Exponential Separation of Quantum Communication and Classical Information

Dave Touchette
IQC and C\&O,
University of Waterloo, and Perimeter Institute for Theoretical Physics

jt. work with
Anurag Anshu (CQT, NUS), Penghui Yao (QuICS, UMD) and Nengkun Yu (QSI, UTS)
arXiv: 1611.08946

QIP 2017,
Seattle, 20 January 2017

Interactive Communication

- Communication complexity setting:

- How much communication/information to compute f on $(x, y) \sim \mu$

Interactive Communication

- Communication complexity setting:

- How much communication/information to compute f on $(x, y) \sim \mu$
- Information content of interactive protocols?

Interactive Communication

- Communication complexity setting:

- How much communication/information to compute f on $(x, y) \sim \mu$
- Information content of interactive protocols?
- Information vs. Communication: Compression?

Interactive Communication

- Communication complexity setting:

- How much communication/information to compute f on $(x, y) \sim \mu$
- Information content of interactive protocols?
- Information vs. Communication: Compression?
- Classical vs. Quantum ?

Main result

- Th.: \exists classical task (f, μ, ϵ) s.t. $Q C C(f, \mu, \epsilon) \geq 2^{\Omega(I C(f, \mu, \epsilon))}$
- $f(x, y)$ Boolean function, $(x, y) \sim \mu, \epsilon$ constant error, say $1 / 10$
- QCC: quantum communication complexity
- IC: classical information complexity

Main result

- Th.: \exists classical task (f, μ, ϵ) s.t. $Q C C(f, \mu, \epsilon) \geq 2^{\Omega(I C(f, \mu, \epsilon))}$
- $f(x, y)$ Boolean function, $(x, y) \sim \mu, \epsilon$ constant error, say $1 / 10$
- QCC: quantum communication complexity
- IC: classical information complexity
- Cor.: Limit on Direct sum theorems:
- Amortized CC: $A C C(f, \mu, \epsilon)=\lim _{n \rightarrow \infty} \frac{1}{n} C C\left((f, \mu, \epsilon)^{\otimes n}\right)$
- IC $(f, \mu, \epsilon)=A C C(f, \mu, \epsilon) \geq A Q C C(f, \mu, \epsilon)$
- $Q C C\left((f, \mu, \epsilon)^{\otimes n}\right) \nsupseteq \Omega(n \cdot Q C C(f, \mu, \epsilon))$

Main result

- Th.: \exists classical task (f, μ, ϵ) s.t. $Q C C(f, \mu, \epsilon) \geq 2^{\Omega(I C(f, \mu, \epsilon))}$
- $f(x, y)$ Boolean function, $(x, y) \sim \mu, \epsilon$ constant error, say $1 / 10$
- QCC: quantum communication complexity
- IC: classical information complexity
- Cor.: Limit on Direct sum theorems:
- Amortized CC: $A C C(f, \mu, \epsilon)=\lim _{n \rightarrow \infty} \frac{1}{n} C C\left((f, \mu, \epsilon)^{\otimes n}\right)$
- IC $(f, \mu, \epsilon)=A C C(f, \mu, \epsilon) \geq A Q C C(f, \mu, \epsilon)$
- $\operatorname{QCC}\left((f, \mu, \epsilon)^{\otimes n}\right) \nsupseteq \Omega(n \cdot Q C C(f, \mu, \epsilon))$
- Cor.: Limit on interactive compression:
- QIC: quantum information complexity
- IC $(f, \mu, \epsilon) \geq \operatorname{QIC}(f, \mu, \epsilon)$
- $\operatorname{QCC}(f, \mu, \epsilon) \not 又 O(\operatorname{QIC}(f, \mu, \epsilon))$
- In more details...

