

Semidefinite programming strong converse bounds for quantum channel capacities

Xin Wang

UTS: Centre for Quantum Software and Information

Joint work with Wei Xie, Runyao Duan (UTS:QSI)

qsi.uts.edu.au

Before

In last year's QIP,

- Aram Harrow gave the tutorial of Quantum Shannon theory (also ask for non-trivial upper bounds for classical capacity),
- John Watrous gave the tutorial of Quantum Interactive Proofs and Semidefinite Programs.

Before

In last year's QIP,

- Aram Harrow gave the tutorial of Quantum Shannon theory (also ask for non-trivial upper bounds for classical capacity),
- John Watrous gave the tutorial of Quantum Interactive Proofs and Semidefinite Programs.

Let's combine them!

▶ **Quantum Channel**: completely positive (CP) trace-preserving (TP) linear map *N*.

 Quantum Channel: completely positive (CP) trace-preserving (TP) linear map N.

• Complementary $\mathcal{N}^c : \rho \to \operatorname{Tr}_B(V \rho V^{\dagger})$

- Quantum Channel: completely positive (CP) trace-preserving (TP) linear map N.
- Stinespring rep. $\mathcal{N} : \rho \to \operatorname{Tr}_E(V\rho V^{\dagger})$, with isometry $V : A \to B \otimes E$

- Complementary $\mathcal{N}^c : \rho \to \operatorname{Tr}_B(V \rho V^{\dagger})$
- Choi-Jamiołkowski representation of N:

$$J_{\mathcal{N}} = \sum_{ij} |i\rangle \langle j|_{\mathcal{A}'} \otimes \mathcal{N}(|i\rangle \langle j|_{\mathcal{A}}) = (\mathrm{id}_{\mathcal{A}'} \otimes \mathcal{N}) |\Phi_{\mathcal{A}'\mathcal{A}}\rangle \langle \Phi_{\mathcal{A}'\mathcal{A}}|,$$

with $|\Phi_{A'A}\rangle = \sum_k |k_{A'}\rangle |k_A\rangle$.

- Quantum Channel: completely positive (CP) trace-preserving (TP) linear map N.
- Stinespring rep. $\mathcal{N} : \rho \to \operatorname{Tr}_E(V\rho V^{\dagger})$, with isometry $V : A \to B \otimes E$

- Choi-Jamiołkowski representation of \mathcal{N} :

$$J_{\mathcal{N}} = \sum_{ij} |i\rangle \langle j|_{\mathcal{A}'} \otimes \mathcal{N}(|i\rangle \langle j|_{\mathcal{A}}) = (\mathrm{id}_{\mathcal{A}'} \otimes \mathcal{N}) |\Phi_{\mathcal{A}'\mathcal{A}}\rangle \langle \Phi_{\mathcal{A}'\mathcal{A}}|,$$

with $|\Phi_{A'A}\rangle = \sum_k |k_{A'}\rangle |k_A\rangle$.

 Capacity is the maximum rate for asymptotically error-free (classical, quantum or private) data transmission using the channel N many times.

 Classical capacity (Holevo'73, 98; Schumacher & Westmoreland'97):

$$C(\mathcal{N}) = \sup_{k \to \infty} \frac{1}{k} \chi(\mathcal{N}^{\otimes k}),$$

 Classical capacity (Holevo'73, 98; Schumacher & Westmoreland'97):

$$C(\mathcal{N}) = \sup_{k \to \infty} \frac{1}{k} \chi(\mathcal{N}^{\otimes k}),$$

- Difficulties of evaluating $\mathcal{C}(\mathcal{N})$ ©
 - $\chi(\mathcal{N})$: NP-hard (Beigi & Shor'07)

 Classical capacity (Holevo'73, 98; Schumacher & Westmoreland'97):

$$C(\mathcal{N}) = \sup_{k \to \infty} \frac{1}{k} \chi(\mathcal{N}^{\otimes k}),$$

- Difficulties of evaluating $\mathcal{C}(\mathcal{N})$ ©
 - $\chi(\mathcal{N})$: NP-hard (Beigi & Shor'07)
 - Worse: $\chi(\mathcal{N})$ is not additive (Hastings'09)

 Classical capacity (Holevo'73, 98; Schumacher & Westmoreland'97):

$$C(\mathcal{N}) = \sup_{k\to\infty} \frac{1}{k} \chi(\mathcal{N}^{\otimes k}),$$

- Difficulties of evaluating $\mathcal{C}(\mathcal{N})$ ©
 - $\chi(\mathcal{N})$: NP-hard (Beigi & Shor'07)
 - Worse: $\chi(\mathcal{N})$ is not additive (Hastings'09)
 - Classical capacity of amplitude damping channel is unknown.

