General Randomness Amplification with non-signaling security

Xiaodi Wu University of Oregon

Yaoyun Shi University of Michigan

Kai-Min Chung Academia Sinica

Right Time for Quantum Information Theorists to Jump Into Black-holes...

Before that, let us study some fundamental physics question that is SAFER (more accessible) for computer scientists.....

Is our world deterministic?

How could fundamentally unpredictable events be possible and certifiable?

We can't be sure ... without believing first of all its existence

One POSSIBILITY: a deterministic "matrix" world!

Deterministic World v.s. Truly Random World [CR]

Does *non-deterministic* world imply *truly random* world?

the world allows uniformly random events

A Possible **Dichotomy** Theorem:

Weak "uncertainty" (e.g., guess probability < 1) **Weak random Source** deterministic operation

no extra randomness

Full "uncertainty" (**uniformly random**) against environment

Thus, *either* the world is **deterministic** *or* we can faithfully create **uniformly random** events

Colbeck & Renner [CR'12]: Can we certify existence of true randomness ? (based on physical laws)

Can we generate uniform bits from weak sources with minimal assumptions?

Can we certify exist. of true randomness?

- System performs experiment to output a bit b∈{0,1}
- Eve models external observer
- **<u>Necessary Assumptions</u>**: (1) weak source (some uncertainty)
- (2) No-signaling between System and Eve. In particular, System cannot signal b to Eve.

Approaches w/ additional assumptions

System Weak Source

Classical system : require independent weak sources.

Quantum system: seemingly intrinsic randomness

Question: QM could be incomplete. Devices are untrusted. Can we still generate uniform bits from weak sources?

by "Classical" Human being.

A more fundamental issue: Randomness from Quantum Mechanics?

YES? If Quantum mechanics explains the inner-working of Nature **NO!** If QM is incomplete: e.g. existence of a deterministic alternative

Device-Independent Cryptography

No Trust of the inner-working due to *technical* or *fundamental* issues **GOAL:** only make *classical* operations, still leverage *quantum* devices

=> Device-Independent Quantum Cryptography !!!

How can "classical" human being leverage quantum power?

Bell-tests for detecting quantum behavior (*non-locality*)

Force to use the *"quantumness"* via non-locality!

Successful Examples: (this session and the incomplete list)

- 1) QKD [BHK05, MRC+06, MPA, VV13, BCK13, RUV13, MS13, AF et al..]
- 2) Randomness Expansion [Col06, PAM+10, PM11, FGS11, VV12, MS13, CY13]
- 3) Free-randomness Amplification [CR12, GMdIT+12, MP13, BR+13...]
- 4) Quantum Bit Commitment & Coin Flipping [SCA+11]
- 5) Quantum Computation Delegation [RUV13, MacK13]

Randomness Amplification [CR12]

- Certify true randomness from weak randomness
 via Bell violation, device-independent framework
- Weak source = Santha-Vazirani (ε -SV) sources (1/2) - $\varepsilon \le \Pr[X_i = x_i | X_{< i} = x_{< i}] \le (1/2) + \varepsilon$
 - physical principles behind choosing this SV
 - Amplification from ε -SV for ε < 0.058

Rand. Amp. Protocol of [CR12]

Dichotomy Theorem [CR12,GMT+13]

- Can we certify our physical world is inherently random?
 NO if the world is fully deterministic ("super-determinism")
- Dichotomy: either deterministic, or certifiably random
- **RA**: weak randomness \implies certifiable true randomness
- Weaker assumptions \Rightarrow Stronger Dichotomy Thm
- Require Non-Signaling (NS) security [CR12]
 - Should *not* assume quantum completeness
 - Only assume NS condition (necessary)