Unidirectional Classical Communication

- Compress messages with "low information content"
- Today, interested in noiseless communication channel

Information Theory I

- How to quantify classical information?
- Shannon's entropy!
- (Finite) Random Variable X of distribution p_{X} has entropy $H(X)$
- Operational significance: optimal asymptotic rate of compression for i.i.d. copies of $X: \frac{1}{n}|M| \rightarrow H(X)$ bits

Information Theory I

- How to quantify classical information?
- Shannon's entropy!
- (Finite) Random Variable X of distribution p_{X} has entropy $H(X)$
- Operational significance: optimal asymptotic rate of compression for i.i.d. copies of $X: \frac{1}{n}|M| \rightarrow H(X)$ bits

- Single-copy, optimal variable length encoding, e.g. Huffman code: $H(X) \leq \mathbb{E}(|M|) \leq H(X)+1$

Information Theory II

- Many Derived Quantities
- Conditional Entropy $H(X \mid Y)=\mathbb{E}_{y} H(X \mid Y=y)$
- Chain rule for entropy: $H(X Y)=H(Y)+H(X \mid Y)$
- Operational interpretation: Source X, side information Y, $\lim _{n \rightarrow \infty} \frac{1}{n}|M|=H(X \mid Y)$: Alice does not know Y !

Information Theory II

- Many Derived Quantities
- Conditional Entropy $H(X \mid Y)=\mathbb{E}_{y} H(X \mid Y=y)$
- Chain rule for entropy: $H(X Y)=H(Y)+H(X \mid Y)$
- Operational interpretation: Source X, side information Y, $\lim _{n \rightarrow \infty} \frac{1}{n}|M|=H(X \mid Y)$: Alice does not know Y !
- Mutual Information $I(X ; C)=H(X)-H(X \mid C)=I(C ; X)$
- Data Processing $I(X ; C) \geq I(X ; N(C))$, with N a stochastic map
- Conditional Mutual Information $I(X: Y \mid Z)=\mathbb{E}_{z} I(X ; Y \mid Z=z)$
- Chain rule: $I\left(X_{1} X_{2} \cdots X_{n} ; C \mid B\right)=\sum_{i \leq n} I\left(X_{i} ; C \mid B X_{1} X_{2} \cdots X_{<i}\right)$
- $I\left(X_{1} X_{2} \cdots X_{n} ; C \mid B\right) \leq H(C)$: at most bit length

Interactive Classical Communication

- Communication complexity of bipartite functions

Output: $f(x, y)$

- $c_{1}=f_{1}\left(x, r_{A}\right), c_{2}=f_{2}\left(y, c_{1}, r_{B}\right), c_{3}=f_{3}\left(x, c_{1}, c_{2}, r_{A}\right), \cdots$
- Protocol transcript $\Pi\left(x, y, r_{A}, r_{B}\right)=c_{1} c_{2} \cdots c_{M}$
- Classical protocols: Π memorizes whole history
- $C C(f, \mu, \epsilon)=\min _{\Pi} C C(\Pi)$
- $C C(\Pi)=\left|c_{1}\right|+\left|c_{2}\right|+\cdots+\left|c_{M}\right|$

Information Cost of Interactive Protocols

- Can we compress protocols that "do not convey much information"
- For many copies run in parallel?
- For a single copy?

Information Cost of Interactive Protocols

- Can we compress protocols that "do not convey much information"
- For many copies run in parallel?
- For a single copy?
- What is the amount of information conveyed by a protocol?
- Total amount of information leaked at end of protocol?
- Sum of information content of each transmitted message?
- Optimal asymptotic compression rate?

Classical Information Complexity

- Information cost: $I C(\Pi, \mu)=I(X: \Pi \mid Y)+I(Y: \Pi \mid X)$
[Barak, Braverman, Chen, Rao 2010]
- Amount of information each party learns about the other's input from the final transcript

Classical Information Complexity

- Information cost: $I C(\Pi, \mu)=I(X: \Pi \mid Y)+I(Y: \Pi \mid X)$
[Barak, Braverman, Chen, Rao 2010]
- Amount of information each party learns about the other's input from the final transcript
- Information complexity: $I C(f, \mu, \epsilon)=\inf _{\Pi} I C(\Pi, \mu)$
- Least amount of info Alice and Bob must reveal to compute (f, μ, ϵ)

