Round Complexity in the Local Transformations of Quantum and Classical States

QIP 2017

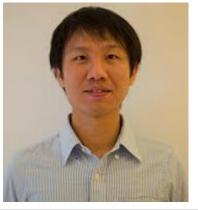
January 19, 2017

Illinois University

Carbondale

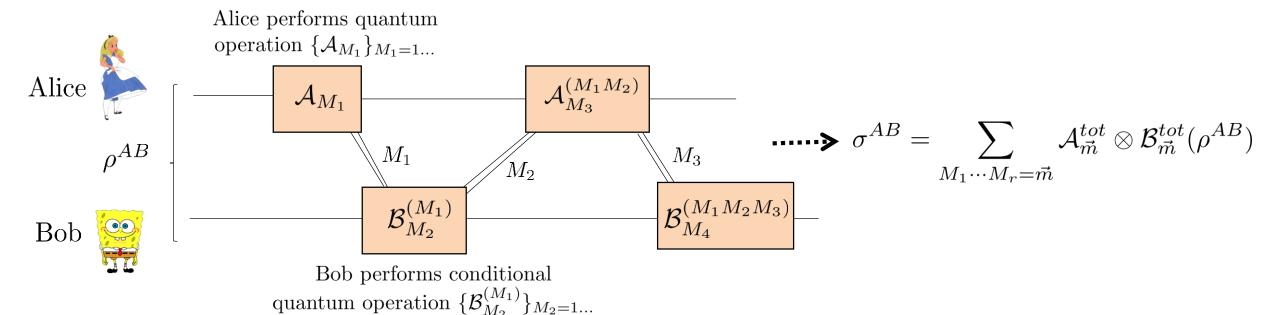
Eric Chitambar

Min-Hsiu Hsieh



Bipartite Entanglement Resource Theory

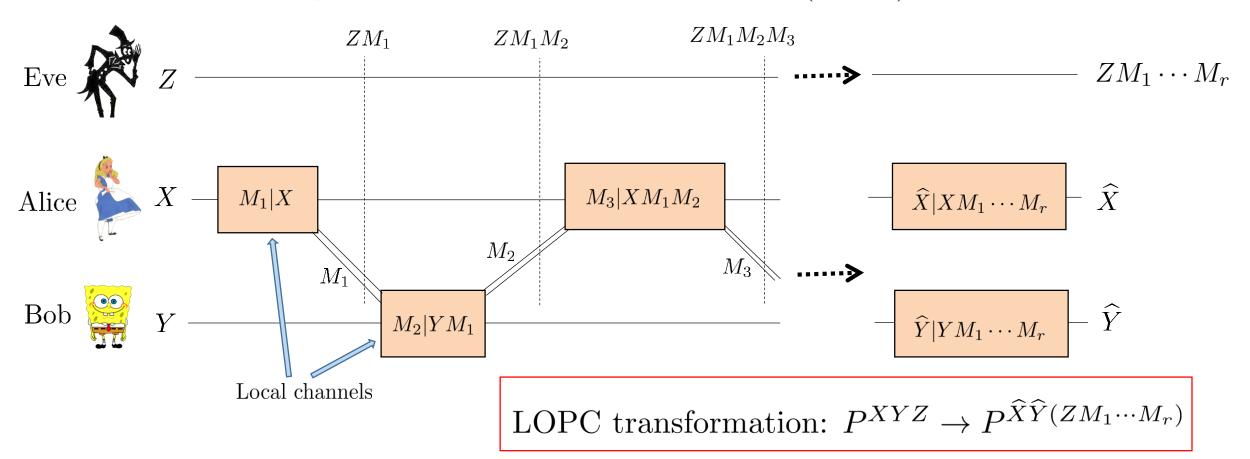
- States are bipartite density matrices ρ^{AB}
- States are manipulated using Local Operations and Classical Communication (LOCC)



LOCC transformation: $\rho^{AB} \to \sigma^{AB}$

Bipartite Secrecy Resource Theory (Classical)

- "States" are random variables X, Y, Z held by three parties.
- States are manipulated using Local Operations and Public Communication (LOPC)



	Quantum	Classical
Resource	Entanglement	Secrecy

	Quantum	Classical
Resource	Entanglement	Secrecy
Free Operations	LOCC	LOPC

	Quantum	Classical					
Resource	Entanglement	Secrecy					
Free Operations	LOCC	LOPC					
Resource Unit	Entangled bit (ebit): $ \Phi^{+}\rangle = \frac{1}{\sqrt{2}}(00\rangle^{AB} + 11\rangle^{AB})$	Secret bit (sbit): $\Phi^{+} = \frac{1}{2}([0,0]^{XY} + [1,1]^{XY}) \otimes P^{Z}$					

