Characterizing Quantum Supremacy in Near-Term Devices

S. Boixo

S. Isakov, V. Smelyanskiy, R. Babbush, M. Smelyanskiy, N. Ding, Z. Jiang, M. J. Bremner, J. Martinis, H. Neven

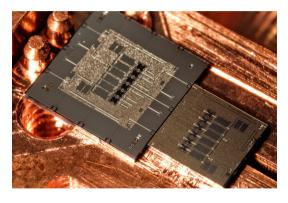
Google

January 19th

Beyond-classical Computing AKA Quantum Supremacy, J. Preskill, 2012

With a quantum device

- perform a well-defined computational task
- beyond the capabilities of state-of-the-art classical supercomputers
- in the near-term
 - without error correction (shallow circuits with high fidelity gates).



Not necessarily solving a practical problem.

Beyond-classical computing in the near-term

- We want a computational task which requires direct simulation of quantum evolution.
 - Cost exponential in number of qubits.
 - Typical of chaotic systems (no shortcuts).
- Specific figure of merit for the computational task, related to fidelity.
- Relation to Computational Complexity.
 - Previous work in sampling problems, such as BosonSampling (Aaronson and Arkhipov) and Commuting Circuits (M. Bremner et. al.).
 - Recent conjecture by Aaronson and Chen: for a random circuit C of depth $\sim \sqrt{n}$ there is no polynomial-time classical algorithm that guesses if $|\langle 0^n| \ C \ |0^n\rangle \ |^2$ is greater than the mediam of $|\langle x| \ C \ |0^n\rangle \ |^2$ with success probability $1/2 + \Omega(1/2^n)$.
 - Nevertheless, formal Computational Complexity is asymptotic, requires error correction (Strong Church-Turing Thesis). We don't know how to satisfy the previous conjecture in the near term.

Random Universal Quantum Circuits

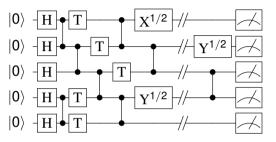


Figure: Vertical lines correspond to controlled-phase gates .

- Random quantum circuits are examples of quantum chaos.
- Classically sampling $p_U(x) = |\langle x|U|0\rangle|^2$ expected to require direct simulations. Cost in 2D exponential in $\propto \min(n, d\sqrt{n})$, with n qubits, d depth. (7×7) qubits requires $d \simeq 40$ with current constraints.)
- Good benchmark for quantum computers.
- New results in computational complexity.

Porter-Thomas distribution

• (Pseudo-)random circuit *U* (random gates from universal set)

$$|\Psi\rangle = U|0\rangle = \sum_{j=1}^{N} c_j |x_j\rangle$$
.

Sample the output distribution with probabilities

$$p_i = |c_i|^2 = |\langle x_i| U |\Psi\rangle|^2$$
.

- Real and imaginary parts of c_i are distributed (quasi) uniformly on a 2N dimensional sphere (Hilbert space) if the circuit (or Hamiltonian evolution) has sufficient depth (evolution time).
 - The distribution of c_i is, up to finite moments, Gaussian with mean 0 and variance $\propto 1/N$.
- Porter-Thomas distribution: $Pr(Np) = e^{-Np}$.

Verification and uniformity test

- There is no polynomial witness for this sampling problem. This problem is much harder than NP.
 - This is required for near-term (few qubits) supremacy.
- The PT distribution is very flat: $p(x_i) \sim 1/N$.
- If we don't know anything about $p(x_j)$ (black-box setting) we need $\Theta(\sqrt{N})$ measurements to distinguish from uniform over bit-strings.
- The ℓ_1 distance between PT and uniform distribution is

$$\sum_{j} |p(x_{j}) - 1/N| = 2/e.$$

- If we calculate $p(x_j)$ given circuit U, we can distinguish these distributions with a constant number of measurements.
 - Hardware verification.

Convergence to chaos (Porter-Thomas distribution)

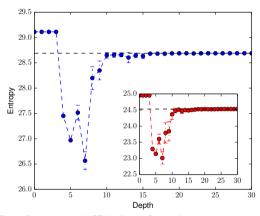


Figure: Depth required for PT distribution. Dashed line is known entropy for PT. 2D circuit 7 \times 6 qubits. Inset 6 \times 6 qubits.