Practical setting and assisted communication

 Resource is finite and we are in the early stage of quantum information processing.

Practical setting and assisted communication

- Resource is finite and we are in the early stage of quantum information processing.
- Practical question: given n uses of the channel, how to efficiently evaluate or optimize the trade-off between
 - Rate *R*: the amount of information transmitted per channel use
 - \blacktriangleright Error probability ϵ of the information processing

Practical setting and assisted communication

- Resource is finite and we are in the early stage of quantum information processing.
- Practical question: given n uses of the channel, how to efficiently evaluate or optimize the trade-off between
 - Rate *R*: the amount of information transmitted per channel use
 - Error probability ϵ of the information processing

- Assisted capacities (use auxiliary resources)
 - Motivation: Increase capacities and simplify problem

Practical setting and assisted communication

- Resource is finite and we are in the early stage of quantum information processing.
- Practical question: given n uses of the channel, how to efficiently evaluate or optimize the trade-off between
 - Rate *R*: the amount of information transmitted per channel use
 - ${\scriptstyle
 m {\scriptstyle F}}$ Error probability ϵ of the information processing

- Assisted capacities (use auxiliary resources)
 - Motivation: Increase capacities and simplify problem
 - Entanglement-assisted capacity (Bennett, Shor, Smolin, Thapliyal 1999, 2002)

- Non-asymptotic communication capability
 - $p_{succ}(\mathcal{N}, R)$ the maximum success probability of transmitting classical information at rate R

- Non-asymptotic communication capability
 - $p_{succ}(\mathcal{N}, R)$ the maximum success probability of transmitting classical information at rate R
 - $C^{(1)}(\mathcal{N}, \epsilon)$ the maximum rate for transmission with error tolerance ϵ (or the one-shot ϵ -error capacity)

- Non-asymptotic communication capability
 - $p_{succ}(\mathcal{N}, R)$ the maximum success probability of transmitting classical information at rate R
 - $C^{(1)}(\mathcal{N}, \epsilon)$ the maximum rate for transmission with error tolerance ϵ (or the one-shot ϵ -error capacity)
- Asymptotic communication capability
 - Non-trivial upper bounds for classical and quantum capacities of general quantum channels

- Non-asymptotic communication capability
 - $p_{succ}(\mathcal{N}, R)$ the maximum success probability of transmitting classical information at rate R
 - $C^{(1)}(\mathcal{N}, \epsilon)$ the maximum rate for transmission with error tolerance ϵ (or the one-shot ϵ -error capacity)
- Asymptotic communication capability
 - Non-trivial upper bounds for classical and quantum capacities of general quantum channels
 - Estimation of the capacities for basic channels

- Non-asymptotic communication capability
 - $p_{succ}(\mathcal{N}, R)$ the maximum success probability of transmitting classical information at rate R
 - $C^{(1)}(\mathcal{N}, \epsilon)$ the maximum rate for transmission with error tolerance ϵ (or the one-shot ϵ -error capacity)
- Asymptotic communication capability
 - Non-trivial upper bounds for classical and quantum capacities of general quantum channels
 - Estimation of the capacities for basic channels
- All these results are given by SDPs.
 - An analytical tool in proof (Watrous' Book)
 - There are efficient algorithms.
 - Implementations: CVX for MATLAB, toolbox QETLAB.

