Exponential Separation of Quantum Communication and Classical Information

> Dave Touchette IQC and C&O, University of Waterloo, and Perimeter Institute for Theoretical Physics

jt. work with Anurag Anshu (CQT, NUS), Penghui Yao (QuICS, UMD) and Nengkun Yu (QSI, UTS) arXiv: 1611.08946

QIP 2017, Seattle, 20 January 2017

Exp. Sep. QCC and IC

• Communication complexity setting:

• How much **communication/information** to compute f on $(x, y) \sim \mu$

• Communication complexity setting:

- How much **communication/information** to compute f on $(x, y) \sim \mu$
- Information content of interactive protocols?

• Communication complexity setting:

- How much **communication/information** to compute f on $(x, y) \sim \mu$
- Information content of interactive protocols?
- Information vs. Communication: Compression?

• Communication complexity setting:

- How much **communication/information** to compute f on $(x, y) \sim \mu$
- Information content of interactive protocols?
- Information vs. Communication: Compression?
- Classical vs. Quantum ?

Main result

- Th.: \exists classical task (f, μ, ϵ) s.t. $QCC(f, \mu, \epsilon) \ge 2^{\Omega(IC(f, \mu, \epsilon))}$
 - ▶ f(x, y) Boolean function, $(x, y) \sim \mu$, ϵ constant error, say 1/10
 - QCC: quantum communication complexity
 - IC: classical information complexity

Main result

- Th.: \exists classical task (f, μ, ϵ) s.t. $QCC(f, \mu, \epsilon) \ge 2^{\Omega(IC(f, \mu, \epsilon))}$
 - ▶ f(x,y) Boolean function, $(x,y) \sim \mu$, ϵ constant error, say 1/10
 - QCC: quantum communication complexity
 - IC: classical information complexity
- Cor.: Limit on Direct sum theorems:
 - Amortized CC: $ACC(f, \mu, \epsilon) = \lim_{n \to \infty} \frac{1}{n} CC((f, \mu, \epsilon)^{\otimes n})$
 - $IC(f, \mu, \epsilon) = ACC(f, \mu, \epsilon) \ge AQCC(f, \mu, \epsilon)$
 - $QCC((f, \mu, \epsilon)^{\otimes n}) \not\geq \Omega(n \cdot QCC(f, \mu, \epsilon))$

글 > - + 글 >

< 4 **₽** ► <

Main result

- Th.: \exists classical task (f, μ, ϵ) s.t. $QCC(f, \mu, \epsilon) \ge 2^{\Omega(IC(f, \mu, \epsilon))}$
 - ▶ f(x, y) Boolean function, $(x, y) \sim \mu$, ϵ constant error, say 1/10
 - QCC: quantum communication complexity
 - IC: classical information complexity
- Cor.: Limit on Direct sum theorems:
 - Amortized CC: $ACC(f, \mu, \epsilon) = \lim_{n \to \infty} \frac{1}{n} CC((f, \mu, \epsilon)^{\otimes n})$
 - $IC(f, \mu, \epsilon) = ACC(f, \mu, \epsilon) \ge AQCC(f, \mu, \epsilon)$
 - $QCC((f, \mu, \epsilon)^{\otimes n}) \not\geq \Omega(n \cdot QCC(f, \mu, \epsilon))$
- Cor.: Limit on interactive compression:
 - QIC: quantum information complexity
 - $IC(f, \mu, \epsilon) \ge QIC(f, \mu, \epsilon)$
 - $QCC(f, \mu, \epsilon) \not\leq O(QIC(f, \mu, \epsilon))$
- In more details ...

- 3

Unidirectional Classical Communication

• Compress messages with "low information content"

MEM

Message

• Today, interested in **noiseless** communication channel

touchette.dave@gmail.com

Exp. Sep. QCC and IC

QIP, 17 January 2017 4 / 30

- 一司

Information Theory I

- How to quantify classical information?
- Shannon's entropy!
- (Finite) Random Variable X of distribution p_X has entropy H(X)
- Operational significance: optimal asymptotic rate of compression for i.i.d. copies of $X : \frac{1}{n}|M| \to H(X)$ bits

Information Theory I

- How to quantify classical information?
- Shannon's entropy!
- (Finite) Random Variable X of distribution p_X has entropy H(X)
- Operational significance: optimal asymptotic rate of compression for i.i.d. copies of $X : \frac{1}{n}|M| \to H(X)$ bits

Single-copy, optimal variable length encoding,
 e.g. Huffman code: H(X) ≤ E(|M|) ≤ H(X) + 1

Information Theory II

- Many Derived Quantities
- Conditional Entropy $H(X|Y) = \mathbb{E}_y H(X|Y = y)$
 - Chain rule for entropy: H(XY) = H(Y) + H(X|Y)
 - Operational interpretation: Source X, side information Y, $\lim_{n\to\infty} \frac{1}{n}|M| = H(X|Y)$: Alice does not know Y!