	Quantum	Classical					
Resource	Entanglement	Secrecy					
Free Operations	LOCC	LOPC					
Resource Unit	Entangled bit (ebit): $ \Phi^{+}\rangle = \frac{1}{\sqrt{2}}(00\rangle^{AB} + 11\rangle^{AB})$	Secret bit (sbit): $\Phi^+ = \frac{1}{2}([0,0]^{XY} + [1,1]^{XY}) \otimes P^Z$					
Free Operations + Resource = Universal Operations	Teleportation	One-Time Pad					

	Quantum	Classical			
Resource	Entanglement	Secrecy			
Free Operations	LOCC	LOPC			
Resource Unit	Entangled bit (ebit): $ \Phi^{+}\rangle = \frac{1}{\sqrt{2}}(00\rangle^{AB} + 11\rangle^{AB})$	Secret bit (sbit): $\Phi^+ = \frac{1}{2}([0,0]^{XY} + [1,1]^{XY}) \otimes P^Z$			
Free Operations + Resource = Universal Operations	Teleportation	One-Time Pad			
Single Copy Resource Conversion	Convertibility of Pure States Governed by Majorization	Convertibility of "Pure States" Governed by Majorization ¹			

¹ Collins and Popescu – PRA 2002

	Quantum	Classical
Resource	Entanglement	Secrecy
Free Operations	LOCC	LOPC
Resource Unit	Entangled bit (ebit): $ \Phi^{+}\rangle = \frac{1}{\sqrt{2}}(00\rangle^{AB} + 11\rangle^{AB})$	Secret bit (sbit): $\Phi^+ = \frac{1}{2}([0,0]^{XY} + [1,1]^{XY}) \otimes P^Z$
Free Operations + Resource = Universal Operations	Teleportation	One-Time Pad
Single Copy Resource Conversion	Convertibility of Pure States Governed by Majorization	Convertibility of "Pure States" Governed by Majorization ¹
Asymptotic Resource Conversion	Entanglement Formation/ Entanglement Distillation	Secrecy Formation/ Secrecy Distillation ²

¹ Collins and Popescu – PRA 2002

² Renner and Wolf – EUROCRYPT 2003

	Quantum	Classical
Resource	Entanglement	Secrecy
Free Operations	LOCC	LOPC
Resource Unit	Entangled bit (ebit): $ \Phi^{+}\rangle = \frac{1}{\sqrt{2}}(00\rangle^{AB} + 11\rangle^{AB})$	Secret bit (sbit): $\Phi^+ = \frac{1}{2}([0,0]^{XY} + [1,1]^{XY}) \otimes P^Z$
Free Operations + Resource = Universal Operations	Teleportation	One-Time Pad
Single Copy Resource Conversion	Convertibility of Pure States Governed by Majorization	Convertibility of "Pure States" Governed by Majorization ¹
Asymptotic Resource Conversion	Entanglement Formation/ Entanglement Distillation	Secrecy Formation/ Secrecy Distillation ²
Bound Resource	Yes	???³

¹ Collins and Popescu – PRA 2002

² Renner and Wolf – EUROCRYPT 2003

	Quantum	Classical
Resource	Entanglement	Secrecy
Free Operations	LOCC	LOPC
Resource Unit	Entangled bit (ebit): $ \Phi^+\rangle = \frac{1}{\sqrt{2}}(00\rangle^{AB} + 11\rangle^{AB})$	Secret bit (sbit): $\Phi^{+} = \frac{1}{2}([0,0]^{XY} + [1,1]^{XY}) \otimes P^{Z}$
Free Operations + Resource = Universal Operations	Teleportation	One-Time Pad
Single Copy Resource Conversion	Convertibility of Pure States Governed by Majorization	Convertibility of "Pure States" Governed by Majorization ¹
Asymptotic Resource Conversion	Entanglement Formation/ Entanglement Distillation	Secrecy Formation/ Secrecy Distillation ²
Bound Resource	Yes	???³
Asymptotic Reversible Resource	- "Flagged" Pure States- ????	- Classical "Flagged Pure States" ⁴ - ????

¹ Collins and Popescu – PRA 2002

² Renner and Wolf – EUROCRYPT 2003

³ Gisin and Wolf – CRYPTO 2000

⁴ C. and Hsieh – PRL 2016

Round Complexity in LOCC and LOPC

How does increased rounds of interactive classical/pubic communication enhance the ability to process quantum/secret information?