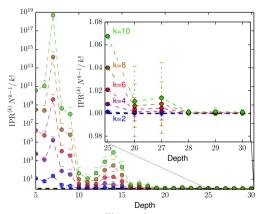


Figure: Participation ratios $PR^{(k)} \simeq N\langle p^k \rangle$ with k=2,4,6,8,10, normalized to 1 for PT distribution. Related to t-designs. 7×6 qubits.

For decoupling in random circuits (Brown & Fawzi), and anti-concentration on sparse-IQP (Bremner et. al.), depth scales like $\tilde{O}(\sqrt{n})$. We expect this for 2-designs, entropy (Nahum et. al.), out-of-time ordered correlator....

Sampling from ideal circuit *U*

Sample $S = \{x_1, \dots, x_m\}$ of bit-strings x_j from circuit U (measurements in the computational basis).

$$\log \Pr_{U}(S) = \sum_{x_j \in S} \log p_{U}(x_j) = -m \operatorname{H}(p_{U}) + O(m^{1/2}),$$

where $H(p_U)$ is the entropy of PT

$$H(p_U) = -\int_0^\infty pN^2 e^{-Np} \log p \, dp = \log N - 1 + \gamma.$$

and $\gamma \simeq 0.577$.

Sampling with polynomial classical circuit $A_{pcl}(U)$

A *polynomial* classical algorithm $A_{pcl}(U)$ produces sample $S_{pcl} = \{x_1^{pcl}, \dots, x_m^{pcl}\}$. The probability $\Pr_U(S_{pcl})$ that this sample S_{pcl} is observed from the output $|\psi\rangle$ of the circuit U is

$$\log \Pr_{U}(\mathcal{S}_{\text{pcl}}) = -m \operatorname{H}(p_{\text{pcl}}, p_{U}) + O(m^{1/2}),$$

where

$$\mathrm{H}(p_{\mathrm{pcl}},p_U) \equiv -\sum_{j=1}^N p_{\mathrm{pcl}}(x_j|U)\log p_U(x_j)$$

is the cross entropy.

Sampling with polynomial classical circuit $A_{pcl}(U)$ (II)

We are interested in the average over $\{U\}$ of random circuits

$$\mathbb{E}_{U}\left[\mathrm{H}(\rho_{\mathrm{pcl}}, \rho_{U})\right] = \mathbb{E}_{U}\left[\sum_{j=1}^{N} \rho_{\mathrm{pcl}}(x_{j}|U)\log\frac{1}{\rho_{U}(x_{j})}\right].$$

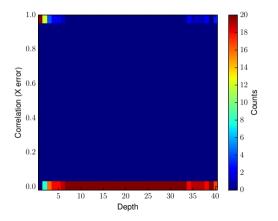
Because U is chaotic, Hilbert space has exponential dimension, and $A_{\rm pcl}(U)$ is polynomial, we conjecture that $p_{\rm pcl}$ and p_U are (almost) uncorrelated (see next). We can take averages independently.

$$-\mathbb{E}_{U}\left[\log p_{U}(x_{j})\right] pprox -\int_{0}^{\infty} Ne^{-Np}\log p\,dp = \log N + \gamma$$
.

$$\mathbb{E}_{U}\left[H(\rho_{\mathrm{pcl}}, \rho_{U})\right] = \log N + \gamma \equiv H_{0}.$$

Chaotic sensitivity to perturbations

Residual correlation after a single Pauli error



1.0 18 0.8 16 14 Correlation (Z error) 12 Counts 0.2 0.0 35 5 10 15 20 30 Depth

Figure: Correlation after a single X error at different depths. 5×4 qubits.

Figure: Correlation after a single $\it Z$ error at different depths. 5 \times 4 qubits.

Cross entropy and fidelity

 For algorithm A (quantum or classical of any cost) define the cross entropy difference

$$\alpha \equiv \Delta H(p_A) \equiv H_0 - H(p_A, p_U)$$
.

ullet The output of an evolution with fidelity $\tilde{\alpha}$ is

$$\rho = \tilde{\alpha} U |0\rangle\langle 0| U^{\dagger} + (1 - \tilde{\alpha})\sigma_{U},$$

with $p_{\text{exp}}(x) = \langle x | \rho | x \rangle = \tilde{\alpha} p_U(x) + (1 - \tilde{\alpha}) \langle x | \sigma_U | x \rangle$.