Non-asymptotic communication capability

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle

Optimal success probability and capacity

 (Shannon, 1948) The fundamental problem of communication is that of reproducing at one point, either exactly or approximately, a message selected at another point.

$$k \in \{1, ..., m\} \xrightarrow{A} \mathcal{E} \xrightarrow{\mathcal{N}} \mathcal{D} \xrightarrow{\mathcal{B}} \hat{k} \in \{1, ..., m\}$$
$$\mathcal{M} = \mathcal{D} \circ \mathcal{N} \circ \mathcal{E}$$

Optimal success probability and capacity

 (Shannon, 1948) The fundamental problem of communication is that of reproducing at one point, either exactly or approximately, a message selected at another point.

$$k \in \{1, ..., m\} \xrightarrow{A} \mathcal{E} \xrightarrow{\mathcal{N}} \mathcal{N} \xrightarrow{\mathcal{D}} \mathcal{D} \xrightarrow{B} \hat{k} \in \{1, ..., m\}$$
$$\mathcal{M} = \mathcal{D} \circ \mathcal{N} \circ \mathcal{E}$$

Optimal success probability

$$p_{s}(\mathcal{N}, m) := \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^{m} p(k = \hat{k})$$
$$= \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^{m} \operatorname{Tr}[\mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|]$$

Optimal success probability and capacity

 (Shannon, 1948) The fundamental problem of communication is that of reproducing at one point, either exactly or approximately, a message selected at another point.

$$k \in \{1, ..., m\} \xrightarrow{A} \mathcal{E} \xrightarrow{\mathcal{N}} \mathcal{N} \xrightarrow{\mathcal{D}} \mathcal{D} \xrightarrow{B} \hat{k} \in \{1, ..., m\}$$
$$\mathcal{M} = \mathcal{D} \circ \mathcal{N} \circ \mathcal{E}$$

Optimal success probability

$$p_{s}(\mathcal{N}, m) := \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^{m} p(k = \hat{k})$$
$$= \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^{m} \operatorname{Tr}[\mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|]$$

• Classical capacity $C(\mathcal{N}) := \sup\{r : \lim_{n \to \infty} p_s(\mathcal{N}^{\otimes n}, 2^{rn}) = 1\}.$

Optimal success probability and capacity

 (Shannon, 1948) The fundamental problem of communication is that of reproducing at one point, either exactly or approximately, a message selected at another point.

$$k \in \{1, ..., m\} \xrightarrow{A} \mathcal{E} \xrightarrow{\mathcal{N}} \mathcal{N} \xrightarrow{\mathcal{D}} \mathcal{D} \xrightarrow{B} \hat{k} \in \{1, ..., m\}$$
$$\mathcal{M} = \mathcal{D} \circ \mathcal{N} \circ \mathcal{E}$$

Optimal success probability

$$p_{s}(\mathcal{N}, m) := \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^{m} p(k = \hat{k})$$
$$= \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^{m} \operatorname{Tr}[\mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|]$$

- ► Classical capacity $C(\mathcal{N}) := \sup\{r : \lim_{n \to \infty} p_s(\mathcal{N}^{\otimes n}, 2^{rn}) = 1\}.$
- Question: how to solve or estimate $p_s(\mathcal{N}, m)$?

• $p_s(\mathcal{N}, m) = \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^m \operatorname{Tr} \mathcal{M}(|k\rangle\langle k|) |k\rangle\langle k|$, with $\mathcal{M} = \mathcal{D} \circ \mathcal{N} \circ \mathcal{E}$.

- ▶ $p_s(\mathcal{N}, m) = \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^m \operatorname{Tr} \mathcal{M}(|k| \langle k|) |k| \langle k|, \text{ with } \mathcal{M} = \mathcal{D} \circ \mathcal{N} \circ \mathcal{E}.$
- No-signalling code Π is bipartite channel $\Pi : \mathcal{L}(\mathcal{A}_i) \otimes \mathcal{L}(\mathcal{B}_i) \rightarrow \mathcal{L}(\mathcal{A}_o) \otimes \mathcal{L}(\mathcal{B}_o)$ with NS constraints (Leung & Matthews'16; Duan & Winter'16), i.e., A and B cannot use the channel to communicate classical information.
- Also see causal operations (Beckman, Gottesman, Nielsen, Preskill'01; Eggeling, Schlingemann, Werner'02, Piani, Horodecki et al.'06).

- ► $p_s(\mathcal{N}, m) = \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^m \operatorname{Tr} \mathcal{M}(|k| \langle k|) |k| \langle k|, \text{ with } \mathcal{M} = \mathcal{D} \circ \mathcal{N} \circ \mathcal{E}.$
- No-signalling code ∏ is bipartite channel ∏: L(A_i) ⊗ L(B_i) → L(A_o) ⊗ L(B_o) with NS constraints (Leung & Matthews'16; Duan & Winter'16),i.e., A and B cannot use the channel to communicate classical information.
- Also see causal operations (Beckman, Gottesman, Nielsen, Preskill'01; Eggeling, Schlingemann, Werner'02, Piani, Horodecki et al.'06).