Information Theory II

- Many Derived Quantities
- Conditional Entropy $H(X|Y) = \mathbb{E}_y H(X|Y = y)$
 - Chain rule for entropy: H(XY) = H(Y) + H(X|Y)
 - Operational interpretation: Source X, side information Y, $\lim_{n\to\infty} \frac{1}{n}|M| = H(X|Y)$: Alice does not know Y!
- Mutual Information I(X; C) = H(X) H(X|C) = I(C; X)
 - ▶ Data Processing $I(X; C) \ge I(X; N(C))$, with N a stochastic map
- Conditional Mutual Information $I(X : Y|Z) = \mathbb{E}_z I(X; Y|Z = z)$
 - Chain rule: $I(X_1X_2\cdots X_n; C|B) = \sum_{i < n} I(X_i; C|BX_1X_2\cdots X_{<i})$
 - $I(X_1X_2\cdots X_n; C|B) \leq H(C)$: at most bit length

イロト イポト イヨト イヨト 二日

Interactive Classical Communication

• Communication complexity of bipartite functions

- $c_1 = f_1(x, r_A), c_2 = f_2(y, c_1, r_B), c_3 = f_3(x, c_1, c_2, r_A), \cdots$
- **Protocol transcript** $\Pi(x, y, r_A, r_B) = c_1 c_2 \cdots c_M$
- Classical protocols: Π memorizes whole history

•
$$CC(f, \mu, \epsilon) = \min_{\Pi} CC(\Pi)$$

• $CC(\Pi) = |c_1| + |c_2| + \dots + |c_N|$

Information Cost of Interactive Protocols

• Can we compress protocols that "do not convey much information"

- For many copies run in parallel?
- For a single copy?

Information Cost of Interactive Protocols

- Can we compress protocols that "do not convey much information"
 - For many copies run in parallel?
 - For a single copy?
- What is the amount of information conveyed by a protocol?
 - Total amount of information leaked at end of protocol?
 - Sum of information content of each transmitted message?
 - Optimal asymptotic compression rate?

Classical Information Complexity

- Information cost: $IC(\Pi, \mu) = I(X : \Pi | Y) + I(Y : \Pi | X)$ [Barak, Braverman, Chen, Rao 2010]
 - Amount of information each party learns about the other's input from the final transcript

Classical Information Complexity

- Information cost: $IC(\Pi, \mu) = I(X : \Pi | Y) + I(Y : \Pi | X)$ [Barak, Braverman, Chen, Rao 2010]
 - Amount of information each party learns about the other's input from the final transcript
- Information complexity: $IC(f, \mu, \epsilon) = \inf_{\Pi} IC(\Pi, \mu)$
 - Least amount of info Alice and Bob must reveal to compute (f, μ, ϵ)

Classical Information Complexity

- Information cost: $IC(\Pi, \mu) = I(X : \Pi | Y) + I(Y : \Pi | X)$ [Barak, Braverman, Chen, Rao 2010]
 - Amount of information each party learns about the other's input from the final transcript
- Information complexity: $IC(f, \mu, \epsilon) = \inf_{\Pi} IC(\Pi, \mu)$
 - Least amount of info Alice and Bob must reveal to compute (f, μ, ϵ)
- Important properties:
 - $T = (f, \mu, \epsilon)$: Task of computing f with average error ϵ w.r.t. μ
 - $T_1 \otimes T_2$: Product task
 - Additivity: $IC(T_1 \otimes T_2) = IC(T_1) + IC(T_2)$
 - Lower bounds communication: $IC(T) \leq CC(T)$
 - Operational interpretation: $IC(T) = ACC(T) = \lim_{n \to \infty} \frac{1}{n}CC(T^{\otimes n})$ [Braverman, Rao 2011]
 - Continuity, etc.