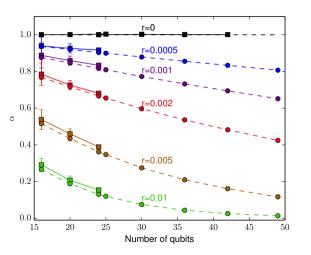
• We again conjecture that $\langle x | \sigma_U | x \rangle$ is uncorrelated with $\rho_U(x)$.

$$\begin{split} \alpha &= \mathbb{E}_{U}[\Delta H(p_{\text{exp}})] \\ &= H_{0} + \sum_{j} \left(\tilde{\alpha} p_{U}(x_{j}) + (1 - \tilde{\alpha}) \left\langle x_{j} \right| \sigma_{U} \left| x_{j} \right\rangle \right) \log p_{U}(x_{j}) \\ &= H_{0} - \tilde{\alpha} H(p_{U}) - (1 - \tilde{\alpha}) H_{0} = \tilde{\alpha} \end{split}$$

The cross entropy α approximates the fidelity $\tilde{\alpha}$.

Numerics and theory for realistic 2D circuits

Cross entropy difference \square and estimated fidelity \circ .



r is two-qubit gate error rate. $\alpha = 1$ for PT distribution. Depth 25.

Experimental proposal

- Implement a random universal circuit U (chaotic evolution).
- 2 Take large sample $S_{\rm exp} = \{x_1^{\rm exp}, \dots, x_m^{\rm exp}\}$ of bit-strings x in the computational basis ($m \sim 10^3 10^6$).
- **3** Compute quantities $\log p_U(x_i^{\text{exp}})$ with supercomputer.

Cross entropy difference (figure of merit)

$$\alpha = \frac{1}{m} \sum_{i=1}^{m} \log p_{U}(x_{j}^{\text{exp}}) + \log 2^{n} + \gamma \pm \frac{\kappa}{\sqrt{m}}, \quad \kappa \simeq 1, \, \gamma = 0.577$$

Measure and extrapolate α (size, depth, T gates).

Fit to theory: α approx. circuit fidelity, chaotic state very sensitive to errors.

$$\alpha \approx \exp(-r_1g_1 - r_2g_2 - r_{\text{init}}n - r_{\text{mes}}n)$$
,

 $r_1, r_2 \ll 1$ one and two-qubit gates Pauli error rates, $g_1, g_2 \gg 1$ number of one and two-qubit gates, $r_{\text{init}}, r_{\text{mes}} \ll 1$ initialization and measurement error rates.

Complex Ising models from universal circuits

• As in a path integral, the output amplitude of *U* is

$$\langle x|U|0\rangle = \sum_{(st)} \prod_{t=0}^d \langle s^t|U^{(t)}|s^{t-1}\rangle, \quad |s^d\rangle = |x\rangle.$$

where $|s^t\rangle = \bigotimes_{j=1}^n |s_j^t\rangle$ is the computational basis, $s_j^t = \pm 1$, and $U^{(t)}$ are gates at clock cycle t.

• Gates give Ising couplings between spins s_j^k , like in path integral QMC. For instance, for $\mathbf{X}^{1/2}$ gates

$$\frac{i\pi}{4}H_s^{X^{1/2}} = \frac{i\pi}{2}\sum_{j=1}^n\sum_{k=2}^{d(j)}\alpha_j^k\frac{1+s_j^{k-1}s_j^k}{2}.$$

where $\alpha_i^k = 1$ if a $X^{1/2}$ gate was applied at qubit j in (clock cycle) k.

Computational complexity

- For universal circuits, $p_U(x) = \lambda |Z|^2$ is proportional to the partition function $Z = \sum_s e^{i\theta H_x(s)}$ of an Ising model $H_x(s) = h_x \cdot s + s \cdot \hat{J} \cdot s$ with complex temperature $i\theta (= i\pi/8)$ and no structure.
- Z has a strong sign problem: $Z = \sum_j M_j e^{i\theta E_j}$, number of paths M_j for phase θE_j exponentially larger than |Z|.
- Worst-case complexity: Z can not be probabilistically approximated asymptotically with an NP-oracle (is #P-hard). (Fujii and Morimae 2013, Goldberg and Guo 2014).
- Computational complexity conjecture: average case = worst case complexity.
 There is no structure. (Bremner et. al. 2015).
- Theorem: if $p_U(x)$ can be classically sampled, then Z can be approximated with an NP-oracle (Bremner et. al. 2015). Contradiction.
- Connection to complex Ising model gives interesting perspective.
 - Complex temperature corresponding to Clifford gates independently known to be easy.