Classical (Cubitt, Leung, Matthews, Winter'11;Matthews'12)

- ► $p_s(\mathcal{N}, m) = \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^m \operatorname{Tr} \mathcal{M}(|k| \langle k|) |k| \langle k|, \text{ with } \mathcal{M} = \mathcal{D} \circ \mathcal{N} \circ \mathcal{E}.$
- No-signalling code ∏ is bipartite channel ∏: L(A_i) ⊗ L(B_i) → L(A_o) ⊗ L(B_o) with NS constraints (Leung & Matthews'16; Duan & Winter'16),i.e., A and B cannot use the channel to communicate classical information.
- Also see causal operations (Beckman, Gottesman, Nielsen, Preskill'01; Eggeling, Schlingemann, Werner'02, Piani, Horodecki et al.'06).

- Classical (Cubitt, Leung, Matthews, Winter'11;Matthews'12)
- A hierarchy of codes by adding constraints on Π, e.g., Positive-partial-transpose preserving (PPT) constraint (Rains'01; Leung & Matthews'16).

Optimal success probability

• Optimal success probability of Ω codes ($\Omega = \mathrm{NS}$ or $\mathrm{NS} \cap \mathrm{PPT}$ in this talk)

$$p_{s,\Omega}(\mathcal{N},m) = \sup_{\Pi \in \Omega} \frac{1}{m} \sum_{k=1}^{m} \operatorname{Tr}[\mathcal{M}(|k\rangle\!\langle k|)|k\rangle\!\langle k|], \ \mathcal{M} \text{ given by } \mathcal{N}, \Pi.$$

Result 1: Optimal success probability for NS/PPT codes

Theorem

For any N, the optimal success probability to transmit m messages assisted by NS \cap PPT codes is given by the following SDP:

$$p_{s,\text{NS}\cap\text{PPT}}(\mathcal{N}, m) = \max \operatorname{Tr} J_{\mathcal{N}} F_{AB}$$

$$s.t. \quad 0 \le F_{AB} \le \rho_A \otimes \mathbb{1}_B, \operatorname{Tr} \rho_A = 1,$$

$$\operatorname{Tr}_A F_{AB} = \mathbb{1}_B/m,$$

$$0 \le F_{AB}^{T_B} \le \rho_A \otimes \mathbb{1}_B \text{ (PPT)},$$

where J_N is the Choi-Jamiołkowski matrix of N. When assisted by NS codes, one can remove PPT constraint to obtain

$$\begin{split} p_{s,\mathrm{NS}}(\mathcal{N},m) &= \max \operatorname{Tr} J_{\mathcal{N}} F_{AB} \ s.t. \ 0 \leq F_{AB} \leq \rho_A \otimes \mathbb{1}_B, \operatorname{Tr} \rho_A = 1, \\ & \operatorname{Tr}_A F_{AB} = \mathbb{1}_B/m. \end{split}$$

• Target:

$$p_{s,\Omega}(\mathcal{N},m) = \sup_{\Pi \in \Omega} \frac{1}{m} \sum_{k=1}^{m} \operatorname{Tr}[\mathcal{M}(|k\rangle\!\langle k|)|k\rangle\!\langle k|], \quad (1)$$

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle

• Target:

$$p_{s,\Omega}(\mathcal{N},m) = \sup_{\Pi \in \Omega} \frac{1}{m} \sum_{k=1}^{m} \operatorname{Tr}[\mathcal{M}(|k\rangle\!\langle k|)|k\rangle\!\langle k|], \quad (1)$$

• Recall $J_{\mathcal{M}} = \sum_{ij} |i\rangle\langle j|_{A'_i} \otimes \mathcal{M}(|i\rangle\langle j|_{A_i})$ and let $V = \sum_{k=1}^m |kk\rangle\langle kk|$

• Target:

$$p_{s,\Omega}(\mathcal{N},m) = \sup_{\Pi \in \Omega} \frac{1}{m} \sum_{k=1}^{m} \operatorname{Tr}[\mathcal{M}(|k\rangle\!\langle k|)|k\rangle\!\langle k|], \quad (1)$$

