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Optimization and Physics
I Combinatorial Optimization: minimize f : {0, 1}n → R

I Physical inspiration: take advantage of dynamics that drive
physical systems to low energy states.

I Classical simulated annealing (SA): MCMC algorithm
simulates thermal cooling by attempting to sample
π(x) = e−βf (x)/Z for β0 = 0 ≤ β1 ≤ ... ≤ βfinal .

I Can quantum dynamics inspire faster optimization methods?



Do quantum effects help annealing?

I Intuition: quantum dynamics allow for “tunneling” through
high barriers in the energy landscape.

I Theory: QA can be exponentially faster than classical SA for
particular cost functions with tall narrow energy barriers.

(FGG ‘02, Reichardt ‘04, Muthukrishnan et al. ‘15, Kong and
EC ‘15, Jiang et al. ‘15, Brady and van Dam ‘16).



Adiabatic optimization and quantum annealing

I Minimize a cost function f : {0, 1}n → R by sampling the
ground state of an n-qubit Hamiltonian,

Hp =
∑

z∈{0,1}n

f (z)|z〉〈z |

I Initialize the qubits in the ground state of a uniform transverse
field HB = −

∑n
i=1 σ

x
i and interpolate from HB to Hp,

H(s) = (1− s)HB + s Hp , 0 ≤ s ≤ 1

I Adiabatic optimization: If ∆ = mins gap(H(s)) is the
minimum spectral gap of H(s), then time poly(n,∆−1)
suffices to prepare the ground state of Hp.

I Quantum annealing: includes more realistic effects e.g.
being in a low temperature Gibbs state ρ(s) = e−βH(s)/Z(s).



Exponential separation between QA and SA

I Spike cost function: bit-symmetric cost function with a
large energy barrier that creates a local minimum.

f (w) =

{
|w |+ na n/4− nb/2 ≤ |w | ≤ n/4 + nb/2

|w | o.w .

I Takes time 2Ω(na) to solve with SA, but QA succeeds in O(n)
time when a + b < 1/2 (Reichardt ‘04).



However, traditional QA Hamiltonians are “stoquastic”

I Stoquastic Hamiltonians have real and non-positive matrix
entries and can be scaled to substochastic matrices,

Hz,z ′ ≤ 0 for all z , z ′ ∈ {0, 1}n

I Adiabatic computation with frustration-free stoquastic H can
be classically simulated in poly time (Bravyi and Terhal, 2008)

I Stoquastic LH problem is in AM (Bravyi et al., 2006)

I Open question: Can stoquastic QA be classically simulated
in time poly(n,∆−1)?

I Classical simulations motivate implementation of non-stoq QA



Simulated Quantum Annealing
I All amplitudes in stoquastic thermal state path integrals are

positive, making some paths more important than others!

π(z1, ..., zL) =
1

Z

L∏
i=1

〈zi |e−
βH
L |zi+1〉 , zi ∈ {0, 1}n

I SQA discretizes the adiabatic path and samples π at each
point using a Markov chain. The samples can be used for
Monte Carlo estimation of physical observables.

I π penalizes configurations for the proportion of “time” they
spend on bit strings with high f , and also for the total
number of “jumps” along the path.



SQA for the spike converges in poly time

I Our result: SQA equilibrates in polynomial time and finds the
minimum of the spike cost function whenever a + b < 1/2.

I Õ(n17) with single-site Metropolis updates

I Õ(n7) with worldline heat-bath updates



Visualizing SQA for the spike system



Proof ideas

I Compare the SQA Markov chain with and w/o the spike term

I For “worst-case” configurations the spike distribution π may
be very different from the spikeless distribution π̃

I Use expectation values of the quantum system to see that for
”typical configurations” π ≈ π̃ when a + b < 1/2.

I Use canonical paths for the spikeless system to construct
canonical paths for the spike system within the typical subset,
and show that leaks outside of this subset are rare.

I Quasi-equilibration of SQA within a subset of the state space,
adiabatic path guarantees warm starts in this subset.



Most-paths comparison method

I Idea: (z1, ..., zL) ∈ {0, 1}n×L which do not spend too much
time on the spike will have π(z1, ..., zL) ≈ π̃(z1, ..., zL).

I Use “most” of the canonical paths for the spikeless system to
build paths for the spike system with congestion R = O(R̃)
inside a subset ΩG of large measure, π(ΩG ) > 1− 1/poly(n).



Summary and Conclusion

I We’ve shown that SQA can inherit some of the quantum
advantages of QA and given the first proof of an exponential
separation in the asymptotic performance of SA and SQA.

I Can we apply the ideas in the proof to better understand the
stationary distribution and convergence properties of SQA in
more general systems?

I Besides path integral SQA, there are other “quantum Monte
Carlo” methods for stoquastic Hamiltonians. However, there
are obstructions to using any existing QMC method to
simulate stoquastic QA in full generality.

I Thank you for your attention!