Non-Signaling (NS) Security

- Devices A, B, E may share "non-signaling correlation"
 - Arbitrary correlation not signaling the input
 - Marginal distribution of A depend only on value X = x
 - p(a|xy) = p(a|xy') for any x, y, y'
- Powerful: can win CHSH w.p. 100%
 - Random A \bigoplus B = x \land y & marginal of A, B = uniform
- NS Security:
 - If Pr[Alice accepts] $\geq \varepsilon$, then
 - Pr[Eve guess z correctly] \leq (1/2) + ε

Developments of RA Protocols

	Source	Eve	Conditional independence	
			Source-Device	Source-Eve
[CR12]	SV ε < 0.058	Classical	Indep.	
[GMT+13]	SV any <i>ε</i> < 1/2	NS	Indep.	Arbitrary
[BRG+13]	SV any <i>ε</i> < 1/2	NS	Indep.	Indep.
[RBH+15]	SV any <i>ε</i> < 1/2	NS	Indep.	Indep.
[WBG+16]	SV ε < 0.0144	NS	Somewhat	Somewhat
				1.1

Assumptions on the Source

- SV source is highly structured
 - Guarantee entropy for every bit of the Source
 - SV bit vs. SV block? Physics principle at the bit level (too strong?)

Question: can we reduce all these assumptions on the source to minimal?

SV Source

0000000000010010

Alice

Minimal Weak Sources: in non-deterministic world

Min-entropy Sources: a random variable $X \mid \{0,1\}^n$

(=) - log (the *maximum probability* of guessing x sampled from X correctly).

NS (=) - log (the *maximum probability* of guessing x sampled from X correctly w/ the help of NS correlation).

A general measure of the randomness. Capture *arbitrarily weak* sources.

Capture the amount of uniform bits that can be extracted via classical means.

Non-Zero Min-entropy

Weak Min-entropy Sources

Summary of RA Protocols

	Source	Eve	Conditional independence	
			Source-Device	Source-Eve
[CR12]	SV ε < 0.058	Classical	Indep.	
[GMT+13]	SV any ε < 1/2	NS	Indep.	Arbitrary
[BRG+13]	SV any <i>ε</i> < 1/2	NS	Indep.	Indep.
[RBH+15]	SV any <i>ε</i> < 1/2	NS	Indep.	Indep.
[CSW14]	Any weak	Quantum	Arbitrary	Arbitrary
[WBG+16]	SV ε < 0.0144	NS	Somewhat	Somewhat
This Talk	Any weak	NS	Arbitrary	Arbitrary

Our Result: Ideal Dichotomy Thm

- Randomness amplification assuming
 - (Source | Device) has sufficient NS min-entropy
 - NS condition among Eve & Devices
- Minimal assumption: both are necessary
 - No structural or independence assumptions about the sources
- Ideal dichotomy theorem
 - Weak source = arbitrary source w/ sufficient uncertainty
 - Local uncertainty \Rightarrow certifiable global randomness

Our Construction

All Existing Protocols

SV source

0000000000010010

Directly use Source bits as inputs to Device

- Require SV structure & sophisticated games
- Unknown to handle unstructured weak sources

Our Solutions: a bird's-eye view

Classical Post-Processing: XOR picks the right one

e.g., Adv can know the inputs

Our Solutions in the NS setting

Classical Post-Processing: XOR picks the right one

Obtain Somewhere Uniform Source

Somewhere Random Source (SR source):

A random object divided into blocks. There exists **one** block (marginal) that is uniformly random.

For quantum security [CSW14]

Use quantum-proof strong extractor: $Y_i = Ext(X,i)$

 \Rightarrow somewhere almost-uniform-to-all-Device

Obtain NS Somewhere Uniform Sources

NS-proof strong extractors DO NOT exist!

a counter-example in the paper

IMPOSSIBLE to achieve with the construction!

Obtain NS Somewhere Uniform Sources

NS-proof strong extractors DO NOT exist!

a counter-example in the paper

POSSIBLE w/ classical extractors + 2^m error loss!