Classical Information Complexity

- Information cost: $I C(\Pi, \mu)=I(X: \Pi \mid Y)+I(Y: \Pi \mid X)$
[Barak, Braverman, Chen, Rao 2010]
- Amount of information each party learns about the other's input from the final transcript
- Information complexity: $I C(f, \mu, \epsilon)=\inf _{\Pi} I C(\Pi, \mu)$
- Least amount of info Alice and Bob must reveal to compute (f, μ, ϵ)
- Important properties:
- $T=(f, \mu, \epsilon)$: Task of computing f with average error ϵ w.r.t. μ
- $T_{1} \otimes T_{2}$: Product task
- Additivity: $I C\left(T_{1} \otimes T_{2}\right)=I C\left(T_{1}\right)+I C\left(T_{2}\right)$
- Lower bounds communication: $I C(T) \leq C C(T)$
- Operational interpretation: $I C(T)=A C C(T)=\lim _{n \rightarrow \infty} \frac{1}{n} C C\left(T^{\otimes n}\right)$ [Braverman, Rao 2011]
- Continuity, etc.

Direct Sum

- Direct sum: $C C\left((f, \epsilon)^{\otimes n}\right) \geq \Omega(n \cdot C C(f, \epsilon))$?
- Remember $I C(f, \epsilon)=\lim _{n \rightarrow \infty} \frac{1}{n} C C\left((f, \epsilon)^{\otimes n}\right)$
- Direct sum related to one-shot compression down to IC

Direct Sum

- Direct sum: $C C\left((f, \epsilon)^{\otimes n}\right) \geq \Omega(n \cdot C C(f, \epsilon))$?
- Remember $I C(f, \epsilon)=\lim _{n \rightarrow \infty} \frac{1}{n} C C\left((f, \epsilon)^{\otimes n}\right)$
- Direct sum related to one-shot compression down to IC
- Partial results ...
- Classical: [Chakrabarti, Shi, Wirth, Yao 2001; Jain Radhakrishnan, Sen 2003; Harsha, Jain, McAllister, Radhakrishnan 2007;
Jain, Klauck, Nayak 2008; Barak, Braverman, Chen, Rao 2010;
Braveman, Rao 2011; Braverman 2012; Kol 2015; Sherstov 2016; . . .]
- Quantum: [Jain, Radhakrishnan, Sen 2005;

Ambainis, Spalek, De Wolf 2006; Klauck, Jain 2009; Sherstov 2012;
Anshu, Jain, Mukhopadhyay, Shayeghi, Yao 2014; T. 2015; ...]

Direct Sum

- Direct sum: $C C\left((f, \epsilon)^{\otimes n}\right) \geq \Omega(n \cdot C C(f, \epsilon))$?
- Remember $I C(f, \epsilon)=\lim _{n \rightarrow \infty} \frac{1}{n} C C\left((f, \epsilon)^{\otimes n}\right)$
- Direct sum related to one-shot compression down to IC
- Partial results ...
- Fails in general [Ganor, Kol, Raz 2014, 2015, 2016; Rao, Sinha 2015]:
- $\exists(f, \mu, \epsilon)$ s.t. $C C(f, \mu, \epsilon) \geq 2^{I C(f, \mu, \epsilon)}$

Quantum Information Theory I

- von Neumann's quantum entropy: $H(A)_{\rho}$
- Characterizes optimal rate for quantum source compression [Schumacher]

Quantum Information Theory II

- Derived quantities defined in formal analogy to classical quantities
- $H(A \mid B) \neq \mathbb{E}_{b} H(A \mid B=b)$
- Use $H(A \mid B)=H(A B)-H(B)$
- Conditional entropy can be negative!
- $I(A ; B)=H(A)-H(A \mid B)=I(B ; A)$
- $I(A ; B \mid C) \neq \mathbb{E}_{c} I(A ; B \mid C=c)$
- Use $I(A ; B \mid C)=I(A ; B C)-I(A ; C)$
- Get Chain Rule
- Non negativity holds [Lieb, Ruskai 73]
- Data Processing also holds