• Recall $J_{\mathcal{M}} = \sum_{ij} |i\rangle \langle j|_{A'_i} \otimes \mathcal{M}(|i\rangle \langle j|_{A_i})$ and let $V = \sum_{k=1}^m |kk\rangle \langle kk|$

Key:
$$\frac{1}{m} \sum_{k=1}^{m} \operatorname{Tr}[\mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|] = \frac{1}{m} \operatorname{Tr}[J_{\mathcal{M}} V_{A_{i}B_{o}}].$$
(2)

• Target:

$$p_{s,\Omega}(\mathcal{N},m) = \sup_{\Pi \in \Omega} \frac{1}{m} \sum_{k=1}^{m} \operatorname{Tr}[\mathcal{M}(|k\rangle\!\langle k|)|k\rangle\!\langle k|], \quad (1)$$

• Recall $J_{\mathcal{M}} = \sum_{ij} |i\rangle \langle j|_{A'_i} \otimes \mathcal{M}(|i\rangle \langle j|_{A_i})$ and let $V = \sum_{k=1}^m |kk\rangle \langle kk|$

Key:
$$\frac{1}{m} \sum_{k=1}^{m} \operatorname{Tr}[\mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|] = \frac{1}{m} \operatorname{Tr}[J_{\mathcal{M}}V_{A_{i}B_{o}}].$$
 (2)

Moreover, J_M can be represented by J_N and J_Π (Leung & Matthews'16; based on Chiribella, D'Ariano, Perinotti'08)

$$J_{\mathcal{M}} = \mathsf{Tr}_{A_{o}B_{i}}(J_{\mathcal{N}}^{T} \otimes \mathbb{1}_{A_{i}B_{o}})J_{\Pi}.$$
(3)

• Target:

$$p_{s,\Omega}(\mathcal{N},m) = \sup_{\Pi \in \Omega} \frac{1}{m} \sum_{k=1}^{m} \operatorname{Tr}[\mathcal{M}(|k\rangle\!\langle k|)|k\rangle\!\langle k|], \quad (1)$$

• Recall
$$J_{\mathcal{M}} = \sum_{ij} |i\rangle\langle j|_{A'_i} \otimes \mathcal{M}(|i\rangle\langle j|_{A_i})$$
 and let $V = \sum_{k=1}^m |kk\rangle\langle kk|$

Key:
$$\frac{1}{m} \sum_{k=1}^{m} \operatorname{Tr}[\mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|] = \frac{1}{m} \operatorname{Tr}[J_{\mathcal{M}} V_{A_{i}B_{o}}].$$
(2)

Moreover, J_M can be represented by J_N and J_Π (Leung & Matthews'16; based on Chiribella, D'Ariano, Perinotti'08)

$$J_{\mathcal{M}} = \mathsf{Tr}_{A_o B_i} (J_{\mathcal{N}}^T \otimes \mathbb{1}_{A_i B_o}) J_{\Pi}.$$
 (3)

• Combining Eqs. (1), (2), (3), we have $p_{s,\Omega}(\mathcal{N},m) = \max_{\Pi \in \Omega} \operatorname{Tr}[(J_{\mathcal{N}}^T \otimes \mathbb{1}_{A_i B_o}) J_{\Pi}(\mathbb{1}_{A_o B_i} \otimes V_{A_i B_o})]/m,$
Sketch of proof

• Target:

$$p_{s,\Omega}(\mathcal{N},m) = \sup_{\Pi \in \Omega} \frac{1}{m} \sum_{k=1}^{m} \operatorname{Tr}[\mathcal{M}(|k\rangle\!\langle k|)|k\rangle\!\langle k|], \quad (1)$$

▶ Recall
$$J_{\mathcal{M}} = \sum_{ij} |i\rangle\langle j|_{A'_i} \otimes \mathcal{M}(|i\rangle\langle j|_{A_i})$$
 and let $V = \sum_{k=1}^m |kk\rangle\langle kk|$

Key:
$$\frac{1}{m} \sum_{k=1}^{m} \operatorname{Tr}[\mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|] = \frac{1}{m} \operatorname{Tr}[J_{\mathcal{M}} V_{A_{i}B_{o}}].$$
(2)

Moreover, J_M can be represented by J_N and J_Π (Leung & Matthews'16; based on Chiribella, D'Ariano, Perinotti'08)

$$J_{\mathcal{M}} = \mathsf{Tr}_{A_o B_i} (J_{\mathcal{N}}^T \otimes \mathbb{1}_{A_i B_o}) J_{\Pi}.$$
 (3)