- Previous and related work -

Bounded-round communication complexity

• Braverman *et al.* (2015): Quantum Disjointness Problem - (QIP 2016)

$$QCC_r(DISJ_n, 1/3) \ge \widetilde{\Omega}(\frac{n}{r})$$

• Klauck et al. (2007): For any r, there is a problem S_r such that

$$QCC_{r-1}(S_r, \epsilon) \ge \Omega(n^{1/r})$$

 $QCC_r(S_r, \epsilon) = \Theta(\log n)$

r-round quantum communication

Some Previous Results in LOCC Round Separation

- Asymptotic Entanglement Distillation

• LOCC
$$_2$$
 > LOCC $_1$ (Bennett, DiVincenzo, Smolin, Wootters - PRA 1996) (Leditzky, Datta, Smith - QIP 2017)

- State Discrimination
 - LOCC₂ > LOCC₁ \rightarrow (Leung and Winter 2011) (Nathanson PR Δ 2013)

(Peres and Wootters - PRL 1991)

(Owari and Hayashi - NJP 2008)

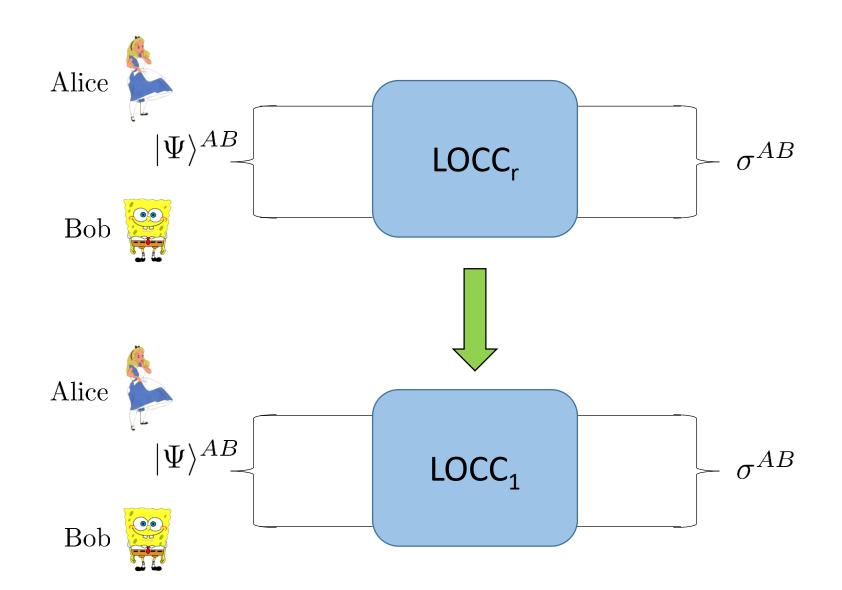
(Nathanson - PRA 2013)

(C. and Hsieh - JMP 2014)

(Croke and Barnett - QIP 2017)

- LOCC_r > LOCC_{r-1} (Xin and Duan PRA 2008)
- Multipartite LOCC State Transformation
 - $LOCC_{\infty} > LOCC_r$ (C. PRL 2011)

An Example that Fails to Separate the Rounds



An Example that Fails to Separate the Rounds

If $|\psi\rangle^{AB} \to \sigma^{AB}$ in r rounds of LOCC, then the transformation can be achieved using a one-round LOCC protocol.⁵

This round compression holds for arbitrary dimensions!

⁵ Lo and Popescu – PRA 2001

Round Separation in State Transformations

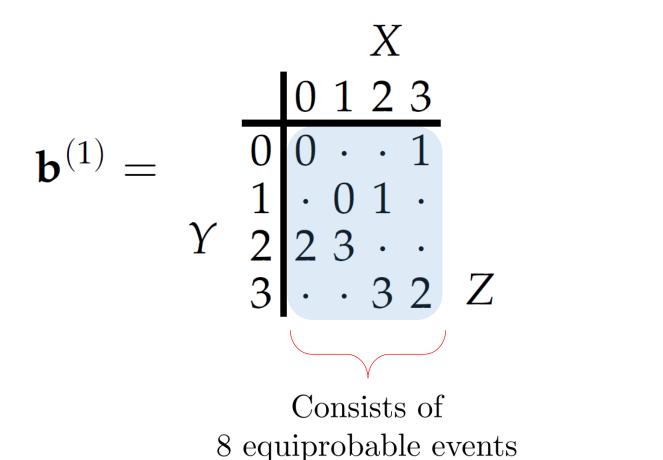
• $|\psi\rangle^{AB} \xrightarrow{\text{LOCC}} \sigma^{AB}$ requires only one round of LOCC.

• Does $\rho^{AB} \xrightarrow{\text{LOCC}} \sigma^{AB}$ require only one round of LOCC?

