)}$ above degree k.
... and just hope?

Jaynes' principle of maximum entropy

$$
\begin{gathered}
\Phi_{\text {Bob }}=\sum_{x \in\{0,1\}^{n}}|x\rangle\langle x| \otimes \rho_{B}^{x} \\
\mathcal{D}\left(\Phi_{\text {Bob }} \| \mathcal{U}\right) \leq O(m)
\end{gathered}
$$

\mathcal{D} is the relative von Neumann entropy, U is the maximally mixed state

$$
\tilde{A}=\sum_{x \in\{0,1\}^{n}}|x\rangle\langle x| \sum_{(\vec{v}, b)} \tilde{\alpha}_{(\vec{v}, b)}(x) \rho_{A}^{(\vec{v}, b)}
$$

[validity tests for potential Bob Φ]

Optimal solution:

$$
\begin{aligned}
\Phi^{*} & \propto \exp \left(\sum_{j \geq 1} \lambda_{j} \widetilde{A_{j}}\right) \\
& =\exp \left(\sum_{j \geq 1} \lambda_{j} \frac{\widetilde{A_{j}}}{2}\right)^{2} \\
& \approx \operatorname{poly}\left(\sum_{j \geq 1} \lambda_{j} \widetilde{A_{j}}\right)^{2}
\end{aligned}
$$

$$
\begin{gathered}
\Phi_{\text {Bob }}=\sum_{x \in\{0,1\}^{n}}|x\rangle\langle x| \otimes \rho_{B}^{x} \\
\mathcal{D}\left(\Phi_{\text {Bob }} \| \mathcal{U}\right) \leq O(m)
\end{gathered}
$$

\mathcal{D} is the relative von Neumann entropy, U is the maximally mixed state

Find the "simplest" $\widetilde{\text { Bob }}$ that passes all the tests:

Minimize $\quad \mathcal{D}(\Phi|\mid \mathcal{U})$
subject to:

$$
\begin{array}{rlc}
\operatorname{Tr}\left(\widetilde{A_{1}} \Phi\right) \approx \operatorname{Tr}\left(\widetilde{A_{1}} \Phi_{\text {Bob }}\right) & \operatorname{Tr}(\Phi)=1 \\
\operatorname{Tr}\left(\widetilde{A_{2}} \Phi\right) \approx \operatorname{Tr}\left(\widetilde{A_{2}} \Phi_{\text {Bob }}\right) & \Phi \succcurlyeq 0 \\
\operatorname{Tr}\left(\widetilde{A_{3}} \Phi\right) \approx \operatorname{Tr}\left(\widetilde{A_{3}} \Phi_{\text {Bob }}\right) &
\end{array}
$$

Approximation is an $O\left(\mathrm{~m}^{2}\right)$-hapless Bob.

$$
\tilde{A}=\sum_{x \in\{0,1\}^{n}}|x\rangle\langle x| \sum_{(\vec{v}, b)} \tilde{\alpha}_{(\vec{v}, b)}(x) \rho_{A}^{(\vec{v}, b)}
$$

[validity tests for potential Bob Φ]
Optimal solution:

$$
\Phi^{+} \propto \exp \left(\sum_{i=1} x_{1}, \bar{\pi}_{1}\right)
$$

$$
\begin{aligned}
& =\exp \left(\sum_{j \geq 1} \lambda_{j} \frac{\widetilde{A_{j}}}{2}\right)^{2} \\
& \approx \operatorname{poly}\left(\sum_{j \geq 1} \lambda_{j} \widetilde{A_{j}}\right)^{2}
\end{aligned}
$$

model is more complex than the training data

the use of symmetry
n variables

the use of symmetry
n variables

Application from yesterday:

"Small SDPs are bad at recognizing separable states"
[Harrow, Natarajan, Wu 2016]
Open problem: Are there small SDP lifts of the perfect matching polytope? Exponential lower bounds for approximating CSPs?

Application from yesterday:

"Small SDPs are bad at recognizing separable states"
[Harrow, Natarajan, Wu 2016]
Open problem: Are there small SDP lifts of the perfect matching polytope? Exponential lower bounds for approximating CSPs?

[Kothari-Meka-Raghavendra 2017] do this in the LP setting.

Application from yesterday:

"Small SDPs are bad at recognizing separable states"
[Harrow, Natarajan, Wu 2016]
Open problem: Are there small SDP lifts of the perfect matching polytope? Exponential lower bounds for approximating CSPs?

Open problem: Are there small SDP lifts of the perfect matching polytope? Exponential lower bounds for approximating CSPs?

Log rank conjecture:
[FMPTW'12] observed that for Boolean communication problems, this is equivalent to classical-quantum simulation with polynomial overhead.