▶ Combining Eqs. (1), (2), (3), we have

 $p_{s,\Omega}(\mathcal{N},m) = \max_{\Pi \in \Omega} \mathrm{Tr}[(J_{\mathcal{N}}^{T} \otimes \mathbb{1}_{A_{i}B_{o}})J_{\Pi}(\mathbb{1}_{A_{o}B_{i}} \otimes V_{A_{i}B_{o}})]/m,$

- Impose the NS and PPT constraints of Π to obtain the SDP.
- Exploit the permutation invariance of $V_{A_iB_o}$ to simplify SDP.

Example: assess the preformance of AD channel

For amplitude damping channel $\mathcal{N}_{\gamma}^{AD}(\rho) = \sum_{i=0}^{1} E_i \rho E_i^{\dagger}$ with $E_0 = |0\rangle\langle 0| + \sqrt{1-\gamma}|1\rangle\langle 1|$ and $E_1 = \sqrt{\gamma}|0\rangle\langle 1|$,

Summary

Example: assess the preformance of AD channel

- For amplitude damping channel $\mathcal{N}_{\gamma}^{AD}(\rho) = \sum_{i=0}^{1} E_i \rho E_i^{\dagger}$ with $E_0 = |0\rangle\langle 0| + \sqrt{1-\gamma}|1\rangle\langle 1|$ and $E_1 = \sqrt{\gamma}|0\rangle\langle 1|$,
- if we use the channel 3 times, the optimal success probability to transmit 1 bit is given as follows:

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle

Result 2: One-shot capacities

• One-shot ϵ -error capacity assisted with Ω -codes:

$$C_{\Omega}^{(1)}(\mathcal{N},\epsilon) \coloneqq \sup\{\log \lambda : 1 - p_{s,\Omega}(\mathcal{N},\lambda) \le \epsilon\}.$$

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle

Result 2: One-shot capacities

• One-shot ϵ -error capacity assisted with Ω -codes:

$$C_{\Omega}^{(1)}(\mathcal{N},\epsilon) \coloneqq \sup\{\log \lambda : 1 - p_{s,\Omega}(\mathcal{N},\lambda) \le \epsilon\}.$$

Theorem

For given channel $\mathcal N$ and error threshold ϵ ,

$$\begin{split} C^{(1)}_{\mathrm{NS}\cap\mathrm{PPT}}(\mathcal{N},\epsilon) &= -\log\min\eta \ s.t. \quad 0 \leq F_{AB} \leq \rho_A \otimes \mathbb{1}_B, \mathrm{Tr} \ \rho_A = 1, \\ \mathrm{Tr}_A \ F_{AB} &= \eta \mathbb{1}_B, \mathrm{Tr} \ J_{\mathcal{N}} F_{AB} \geq 1 - \epsilon, \\ 0 \leq F^{T_B}_{AB} \leq \rho_A \otimes \mathbb{1}_B \ (\mathrm{PPT}), \end{split}$$

To obtain $C_{NS}^{(1)}(\mathcal{N}, \epsilon)$, one only needs to remove the PPT constraint: $C_{NS}^{(1)}(\mathcal{N}, \epsilon) = -\log \min \eta \text{ s.t. } 0 \le F_{AB} \le \rho_A \otimes \mathbb{1}_B, \operatorname{Tr} \rho_A = 1,$ $\operatorname{Tr}_A F_{AB} = \eta \mathbb{1}_B, \operatorname{Tr} J_{\mathcal{N}} F_{AB} \ge 1 - \epsilon.$

Result 2: One-shot capacities

• One-shot ϵ -error capacity assisted with Ω -codes:

$$C_{\Omega}^{(1)}(\mathcal{N},\epsilon) \coloneqq \sup\{\log \lambda : 1 - p_{s,\Omega}(\mathcal{N},\lambda) \le \epsilon\}.$$

