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Interactive Communication

Communication complexity setting:

How much communication/information to compute f on (x , y) ∼ µ

Information content of interactive protocols?

Information vs. Communication: Compression?

Classical vs. Quantum ?
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Main result

Th.: ∃ classical task (f , µ, ε) s.t. QCC (f , µ, ε) ≥ 2Ω(IC(f ,µ,ε))

I f (x , y) Boolean function, (x , y) ∼ µ, ε constant error, say 1/10
I QCC: quantum communication complexity
I IC: classical information complexity

Cor.: Limit on Direct sum theorems:
I Amortized CC: ACC (f , µ, ε) = limn→∞

1
nCC ((f , µ, ε)⊗n)

I IC (f , µ, ε) = ACC (f , µ, ε) ≥ AQCC (f , µ, ε)
I QCC ((f , µ, ε)⊗n) 6≥ Ω(n · QCC (f , µ, ε))

Cor.: Limit on interactive compression:
I QIC: quantum information complexity
I IC (f , µ, ε) ≥ QIC (f , µ, ε)
I QCC (f , µ, ε) 6≤ O(QIC (f , µ, ε))

In more details . . .
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Unidirectional Classical Communication

Compress messages with ”low information content”

Today, interested in noiseless communication channel
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Information Theory I

How to quantify classical information?

Shannon’s entropy!

(Finite) Random Variable X of distribution pX has entropy H(X )

Operational significance: optimal asymptotic rate of compression for
i.i.d. copies of X : 1

n |M| → H(X ) bits

Single-copy, optimal variable length encoding,
e.g. Huffman code: H(X ) ≤ E(|M|) ≤ H(X ) + 1
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Information Theory II

Many Derived Quantities

Conditional Entropy H(X |Y ) = EyH(X |Y = y)
I Chain rule for entropy: H(XY ) = H(Y ) + H(X |Y )
I Operational interpretation: Source X , side information Y ,

limn→∞
1
n |M| = H(X |Y ) : Alice does not know Y !
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Information Theory II

Many Derived Quantities

Conditional Entropy H(X |Y ) = EyH(X |Y = y)
I Chain rule for entropy: H(XY ) = H(Y ) + H(X |Y )
I Operational interpretation: Source X , side information Y ,

limn→∞
1
n |M| = H(X |Y ) : Alice does not know Y !

Mutual Information I (X ;C ) = H(X )− H(X |C ) = I (C ;X )
I Data Processing I (X ;C ) ≥ I (X ;N(C )), with N a stochastic map

Conditional Mutual Information I (X : Y |Z ) = Ez I (X ;Y |Z = z)
I Chain rule: I (X1X2 · · ·Xn;C |B) =

∑
i≤n I (Xi ;C |BX1X2 · · ·X<i )

I I (X1X2 · · ·Xn;C |B) ≤ H(C ): at most bit length
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Interactive Classical Communication
Communication complexity of bipartite functions

c1 = f1(x , rA), c2 = f2(y , c1, rB), c3 = f3(x , c1, c2, rA), · · ·
Protocol transcript Π(x , y , rA, rB) = c1c2 · · · cM
Classical protocols: Π memorizes whole history
CC (f , µ, ε) = minΠ CC (Π)
CC (Π) = |c1|+ |c2|+ · · ·+ |cM |
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Information Cost of Interactive Protocols

Can we compress protocols that ”do not convey much information”
I For many copies run in parallel?
I For a single copy?

What is the amount of information conveyed by a protocol?
I Total amount of information leaked at end of protocol?
I Sum of information content of each transmitted message?
I Optimal asymptotic compression rate?
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Classical Information Complexity

Information cost: IC (Π, µ) = I (X : Π|Y ) + I (Y : Π|X )
[Barak, Braverman, Chen, Rao 2010]

I Amount of information each party learns about the other’s input from
the final transcript

Information complexity: IC (f , µ, ε) = infΠ IC (Π, µ)
I Least amount of info Alice and Bob must reveal to compute (f , µ, ε)

Important properties:

I T = (f , µ, ε): Task of computing f with average error ε w.r.t. µ
I T1 ⊗ T2 : Product task
I Additivity: IC (T1 ⊗ T2) = IC (T1) + IC (T2)
I Lower bounds communication: IC (T ) ≤ CC (T )
I Operational interpretation:

IC (T ) = ACC (T ) = limn→∞
1
nCC (T⊗n) [Braverman, Rao 2011]

I Continuity, etc.
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Direct Sum

Direct sum: CC ((f , ε)⊗n) ≥ Ω(n · CC (f , ε))?