Simulation time

% of	# of	# of	Avg. time	Time per
comm	sockets	fused	per gate (sec)	Depth-25 (sec)
5 × 4 <i>circuit</i> : 20 qubits, 10.3 gates per level, 17 MB of memory				
0.0%	1	0.00	0.00015	0.039
6 × 4 <i>circuit</i> : 24 qubits, 12.5 gates per level, 268 MB of memory				
0.0%	1	7.01	0.0041	1.294
6 × 5 <i>circuit</i> : 30 qubits, 16.2 gates per level, 17 GB of memory				
0.0%	1	5.64	0.349	141.3
6 × 6 <i>circuit</i> : 36 qubits, 19.5 gates per level, 1 TB of memory				
6.2%	64	5.40	0.76	369.0
7 × 6 <i>circuit</i> : 42 qubits, 23.0 gates per level, 70 TB of memory				
11.2%	4,096	5.54	1.72	989.0

On Edison, a Cray XC30 with 5,576 nodes. Each node is dual-socket Intel®Xeon E5 2695-V2 with 12 cores per socket, 2.4GHz. 64GB per node (32GB per socket). Nodes connected via Cray Aries with Dragonfly topology. (Mikhail Smelyanskiy).

Some open questions

- Practical computations with near-term small low-depth high-fidelity quantum circuits. Details matter.
 - Quantum chemistry.
 - Approximate optimization.
- Experimental proof of error-correction.
- Solve the control problem (see, i.e., D-Wave).
- Improve fidelity (coherent and incoherent errors).
- Complexity theory without full error correction. (Bremner et. al. arXiv:1610.01808.)
- Improve bounds in 2D random circuits: anti-concentration, t-designs, complexity bounds.
- Optimal classical-simulation algorithms. Details matter.

Conclusions

- We expect to be able to approximately sample the output distribution of shallow random circuits of 7×7 qubits with significant fidelity in the near term.
- We don't know how to approximately sample the output distribution of shallow random quantum circuits of \approx 48 qubits with state-of-the-art supercomputers ($d \sim$ 40).
- Beyond-classical computing.
- New method to benchmark complex quantum circuits efficiently.
- Relation to computational complexity.
- The cross entropy method applies to other sampling problems: chaotic Hamiltonians, commuting quantum circuits.

Numerical distribution with digital noise

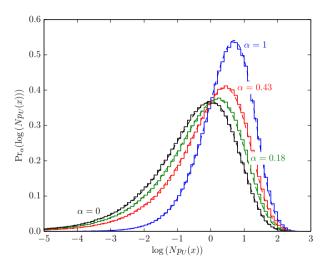


Figure: Numerical distribution with digital noise fits well a mixture of ideal + completely mixed distribution.

Porter-Thomas distribution

Histogram of the output distribution for different values of the two-qubit gate error rate r.

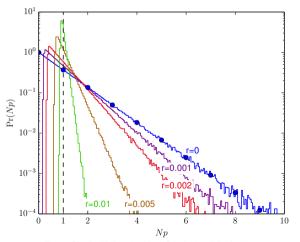


Figure: Circuit with 5 \times 4 qubits (2D lattice) and depth 40.

Convergence to chaos (II)

For decoupling in random circuits (Brown & Fawzi), and anti-concentration on sparse-IQP (Bremner et. al.), depth scales like $\tilde{O}(\sqrt{n})$. We expect this for 2-designs, entropy (Nahum et. al.), out-of-time ordered correlator,...

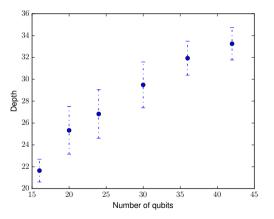


Figure: First cycle such that the entropy remains within $2^{-n/2}$ of PT entropy.