10 / 30

Direct Sum

- Direct sum: $CC((f, \epsilon)^{\otimes n}) \ge \Omega(n \cdot CC(f, \epsilon))$?
- Remember $IC(f, \epsilon) = \lim_{n \to \infty} \frac{1}{n} CC((f, \epsilon)^{\otimes n})$
 - Direct sum related to one-shot compression down to IC

Direct Sum

- Direct sum: $CC((f, \epsilon)^{\otimes n}) \ge \Omega(n \cdot CC(f, \epsilon))$?
- Remember $IC(f, \epsilon) = \lim_{n \to \infty} \frac{1}{n} CC((f, \epsilon)^{\otimes n})$
 - Direct sum related to one-shot compression down to IC
- Partial results . . .
 - Classical: [Chakrabarti, Shi, Wirth, Yao 2001; Jain Radhakrishnan, Sen 2003; Harsha, Jain, McAllister, Radhakrishnan 2007; Jain, Klauck, Nayak 2008; Barak, Braverman, Chen, Rao 2010; Braveman, Rao 2011; Braverman 2012; Kol 2015; Sherstov 2016; ...]
 Quantum: [Jain, Radhakrishnan, Sen 2005; Ambainis, Spalek, De Wolf 2006; Klauck, Jain 2009; Sherstov 2012; Anshu, Jain, Mukhopadhyay, Shayeghi, Yao 2014; T. 2015; ...]

- 3

Direct Sum

- Direct sum: $CC((f, \epsilon)^{\otimes n}) \ge \Omega(n \cdot CC(f, \epsilon))$?
- Remember $IC(f,\epsilon) = \lim_{n \to \infty} \frac{1}{n} CC((f,\epsilon)^{\otimes n})$
 - Direct sum related to one-shot compression down to IC
- Partial results ...
- Fails in general [Ganor, Kol, Raz 2014, 2015, 2016; Rao, Sinha 2015]:
 - $\exists (f, \mu, \epsilon) \text{ s.t. } CC(f, \mu, \epsilon) \geq 2^{IC(f, \mu, \epsilon)}$

3

Quantum Information Theory I

- von Neumann's quantum entropy: $H(A)_{\rho}$
- Characterizes optimal rate for quantum source compression [Schumacher]

Quantum Information Theory II

Derived quantities defined in formal analogy to classical quantities

- $H(A|B) \neq \mathbb{E}_b H(A|B=b)$
 - Use H(A|B) = H(AB) H(B)
 - Conditional entropy can be negative!

•
$$I(A; B) = H(A) - H(A|B) = I(B; A)$$

- $I(A; B|C) \neq \mathbb{E}_c I(A; B|C = c)$
 - Use I(A; B|C) = I(A; BC) I(A; C)
 - Get Chain Rule
 - Non negativity holds [Lieb, Ruskai 73]
 - Data Processing also holds

Quantum Communication Complexity

• 2 Models for computing classical $f : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$

• Exponential separations in communication complexity

- Classical vs. quantum
- ► N-rounds vs. N+1-rounds

16 / 30

Quantum Information Complexity

- $QIC(f, \mu, \epsilon) = \inf_{\Pi} QIC(\Pi, \mu)$
- $QIC(\Pi, \mu)$: based on I(X; C|YB)
- Properties:
 - Additivity: $QIC(T_1 \otimes T_2) = QIC(T_1) + QIC(T_2)$
 - Lower bounds communication: $QIC(T) \leq QCC(T)$
 - Operational interpretation [T.]: $QIC(T) = AQCC(T) = \lim_{n \to \infty} \frac{1}{n}QCC(T^{\otimes n})$

3

글 > - + 글 >

Implications of Main Result

- Recall: $\exists (f, \mu, \epsilon) \text{ s.t. } QCC(f, \mu, \epsilon) \geq 2^{\Omega(IC(f, \mu, \epsilon))}$
 - f Boolean-valued function, ϵ constant, say 1/10
- Implications...

3

- - E - N

Implications of Main Result

- Recall: $\exists (f, \mu, \epsilon)$ s.t. $QCC(f, \mu, \epsilon) \ge 2^{\Omega(IC(f, \mu, \epsilon))}$
 - f Boolean-valued function, ϵ constant, say 1/10
- Implications...
- No strong Direct sum theorem for Quantum Communication Complexity: QCC((f, μ, ε)^{⊗n}) ≥ Ω(nQCC(f, μ, ε))
- Even stronger: $ACC(f, \mu, \epsilon) \leq O(\lg QCC(f, \mu, \epsilon))!$
- IC and QCC incomparable: $\exists (g, \eta, \delta) \text{ s.t. } IC(g, \eta, \delta) \geq 2^{\Omega(QCC(g, \eta, \delta))}$ [Kerenidis, Laplante, Lerays, Roland, Xiao 2012]
- GDM bound is not (poly) tight for QCC

- 3

글 > - + 글 >

Need for a New Lower Bound Method on QCC

- Is RDB \leq QCC (poly)? No [Klartag, Regev 2011]: QCC (VSP) \leq Ig (RDB (VSP))!
- We want new method M s.t. M \leq QCC and IC \geq M : Quantum Fooling Distribution!