Achieved through an **imaginary post-selection** reduction! To balance the error, $\# \text{ devices} \ge 2^{\text{poly}(1/\epsilon)}$

Handle almost uniform-to-Device sources

- Main challenge: local uniform & no independence
 - [CSW14] solved by the Equivalence Lemma
 - Unknown to hold in the NS setting.
- Previous NS-secure protocols
 - [BRG+13,RBH+15]: SV Source indep. of Device & Eve
 - [GMT+13]: SV Source indep. of Device
- Need to take [GMT+13] approach
 - Simplify and Modularize proof for uniform sources
 - Identify a key technical property for the analysis to go through
 - Make it robust to a constant level of noises
 - Hash function: existential => efficiently generated!

Decoupler Construction

- Play BHK game N*K times
 - N rounds of BHK^K
 - Input alphabet size O(1)
- Select random **output** round R
 Others are **testing** rounds

Sample T-wise indep. hash H

If **testing** rounds play "well"

– Output H(A_R)

Why Does It Work? (1)

Strong monogamy

- If Device play BHK^K "well", then A must random-to-Eve (monogamy)
- Furthermore, for most H, H(A) close to uniform-to-Eve (deterministic extraction)
 - distance $\leq C \cdot \langle P_{AB|XY} | BHK^K \rangle$
- First done in [M09]
- We make it explicit by T-wise independent hashing from uniform inputs

Why Does It Work? (2)

Testing devices

- Challenge: need to analyze $\langle P_{A_R B_R | X_R Y_R, Acc} | BHK^K \rangle$
 - since only output when Acc
- Bound it by $\langle P_{A_R B_R | X_R Y_R} | BHK^K \rangle$.
- First done in [GMT+13] with
 complicated games for SV sources.
- We make it robust to noise, and make proof simpler & modular.

Handle Close-to-Uniform Seeds

NS Solution:

unknown, we believe **no black-box** solution (work in progress) alternatively, we **repeat the analysis** with close-to-uniform seeds.

Control error growth from local to global

• Key Claim in the analysis:

 $\Pr[\operatorname{Acc} \land \langle P_{A_R B_R | X_R Y_R, \operatorname{Acc}} | \operatorname{BHK}^{\mathsf{K}} \rangle \geq \gamma] \leq \delta$

- If claim is false when X is ε-close to uniform-to-Device Pr[Acc ∧ ⟨P_{ARBR|XRYR},Acc|BHK^K⟩ ≥ 2γ] > 2δ
 => ∃ D distinguish (X, Device) from U ⊗ Device w/ adv > ε
 (CS, Crypto) idea to construct an imaginary task (reduction) Difficulty: probability of a property of the distribution itself
- Thus, $\Pr[\operatorname{Acc} \land \langle P_{A_R B_R | X_R Y_R, \operatorname{Acc}} | BHK^K \rangle \ge 2\gamma] \le 2\delta$ and the rest of analysis goes through w/o much difficulty.

Summary

- Randomness amplification under minimal assumptions
 - (Source | Device) has sufficient min-entropy
 - NS condition among Eve & Devices
 - No structural or independence assumptions about the source

Ideal dichotomy theorem

- Sufficient **local** uncertainty \Rightarrow certifiable global uniform rand.
- $poly(1/\varepsilon)$ min-entropy \Rightarrow certify ε -close to uniform bits
- Use $2^{poly(1/\varepsilon)}$ devices

Summary & Perspective

- Several (maybe generic) techniques for NS systems
 - Inspired by crypto techniques (composition & reduction)
 - e.g., somewhere random sources, error control in compositions
- Open Questions:
 - Improve or find tight examples for our analysis.
 - Improve the efficiency of our DI protocol, e.g. reduce the number of boxes
 - Find applications of these NS tools.
- NS Information/Cryptography Theory
 - NS security for DI-QKD, DI-randomness expansion
 - NS information theory.

Questions before jumping into the black holes...