Theorem

For given channel ${\cal N}$ and error threshold $\epsilon,$

$$\begin{split} C^{(1)}_{\mathrm{NS}\cap\mathrm{PPT}}(\mathcal{N},\epsilon) &= -\log\min\eta \ s.t. \quad 0 \leq F_{AB} \leq \rho_A \otimes \mathbb{1}_B, \mathrm{Tr} \ \rho_A = 1, \\ \mathrm{Tr}_A \ F_{AB} &= \eta \mathbb{1}_B, \mathrm{Tr} \ J_{\mathcal{N}} F_{AB} \geq 1 - \epsilon, \\ 0 \leq F^{\mathcal{T}_B}_{AB} \leq \rho_A \otimes \mathbb{1}_B \ (\mathrm{PPT}), \end{split}$$

To obtain $C_{\rm NS}^{(1)}(\mathcal{N},\epsilon)$, one only needs to remove the PPT constraint:

$$\begin{aligned} C_{\mathrm{NS}}^{(1)}(\mathcal{N},\epsilon) &= -\log\min\eta \ s.t. \quad 0 \le F_{AB} \le \rho_A \otimes \mathbb{1}_B, \mbox{Tr} \ \rho_A = 1, \\ & \mbox{Tr}_A \ F_{AB} = \eta \mathbb{1}_B, \mbox{Tr} \ J_{\mathcal{N}} \ F_{AB} \ge 1 - \epsilon. \end{aligned}$$

Comparsion with previous converse bounds

- Converse for classical channel (Polyanskiy, Poor, Verdú 2010) and classical-quantum channel (Wang & Renner 2010).
- (Matthews & Wehner 2014) shows SDP converse bounds

$$C_{\rm E}^{(1)}(\mathcal{N},\epsilon) \leq \max_{\rho_A} \min_{\sigma_B} D_{\mathcal{H}}^{\epsilon}((id_{\mathcal{A}'} \otimes \mathcal{N})(\rho_{\mathcal{A}'\mathcal{A}}) \| \rho_{\mathcal{A}'} \otimes \sigma_B),$$

$$C^{(1)}(\mathcal{N},\epsilon) \leq \max_{\rho_A} \min_{\sigma_B} D_{\mathcal{H},PPT}^{\epsilon}((id_{\mathcal{A}'} \otimes \mathcal{N})(\rho_{\mathcal{A}'\mathcal{A}}) \| \rho_{\mathcal{A}'} \otimes \sigma_B),$$

where D_{H}^{ϵ} and $D_{H,PPT}^{\epsilon}$ are hypothesis testing relative entropies.

• (Datta & Hsieh'13) gives converse for $C_{\rm E}^{(1)}(\mathcal{N},\epsilon)$ (hard to compute).

Comparsion with previous converse bounds

- Converse for classical channel (Polyanskiy, Poor, Verdú 2010) and classical-quantum channel (Wang & Renner 2010).
- (Matthews & Wehner 2014) shows SDP converse bounds

$$C_{\rm E}^{(1)}(\mathcal{N},\epsilon) \leq \max_{\rho_A} \min_{\sigma_B} D_{H}^{\epsilon}((id_{A'} \otimes \mathcal{N})(\rho_{A'A}) \| \rho_{A'} \otimes \sigma_B),$$

$$C^{(1)}(\mathcal{N},\epsilon) \leq \max_{\rho_A} \min_{\sigma_B} D_{H,PPT}^{\epsilon}((id_{A'} \otimes \mathcal{N})(\rho_{A'A}) \| \rho_{A'} \otimes \sigma_B),$$

where D_{H}^{ϵ} and $D_{H,PPT}^{\epsilon}$ are hypothesis testing relative entropies.

- (Datta & Hsieh'13) gives converse for $C_{\rm E}^{(1)}(\mathcal{N},\epsilon)$ (hard to compute).
- One-shot *e*-error capacities can provide better efficiently computable converse bounds:

 $C_{\rm E}^{(1)}(\mathcal{N},\epsilon) \leq C_{\rm NS}^{(1)}(\mathcal{N},\epsilon) \leq \max_{\rho_A} \min_{\sigma_B} D_H^{\epsilon}((id_{A'} \otimes \mathcal{N})(\rho_{A'A}) || \rho_{A'} \otimes \sigma_B),$ $C^{(1)}(\mathcal{N},\epsilon) \leq C_{\rm NS\cap PPT}^{(1)}(\mathcal{N},\epsilon) \leq \max_{\rho_A} \min_{\sigma_B} D_{H,PPT}^{\epsilon}((id_{A'} \otimes \mathcal{N})(\rho_{A'A}) || \rho_{A'} \otimes \sigma_B).$

The blue inequalities can be strict for amplitude damping channels.