touchette.dave@gmail.com

(f, μ, ϵ) : Rao-Sinha's k-ary pointer jumping function

- Two parameters: arity k, depth n. Fix $n = 2^k$.
- Input: (x, h_A) with Alice, (y, h_B) with Bob
- $x, y : [k]^{\leq n} \rightarrow [k], x + y \mod k$ defines "good" path
- $h_A, h_B : [k]^n \to \{0,1\}, \ h_A \oplus h_B$ on a "good" leaf defines output

(Quantum) Fooling Distribution

Two distributions: fooling dist. *p*, hard dist. μ, with μ = ½μ0 + ½μ1
Hidden layer *i* ∈ [*n*]

•
$$x_{< j} = y_{< j}$$

• Fix
$$j, x_{< j} = y_{< j}$$

- Let G set of "good" leaves/paths: determined by $x_j + y_j$ only
- $p: (x, h_A) \otimes (y, h_B)$ product distribution
- μ_b : $x_G = y_G$, $h_A^G \oplus h_B^G = b$
- For low QCC: $\Pr_{\mu_0}[Out = 1] \approx \Pr_p[Out = 1] \approx \Pr_{\mu_1}[Out = 1]$

Low Information?

- On "good" path, x = y except at level $j \dots$
- If can "hide" $j \in [n]$, then information $\approx \lg k$, values of $x(z_j), y(z_j), |z_j| = j$
- Must hide j: CC to find $j \approx \lg n = H(J) = k = 2^{O(IC)}$
- Hide j by adding noise [Rao, Sinha 2015]: IC $\leq O(\lg k)$,
- We show QCC is at least poly(k)
- For one round, QCC is $\Omega(k)$.. then poly (k) from **round elimination**.

Baby Case for QCC Lower Bound: One-way protocols

- One Message M depends only on (x, h_A)
- Output depends only on M and (y, h_B)
- p vs. μ_0 : massage to $M \otimes (X^G, H^G_A)$ vs. non- $\otimes M(X^G H^G_A)$
- Can relate $|\Pr_{\mu_0}[Out = 1] \Pr_p[Out = 1]|$ to $I(M; X^G H^G_A)$
- \approx Shearer: $\Pr_p[Leaf \ \ell \in G] \leq \frac{1}{k} \rightarrow I(M; X^G H^G_A) \leq \frac{|M|}{k}$

Structure of Proof for Multi-Round Protocols

3

(日) (周) (三) (三)

First Conversion to One-Way

- One-round: Alice does not know J
- Need to send information about all X_J , $J \in [n]$
- Multi-round to one-round: guess teleportation transcript, parallel-repeat 2^{QCC} times
- Need $2^{QCC} \ge n = 2^k \leftrightarrow QCC \ge k$
- Technical issue: repeat once, abort if guess wrong

Structure of Proof for Multi-Round Protocols

3

(日) (周) (三) (三)

Second Conversion to One-Way

- Want to perform compression to $QIC_{B\to A}2^{QIC_{A\to B}}$ [Jain, Radhakrishnan, Sen 2005]
- Use product structure of distribution *p*
- Need to fix protocol, J, embed input X_J ...
- Need $QCC \ge k$ to send information about all k possible paths

Structure of Proof for Multi-Round Protocols

3

(日) (周) (三) (三)

Going from p to μ_0

- Distributional Cut-and-Paste
- If local state is independent of other party's input under $p = \mu_X \otimes \mu_Y$
- Then local state is independent of other party's input under μ_{XY}

Outlook

- Summary:
 - Exponential separation between QCC and IC
 - Strong Direct Sum fails for QCC
 - New QCC lower bound tools
- Open Questions:
 - External classical Information complexity?
 - What is power of quantum fooling distribution method? Quantum Relative Discrepancy?
 - ▶ 2^{QIC} compression? BBCR-type interactive compression?
 - Partial Direct Sum?

Outlook

- Summary:
 - Exponential separation between QCC and IC
 - Strong Direct Sum fails for QCC
 - New QCC lower bound tools
- Open Questions:
 - External classical Information complexity?
 - What is power of quantum fooling distribution method? Quantum Relative Discrepancy?
 - ► 2^{*QIC*} compression? BBCR-type interactive compression?
 - Partial Direct Sum?
- Thank you!

Outlook

- Summary:
 - Exponential separation between QCC and IC
 - Strong Direct Sum fails for QCC
 - New QCC lower bound tools
- Open Questions:
 - External classical Information complexity?
 - What is power of quantum fooling distribution method? Quantum Relative Discrepancy?
 - ► 2^{*QIC*} compression? BBCR-type interactive compression?
 - Partial Direct Sum?
- Thank you!
- See you next year!