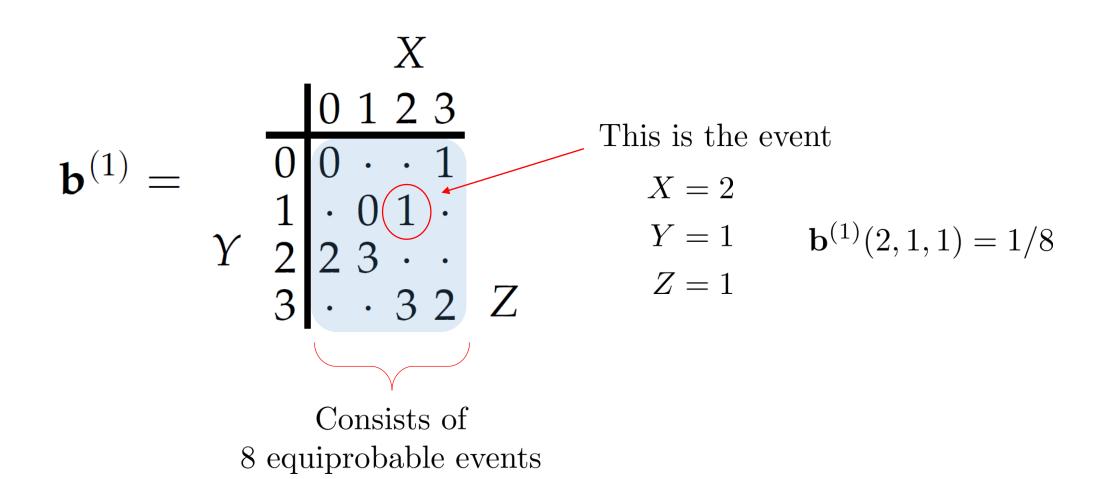
Theorem:

For every r, there exists a state transformation $\rho_r^{AB} \xrightarrow{\text{LOCC}} |\phi\rangle^{AB}$ needing r rounds of LOCC to achieve.

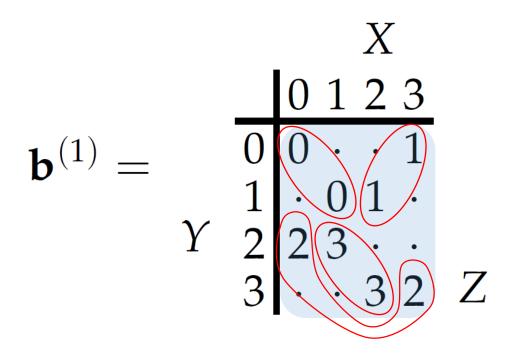
• Step 1: Define a tripartite probability distribution $\mathbf{b}^{(1)}$.



• Step 1: Define a tripartite probability distribution $\mathbf{b}^{(1)}$.



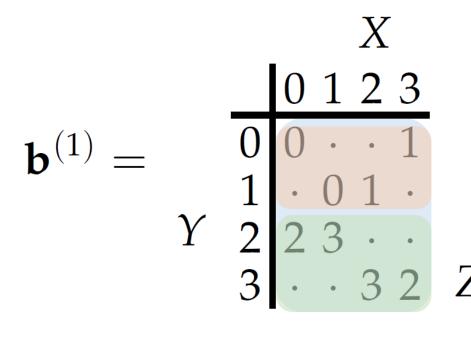
• Step 1: Define a tripartite probability distribution $\mathbf{b}^{(1)}$.



Key Property:

- Given Z, Alice and Bob have one bit of perfectly shared randomness.
- If they can determine Z using public communication (without revealing the value of X or Y), then they will have one bit of secret correlations.

• Step 1: Define a tripartite probability distribution $\mathbf{b}^{(1)}$.



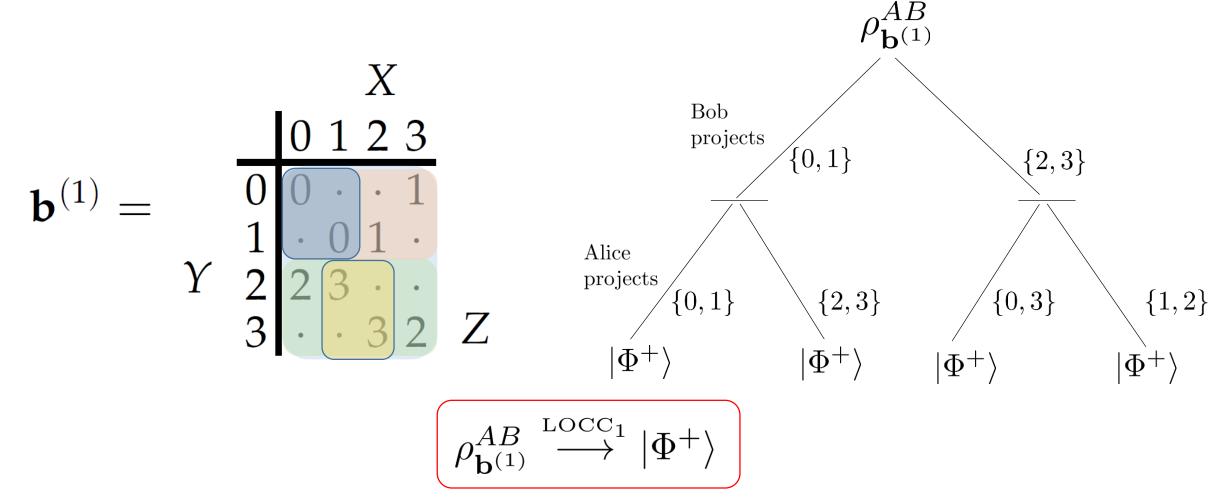
One-Way Protocol:

- Bob announces whether Y belongs to $\{0,1\}$ or $\{2,3\}$.
- Eve learns nothing new with this annoucement.
- Alice learns exactly the value of Y.

• Step 2: Embed the distribution into a tripartite quantum state and trace out *E*.

$$\mathbf{b}^{(1)} = \begin{array}{c} X \\ 0 \ 1 \ 2 \ 3 \\ Y \ 2 \ 2 \ 3 \ \cdot \\ 3 \ \cdot \ \cdot \ 3 \ 2 \end{array} \begin{array}{c} |\mathbf{b}^{(1)}\rangle^{ABE} = \sum_{xyz} \sqrt{\mathbf{b}^{(1)}(x,y,z)} |x\rangle^{A} |y\rangle^{B} |z\rangle^{E} \\ \rho_{\mathbf{b}^{(1)}}^{AB} = \frac{1}{\sqrt{4}} \sum_{z} |\psi_{z}\rangle\langle\psi_{z}|^{AB} \\ |\psi_{z}\rangle = \sum_{x,y} \sqrt{\mathbf{b}^{(1)}(x,y|z)} |x\rangle |y\rangle \\ |\psi_{z}\rangle = \sum_{x,y} \sqrt{\mathbf{b}^{(1)}(x,y|z)} |x\rangle |y\rangle \end{array}$$

• Step 2: Embed the distribution into a tripartite quantum state and trace out E.



• Step 3: Permute and reiterate.

$$\mathbf{b}^{(1)} = \begin{array}{c} X \\ 0 & 1 & 2 & 3 \\ 0 & 0 & \cdot \cdot & 1 \\ 1 & \cdot & 0 & 1 & \cdot \\ Y & 2 & 2 & 3 & \cdot & \cdot \\ 3 & \cdot & \cdot & 3 & 2 & Z \end{array} \qquad \mathbf{b}^{(2)} = \begin{array}{c} X \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0 & 0 & \cdot & \cdot & 1 & 4 & \cdot & 5 \\ 1 & \cdot & 0 & 1 & \cdot & \cdot & 7 & 6 \\ 2 & 3 & \cdot & \cdot & 6 & 7 & \cdot & \cdot \\ 3 & \cdot & \cdot & 3 & 2 & \cdot & 4 & 5 & \cdot & Z \end{array}$$

- Each level is obtained from the last by doubling Eve's alphabet and either Alice or Bob's.
- "Origami" distributions

• Step 3: Permute and reiterate.

$$\mathbf{b}^{(1)} = \begin{pmatrix} X \\ 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 1 \\ Y & 2 & 2 & 3 & 1 \\ 3 & 0 & 0 & 2 & 2 \end{pmatrix} \mathbf{b}^{(2)} = \begin{pmatrix} X \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0 & 0 & 0 & 1 & 1 & 4 & 0 & 5 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ Y & 2 & 2 & 3 & 0 & 1 & 1 & 0 & 0 \\ 2 & 3 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ Y & 2 & 2 & 3 & 0 & 1 & 0 & 0 & 1 \\ 2 & 3 & 0 & 1 & 0 & 0 & 0 & 1 \\ Y & 2 & 2 & 3 & 0 & 1 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 1 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 2 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 3 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 3 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 3 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ Y & 3 & 3 & 2 & 0 & 0 & 0 & 0 & 0 \\ Y$$

$$\rho_{\mathbf{b}^{(r)}} = \frac{1}{\sqrt{2^{r+1}}} \sum_{z} |\psi_z\rangle\langle\psi_z|$$

$$|\psi_z\rangle = \sum_{x,y} \sqrt{\mathbf{b}^{(r)}(x,y|z)} |x\rangle |y\rangle$$

$$\rho_{\mathbf{b}^{(r)}} \stackrel{\text{LOCC}_r}{\longrightarrow} |\Phi^+\rangle$$

in r rounds by different sequences of local projections

• What about fewer than r rounds?