Remember IC (f , ε) = limn→∞
1
nCC ((f , ε)⊗n)

I Direct sum related to one-shot compression down to IC

... (n times)

≈Tn

T

T

T
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Direct Sum

Direct sum: CC ((f , ε)⊗n) ≥ Ω(n · CC (f , ε))?

Remember IC (f , ε) = limn→∞
1
nCC ((f , ε)⊗n)

I Direct sum related to one-shot compression down to IC

Partial results . . .
I Classical: [Chakrabarti, Shi, Wirth, Yao 2001;

Jain Radhakrishnan, Sen 2003;
Harsha, Jain, McAllister, Radhakrishnan 2007;
Jain, Klauck, Nayak 2008; Barak, Braverman, Chen, Rao 2010;
Braveman, Rao 2011; Braverman 2012; Kol 2015; Sherstov 2016; . . . ]

I Quantum: [Jain, Radhakrishnan, Sen 2005;
Ambainis, Spalek, De Wolf 2006; Klauck, Jain 2009; Sherstov 2012;
Anshu, Jain, Mukhopadhyay, Shayeghi, Yao 2014; T. 2015; . . . ]
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Direct Sum

Direct sum: CC ((f , ε)⊗n) ≥ Ω(n · CC (f , ε))?

Remember IC (f , ε) = limn→∞
1
nCC ((f , ε)⊗n)

I Direct sum related to one-shot compression down to IC

Partial results . . .

Fails in general [Ganor, Kol, Raz 2014, 2015, 2016; Rao, Sinha 2015]:
I ∃(f , µ, ε) s.t. CC (f , µ, ε) ≥ 2IC(f ,µ,ε)
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Quantum Information Theory I

von Neumann’s quantum entropy: H(A)ρ

Characterizes optimal rate for quantum source compression
[Schumacher]
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Quantum Information Theory II

Derived quantities defined in formal analogy to classical quantities

H(A|B) 6= EbH(A|B = b)
I Use H(A|B) = H(AB)− H(B)
I Conditional entropy can be negative!

I (A;B) = H(A)− H(A|B) = I (B;A)

I (A;B|C ) 6= Ec I (A;B|C = c)
I Use I (A;B|C ) = I (A;BC )− I (A;C )
I Get Chain Rule
I Non negativity holds [Lieb, Ruskai 73]
I Data Processing also holds
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Quantum Communication Complexity

2 Models for computing classical f : X × Y → Z

Quantum
Communication

|Ψ

A

M1

B

C C

M2

Alice
Bob

M3

...

Cleve-Buhrman

Entanglement Classical
Communication

|0

A

U1C

B

C C

U2

Alice
Bob

U3

...

Yao

No Entanglement

|0

|0

x x

y
y

x x

0

Exponential separations in communication complexity
I Classical vs. quantum
I N-rounds vs. N+1-rounds
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Quantum Information Complexity

QIC (f , µ, ε) = infΠ QIC (Π, µ)

QIC (Π, µ): based on I (X ;C |YB)

Properties:

I Additivity: QIC (T1 ⊗ T2) = QIC (T1) + QIC (T2)
I Lower bounds communication: QIC (T ) ≤ QCC (T )
I Operational interpretation [T.]:

QIC (T ) = AQCC (T ) = limn→∞
1
nQCC (T⊗n)
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Implications of Main Result

Recall: ∃(f , µ, ε) s.t. QCC (f , µ, ε) ≥ 2Ω(IC(f ,µ,ε))

I f Boolean-valued function, ε constant, say 1/10

Implications...