Quantum Communication Complexity

- 2 Models for computing classical $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$

- Exponential separations in communication complexity
- Classical vs. quantum
- N -rounds vs. $\mathrm{N}+1$-rounds

Quantum Information Complexity

- $\operatorname{QIC}(f, \mu, \epsilon)=\inf _{\Pi} \operatorname{QIC}(\Pi, \mu)$
- QIC (Π, μ) : based on $I(X ; C \mid Y B)$
- Properties:
- Additivity: $\operatorname{QIC}\left(T_{1} \otimes T_{2}\right)=\operatorname{QIC}\left(T_{1}\right)+\operatorname{QIC}\left(T_{2}\right)$
- Lower bounds communication: $\operatorname{QIC}(T) \leq Q C C(T)$
- Operational interpretation [T.]:

$$
\operatorname{QIC}(T)=A Q C C(T)=\lim _{n \rightarrow \infty} \frac{1}{n} Q C C\left(T^{\otimes n}\right)
$$

Implications of Main Result

- Recall: $\exists(f, \mu, \epsilon)$ s.t. $Q C C(f, \mu, \epsilon) \geq 2^{\Omega(I C(f, \mu, \epsilon))}$
- f Boolean-valued function, ϵ constant, say $1 / 10$
- Implications...

Implications of Main Result

- Recall: $\exists(f, \mu, \epsilon)$ s.t. $Q C C(f, \mu, \epsilon) \geq 2^{\Omega(I C(f, \mu, \epsilon))}$
- f Boolean-valued function, ϵ constant, say $1 / 10$
- Implications...
- No strong Direct sum theorem for Quantum Communication Complexity: $Q C C\left((f, \mu, \epsilon)^{\otimes n}\right) \nsupseteq \Omega(n Q C C(f, \mu, \epsilon))$
- Even stronger: $A C C(f, \mu, \epsilon) \leq O(\lg Q C C(f, \mu, \epsilon))$!
- IC and QCC incomparable: $\exists(g, \eta, \delta)$ s.t. IC $(g, \eta, \delta) \geq 2^{\Omega(Q C C(g, \eta, \delta))}$ [Kerenidis, Laplante, Lerays, Roland, Xiao 2012]
- GDM bound is not (poly) tight for QCC

Need for a New Lower Bound Method on QCC

- Is RDB \leq QCC (poly)? No [Klartag, Regev 2011]:

QCC (VSP) $\leq \lg ($ RDB $(\mathrm{VSP}))$!

- We want new method M s.t. $\mathrm{M} \leq \mathrm{QCC}$ and $\mathrm{IC} \nsupseteq \mathrm{M}$:

Quantum Fooling Distribution!

(f, μ, ϵ) : Rao-Sinha's k-ary pointer jumping function

Consistent set

- Two parameters: arity k, depth n. Fix $n=2^{k}$.
- Input: $\left(x, h_{A}\right)$ with Alice, $\left(y, h_{B}\right)$ with Bob
- $x, y:[k]^{\leq n} \rightarrow[k], x+y \bmod k$ defines "good" path
- $h_{A}, h_{B}:[k]^{n} \rightarrow\{0,1\}, h_{A} \oplus h_{B}$ on a "good" leaf defines output

(Quantum) Fooling Distribution

- Two distributions: fooling dist. p, hard dist. μ, with $\mu=\frac{1}{2} \mu_{0}+\frac{1}{2} \mu_{1}$
- Hidden layer $j \in[n]$
- $x_{<j}=y_{<j}$
- Fix $j, x_{<j}=y_{<j}$
- Let G set of "good" leaves/paths: determined by $x_{j}+y_{j}$ only
- $p:\left(x, h_{A}\right) \otimes\left(y, h_{B}\right)$ product distribution
- $\mu_{b}: x_{G}=y_{G}, h_{A}^{G} \oplus h_{B}^{G}=b$
- For low QCC: $\operatorname{Pr}_{\mu_{0}}[$ Out $=1] \approx \operatorname{Pr}_{p}[$ Out $=1] \approx \operatorname{Pr}_{\mu_{1}}[$ Out $=1]$

Low Information?