• Key observation:

$$\rho_{\mathbf{b}^{(r)}} = \frac{1}{\sqrt{2^{r+1}}} \sum_{z} |\psi_{z}\rangle\langle\psi_{z}| \longrightarrow |\Phi^{+}\rangle$$
iff $|\psi_{z}\rangle \longrightarrow |\Phi^{+}\rangle$ for all z .

- Every $|\psi_z\rangle$ has Schmidt rank 2.
- Schmidt rank is an SLOCC monotone.
- Therefore in each round of measurement, $|\psi_z\rangle$ must either be eliminated or its Schmidt rank remains the same.

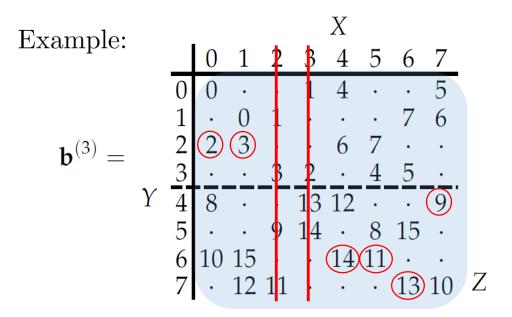
• In each round of measurement, $|\psi_z\rangle$ must either be eliminated or its Schmidt rank remains the same.

Example:			X								
			0	1	2	3	4	5	6	7	
		0	0		/	1)	4	•		5	
		1		0	(1)	/.	•	•	7	6	
$\mathbf{b}^{(3)} = $ Υ	2	2	3	•		6	7				
	3		•	3	2	•	4	5			
	4	8	•		13	12	٠		9		
		5			9	14	•	8	15	•	
		6	10	15			14	11			
		7		12	11	•			13	10	Z

- This rank constraint forces Alice and Bob to perform the correct measurement sequences.
- For example, suppose that Alice wishes to eliminate $|\psi_1\rangle$.

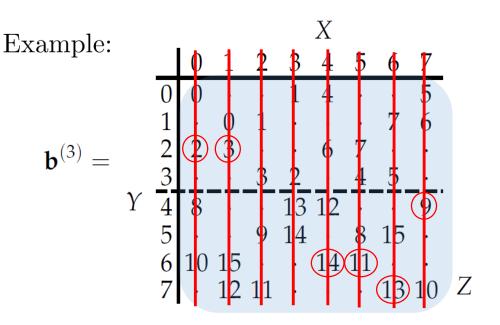
Then she must eliminate her local subspace spanned by $\{|2\rangle, |3\rangle\}$.

• In each round of measurement, $|\psi_z\rangle$ must either be eliminated or its Schmidt rank remains the same.



- The rank constraint forces Alice and Bob to perform the correct measurement sequences.
- For example, suppose that Alice wishes to eliminate $|\psi_1\rangle$.
 - Then she must eliminate her local subspace spanned by $\{|2\rangle, |3\rangle\}$.
 - This would decrase the rank of $|\psi_2\rangle$, $|\psi_3\rangle$, $|\psi_9\rangle$, $|\psi_{11}\rangle$, $|\psi_{13}\rangle$, and $|\psi_{14}\rangle$.

• In each round of measurement, $|\psi_z\rangle$ must either be eliminated or its Schmidt rank remains the same.



- The rank constraint forces Alice and Bob to perform the correct measurement sequences.
- For example, suppose that Alice wishes to eliminate $|\psi_1\rangle$.

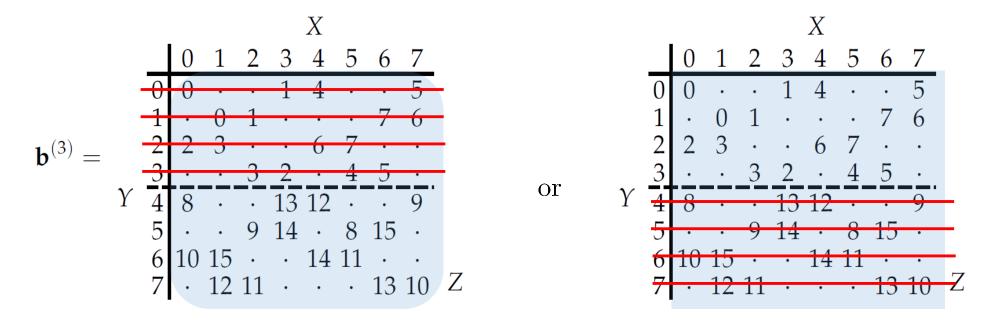
Then she must eliminate her local subspace spanned by $\{|2\rangle, |3\rangle\}$.

This would decrase the rank of $|\psi_2\rangle$, $|\psi_3\rangle$, $|\psi_9\rangle$, $|\psi_{11}\rangle$, $|\psi_{13}\rangle$, and $|\psi_{14}\rangle$.

Alice cannot eliminate any states in the mixture \leftarrow Impossible!! if she were to measure.