No strong Direct sum theorem for Quantum Communication
Complexity: QCC ((f , µ, ε)⊗n) 6≥ Ω(nQCC (f , µ, ε))

Even stronger: ACC (f , µ, ε) ≤ O(lgQCC (f , µ, ε))!

IC and QCC incomparable: ∃(g , η, δ) s.t. IC (g , η, δ) ≥ 2Ω(QCC(g ,η,δ))

[Kerenidis, Laplante, Lerays, Roland, Xiao 2012]

GDM bound is not (poly) tight for QCC
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Need for a New Lower Bound Method on QCC

Is RDB ≤ QCC (poly)? No [Klartag, Regev 2011]:
QCC (VSP)≤ lg (RDB (VSP))!

We want new method M s.t. M ≤ QCC and IC 6≥ M :
Quantum Fooling Distribution!
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(f , µ, ε): Rao-Sinha’s k-ary pointer jumping function

Two parameters: arity k , depth n. Fix n = 2k .

Input: (x , hA) with Alice, (y , hB) with Bob

x , y : [k]≤n → [k], x + y mod k defines ”good” path

hA, hB : [k]n → {0, 1}, hA ⊕ hB on a ”good” leaf defines output

touchette.dave@gmail.com Exp. Sep. QCC and IC QIP, 17 January 2017 20 / 30



(Quantum) Fooling Distribution

Two distributions: fooling dist. p, hard dist. µ, with µ = 1
2µ0 + 1

2µ1

Hidden layer j ∈ [n]

x<j = y<j

Fix j , x<j = y<j

Let G set of ”good” leaves/paths: determined by xj + yj only

p: (x , hA)⊗ (y , hB) product distribution

µb: xG = yG , hGA ⊕ hGB = b

For low QCC: Prµ0 [Out = 1] ≈ Prp[Out = 1] ≈ Prµ1 [Out = 1]
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Low Information?

On ”good” path, x = y except at level j . . .

If can ”hide” j ∈ [n], then information ≈ lg k, values of
x(zj), y(zj), |zj | = j

Must hide j : CC to find j ≈ lg n = H(J) = k = 2O(IC)

Hide j by adding noise [Rao, Sinha 2015]: IC ≤ O(lg k),

We show QCC is at least poly(k)

For one round, QCC is Ω(k) .. then poly (k) from round elimination.
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Baby Case for QCC Lower Bound: One-way protocols

One Message M depends only on (x , hA)

Output depends only on M and (y , hB)

p vs. µ0: massage to M ⊗ (XG ,HG
A ) vs. non-⊗ M(XGHG

A )

Can relate |Prµ0 [Out = 1]− Prp[Out = 1]| to I (M;XGHG
A )

≈ Shearer: Prp[Leaf ` ∈ G ] ≤ 1
k → I (M;XGHG

A ) ≤ |M|k
touchette.dave@gmail.com Exp. Sep. QCC and IC QIP, 17 January 2017 23 / 30



Structure of Proof for Multi-Round Protocols
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First Conversion to One-Way

One-round: Alice does not know J

Need to send information about all XJ , J ∈ [n]

Multi-round to one-round: guess teleportation transcript,
parallel-repeat 2QCC times

Need 2QCC ≥ n = 2k ↔ QCC ≥ k

Technical issue: repeat once, abort if guess wrong
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Structure of Proof for Multi-Round Protocols
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Second Conversion to One-Way

Want to perform compression to QICB→A2QICA→B

[Jain, Radhakrishnan, Sen 2005]

Use product structure of distribution p

Need to fix protocol, J, embed input XJ . . .

Need QCC ≥ k to send information about all k possible paths
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Structure of Proof for Multi-Round Protocols
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Going from p to µ0

Distributional Cut-and-Paste

If local state is independent of other party’s input under p = µX ⊗ µY
Then local state is independent of other party’s input under µXY
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Outlook

Summary:
I Exponential separation between QCC and IC
I Strong Direct Sum fails for QCC
I New QCC lower bound tools

Open Questions:
I External classical Information complexity?
I What is power of quantum fooling distribution method? Quantum

Relative Discrepancy?
I 2QIC compression? BBCR-type interactive compression?
I Partial Direct Sum?

Thank you!

See you next year!
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