- On "good" path, $x=y$ except at level $j \ldots$
- If can "hide" $j \in[n]$, then information $\approx \lg k$, values of $x\left(z_{j}\right), y\left(z_{j}\right),\left|z_{j}\right|=j$
- Must hide j : CC to find $j \approx \lg n=H(J)=k=2^{O(I C)}$
- Hide j by adding noise [Rao, Sinha 2015]: IC $\leq O(\lg k)$,
- We show QCC is at least poly(k)
- For one round, QCC is $\Omega(k)$.. then poly (k) from round elimination.

Baby Case for QCC Lower Bound: One-way protocols

- One Message M depends only on $\left(x, h_{A}\right)$
- Output depends only on M and $\left(y, h_{B}\right)$
- p vs. μ_{0} : massage to $M \otimes\left(X^{G}, H_{A}^{G}\right)$ vs. non- $\otimes M\left(X^{G} H_{A}^{G}\right)$
- Can relate $\mid \operatorname{Pr}_{\mu_{0}}[$ Out $=1]-\operatorname{Pr}_{p}[$ Out $=1] \mid$ to $I\left(M ; X^{G} H_{A}^{G}\right)$
- \approx Shearer: $\operatorname{Pr}_{p}[$ Leaf $\ell \in G] \leq \frac{1}{k} \rightarrow I\left(M ; X^{G} H_{A}^{G}\right) \leq \frac{|M|}{k}$

Structure of Proof for Multi-Round Protocols

First Conversion to One-Way

- One-round: Alice does not know J
- Need to send information about all $X_{J}, J \in[n]$
- Multi-round to one-round: guess teleportation transcript, parallel-repeat $2^{Q C C}$ times
- Need $2^{Q C C} \geq n=2^{k} \leftrightarrow Q C C \geq k$
- Technical issue: repeat once, abort if guess wrong

Structure of Proof for Multi-Round Protocols

Second Conversion to One-Way

Consistent set

- Want to perform compression to $Q I C_{B \rightarrow A} 2^{Q I C_{A \rightarrow B}}$ [Jain, Radhakrishnan, Sen 2005]
- Use product structure of distribution p
- Need to fix protocol, J, embed input $X_{J} \ldots$
- Need QCC $\geq k$ to send information about all k possible paths

Structure of Proof for Multi-Round Protocols

Going from p to μ_{0}

- Distributional Cut-and-Paste
- If local state is independent of other party's input under $p=\mu_{X} \otimes \mu_{Y}$
- Then local state is independent of other party's input under $\mu_{X Y}$

Outlook

- Summary:
- Exponential separation between QCC and IC
- Strong Direct Sum fails for QCC
- New QCC lower bound tools
- Open Questions:
- External classical Information complexity?
- What is power of quantum fooling distribution method? Quantum Relative Discrepancy?
- $2^{\text {QIC }}$ compression? BBCR-type interactive compression?
- Partial Direct Sum?

Outlook

- Summary:
- Exponential separation between QCC and IC
- Strong Direct Sum fails for QCC
- New QCC lower bound tools
- Open Questions:
- External classical Information complexity?
- What is power of quantum fooling distribution method? Quantum Relative Discrepancy?
- $2^{\text {QIC }}$ compression? BBCR-type interactive compression?
- Partial Direct Sum?
- Thank you!

Outlook

- Summary:
- Exponential separation between QCC and IC
- Strong Direct Sum fails for QCC
- New QCC lower bound tools
- Open Questions:
- External classical Information complexity?
- What is power of quantum fooling distribution method? Quantum Relative Discrepancy?
- $2^{\text {QIC }}$ compression? BBCR-type interactive compression?
- Partial Direct Sum?
- Thank you!
- See you next year!