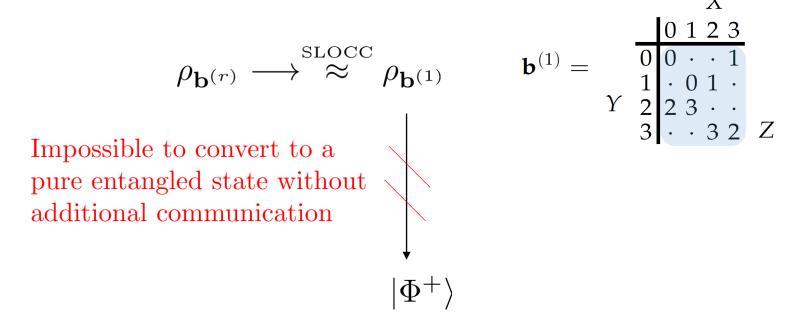
• So to prevent the decrease in ranks, she would also have to eliminate her local subspace spanned by $\{|0\rangle, |1\rangle, |4\rangle, |5\rangle, |6\rangle, |7\rangle\}.$

• This scenario is avoided only if Bob measures and eliminates either the $\{|0\rangle, |1\rangle, |2\rangle, |3\rangle\}$ subspace or the $\{|4\rangle, |5\rangle, |6\rangle, |7\rangle\}$ subspace.



• In either case, what remains is a state SLOCC equivalent to $\rho_{\mathbf{b}^{(2)}}$.

• At the end of r-1 rounds:



• Thus, $\rho_{\mathbf{b}^{(r)}} \stackrel{\text{\tiny LOCC}}{\longrightarrow} |\Phi^+\rangle$ is possible only under r rounds of LOCC.

The Analogous Classical Problem

• In the classical resource theory of secrecy, Alice and Bob want to obtain secret key

$$\Phi^+ = \frac{1}{2}([0,0]^{XY} + [1,1]^{XY}) \otimes P^Z.$$

- How many rounds of LOPC does it take Alice and Bob to transform $\mathbf{b}^{(r)} \to \Phi^+$?
- In the entanglement case, the proof relies crucially on the Schmidt rank.
- What is the classical analog of Schmidt rank?

• Consider the Schmidt decomposition of a bipartite pure state $|\varphi\rangle^{AB}$:

$$|\varphi\rangle^{AB} = \sum_{w=1}^{Srk(|\varphi\rangle)} \sqrt{p_w} |\alpha_w\rangle^A |\beta_w\rangle^B$$
. $Srk(|\varphi\rangle)$ is the minimum number of product states whose span contains $|\varphi\rangle$.

• When Alice and Bob measure in their Schmidt bases, they generate a distribution:

$$P^{XY}(x,y) = \sum_{\omega} p_{\omega} \delta_{x\omega} \delta_{y\omega}$$

There exists an auxiliary random variable W such that X and Y are independent given W:

$$X - W - Y$$

Definition (Secrecy Rank):

For uncorrelated Eve,

$$Srk(P^{XY}) = \min_{X-W-Y} |W|$$
 The range of W

- What about for correlated Eve?
- Recall the definition of Schmidt rank for bipartite mixed states⁶:

$$Srk[\rho^{AB}] = \min_{\substack{\{p_i, |\varphi_i\rangle\}\\ \rho^{AB} = \sum_i p_i |\varphi_i\rangle \langle \varphi_i|}} \max_{|\varphi_i\rangle} Srk(|\varphi_i\rangle)$$

• For tripartite distributions, we can think of P^{XYZ} as defining an ensemble of bipartite distributions $\{P^{XY|Z=z}, P^Z(z)\}$.

Definition (Secrecy Rank):

$$Srk(P^{XYZ}) = \max_{z} Srk(P^{XY|Z=z})$$

- What about for correlated Eve?
- Recall the definition of Schmidt rank for bipartite mixed states⁶:

$$Srk[\rho^{AB}] = \min_{\substack{\{p_i, |\varphi_i\rangle\}\\ \rho^{AB} = \sum_i p_i |\varphi_i\rangle \langle \varphi_i|}} \max_{|\varphi_i\rangle} Srk(|\varphi_i\rangle)$$

• For tripartite distributions, we can think of P^{XYZ} as defining an ensemble of bipartite distributions $\{P^{XY|Z=z}, P^Z(z)\}$.

Definition (Secrecy Rank):

$$Srk(P^{XYZ}) = \max_{z} \ Srk(P^{XY|Z=z}) = \min_{X-WZ-Y} \max_{z} |W^{|Z=z}|$$

$$\frac{\text{Quantum}}{Srk(\rho^{AB})} \Leftrightarrow \frac{\text{Classical}}{Srk(P^{XYZ})}$$

Theorem:

The Secrecy Rank is an SLOPC monotone.

- For any sequence of messages in an LOPC protocol, $Srk(P^{XYZ})$ is monotonically decreasing.
- The lower bound in rounds for $\rho_{\mathbf{b}^{(r)}} \xrightarrow{\text{LOCC}} |\Phi^{+}\rangle$ translates directly into the classical problem.

Theorem:

$$\mathbf{b}^{(r)} \stackrel{\text{\tiny LOPC}}{\longrightarrow} \frac{1}{2}([0,0]^{XY} + [1,1]^{XY}) \otimes P^Z$$

only with r rounds of LOPC.

Conclusions/Remarks

 \bullet For every r, the state transformations

$$\rho_{\mathbf{b}^{(r)}} \xrightarrow{\text{LOCC}} |\Phi^{+}\rangle$$
$$\mathbf{b}^{(r)} \xrightarrow{\text{LOPC}} \Phi^{+}$$

need r rounds of LOCC/LOPC to achieve.

Slight Strengthening:

• For every r, there exists an $\epsilon > 0$ such that

$$\rho_{\mathbf{b}^{(r)}} \xrightarrow{\text{LOCC}} \sigma^{AB} \stackrel{\epsilon}{\approx} |\Phi^{+}\rangle$$

$$\mathbf{b}^{(r)} \xrightarrow{\text{LOPC}} P^{XYZ} \stackrel{\epsilon}{\approx} \Phi^{+}$$
Follows from compactness of finite-round LOCC/LOPC

need r rounds of LOCC/LOPC to achieve.

Conclusions/Remarks

• Since the proof is based on Schmidt/Secrecy ranks, we can generalize:

$$|\Phi_{\lambda}^{+}\rangle = \sqrt{\lambda}|00\rangle^{AB} + \sqrt{1-\lambda}|11\rangle^{AB} \qquad \Phi_{\lambda}^{+} = (\lambda[0,0]^{XY} + (1-\lambda)[1,1]^{XY}) \otimes P^{Z}$$

• For every r and any $0 < \lambda \le 1/2$, the state transformations

$$\rho_{\mathbf{b}^{(r)}} \stackrel{\text{LOCC}}{\longrightarrow} |\Phi_{\lambda}^{+}\rangle$$
$$\mathbf{b}^{(r)} \stackrel{\text{LOPC}}{\longrightarrow} \Phi_{\lambda}^{+}$$

need r rounds of LOCC/LOPC to achieve.

 $\lim_{\lambda \to 0} \min\{k : \rho_{\mathbf{b}^{(r)}} \xrightarrow{\text{\tiny LOCC}_k} |\Phi_{\lambda}^+\rangle\} \neq \min\{k : \rho_{\mathbf{b}^{(r)}} \xrightarrow{\text{\tiny LOCC}_k} |\Phi_0^+\rangle\}$

Open Questions/Future Work

• The dimension of states scales poorly!

$$\rho_{\mathbf{b}^{(r)}} = \frac{1}{\sqrt{2^{r+1}}} \sum_{z} |\psi_z\rangle\langle\psi_z|$$

Can example be found in bipartite systems with bounded dimension?

• For every r, there exists an $\epsilon > 0$ such that

$$\rho_{\mathbf{b}^{(r)}} \stackrel{\text{LOCC}}{\longrightarrow} \sigma^{AB} \stackrel{\epsilon}{\approx} |\Phi^{+}\rangle$$

$$\mathbf{b}^{(r)} \stackrel{\text{LOPC}}{\longrightarrow} P^{XYZ} \stackrel{\epsilon}{\approx} \Phi^{+}$$

Can lower bounds on ϵ be computed?

need r rounds of LOCC/LOPC to achieve.

Open Questions/Future Work

• What about asymptotic transformations?

$$\rho_{\mathbf{b}^{(r)}}^{\otimes n} \xrightarrow{\text{LOCC}} \sigma \stackrel{\epsilon}{\approx} |\Phi^{+}\rangle^{\otimes m}$$
$$(\mathbf{b}^{(r)})^{\otimes n} \xrightarrow{\text{LOPC}} P^{XYZ} \stackrel{\epsilon}{\approx} (\Phi^{+})^{\otimes m}$$

What is the r-round asymptotic distillation rate of $\rho_{\mathbf{b}^{(r)}}$ and $\mathbf{b}^{(r)}$?

Can one bit of entanglement/key be asymptotically distilled in fewer than r rounds?

• Note:

$$E_C(\rho_{\mathbf{b}^{(r)}}) = E_D(\rho_{\mathbf{b}^{(r)}})$$

Asymptotic entanglement reversibility may require r-round protocols.

Entanglement

Distillable entanglement

⇒ The states with reversible entanglement can have very complex structure.