Asymptotic communication capability

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle

Weak vs Strong Converse

The converse part of the HSW theorem due to Holevo (1973) only establishes a weak converse, which states that there cannot be an error-free communication scheme if rate exceeds capacity.

Weak vs Strong Converse

- The converse part of the HSW theorem due to Holevo (1973) only establishes a weak converse, which states that there cannot be an error-free communication scheme if rate exceeds capacity.
- A strong converse bound: p_{succ} → 0 as n increases if the rate exceeds this bound.

Weak vs Strong Converse

- The converse part of the HSW theorem due to Holevo (1973) only establishes a weak converse, which states that there cannot be an error-free communication scheme if rate exceeds capacity.
- A strong converse bound: p_{succ} → 0 as n increases if the rate exceeds this bound.
- If the capacity of a channel is also its strong converse bound, then the strong converse property holds.

Result 3: Strong converse bound for classical capacity

 Known strong converse bound: the entanglement-assisted capacity (Bennett, Shor, Smolin, Thapliyal 1999, 2002)

Theorem (SDP strong converse bound for C)

For any quantum channel \mathcal{N} ,

 $C(\mathcal{N}) \leq C_{\beta}(\mathcal{N}) = \log \min \operatorname{Tr} S_B$

$$s.t. - R_{AB} \leq J_{\mathcal{N}}^{T_B} \leq R_{AB}, \\ - \mathbb{1}_A \otimes S_B \leq R_{AB}^{T_B} \leq \mathbb{1}_A \otimes S_B.$$

And $p_{succ} \rightarrow 0$ when the rate exceeds $C_{\beta}(\mathcal{N})$.

Properties:

- A relaxed bound: $C(\mathcal{N}) \leq C_{\beta}(\mathcal{N}) \leq \log d_B \|J_{\mathcal{N}}^{T_B}\|_{\infty}$.
- For qudit noiseless channel I_d , $C(I_d) = C_\beta(I_d) = \log d$.
- $C_{\beta}(\mathcal{N}_1 \otimes \mathcal{N}_2) = C_{\beta}(\mathcal{N}_1) + C_{\beta}(\mathcal{N}_2)$ for any \mathcal{N}_1 and \mathcal{N}_2 .

Sketch of proof

Subadditive bounds on p_s (Tool: duality of SDP)

 $p_{s,\text{NS}\cap\text{PPT}}(\mathcal{N}^{\otimes n}, 2^{rn}) \le p_s^+(\mathcal{N}^{\otimes n}, 2^{rn}) \le p_s^+(\mathcal{N}, 2^r)^n, \quad (4)$

where

$$p_{s}^{+}(\mathcal{N}, m) = \min \operatorname{Tr} Z_{B} \text{ s.t. } -R_{AB} \leq J_{\mathcal{N}}^{T_{B}} \leq R_{AB},$$
$$-m\mathbb{1}_{A} \otimes Z_{B} \leq R_{AB}^{T_{B}} \leq m\mathbb{1}_{A} \otimes Z_{B}.$$
(5)

Sketch of proof

Subadditive bounds on p_s (Tool: duality of SDP)

 $p_{s,\text{NS}\cap\text{PPT}}(\mathcal{N}^{\otimes n}, 2^{rn}) \le p_s^+(\mathcal{N}^{\otimes n}, 2^{rn}) \le p_s^+(\mathcal{N}, 2^r)^n, \quad (4)$

where

$$p_{s}^{+}(\mathcal{N}, m) = \min \operatorname{Tr} Z_{B} \text{ s.t. } - R_{AB} \leq J_{\mathcal{N}}^{T_{B}} \leq R_{AB},$$
$$- m \mathbb{1}_{A} \otimes Z_{B} \leq R_{AB}^{T_{B}} \leq m \mathbb{1}_{A} \otimes Z_{B}.$$
(5)

► For any $r > C_{\beta}(\mathcal{N})$, one can prove that $p_s^+(\mathcal{N}, 2^r) < 1$. Thus, $p_{s,\text{NS}\cap\text{PPT}}(\mathcal{N}^{\otimes n}, 2^{rn}) \le p_s^+(\mathcal{N}, 2^r)^n \to 0$, (when *n* increases)

For amplitude damping channel,

$$C(\mathcal{N}_{\gamma}^{AD}) \leq C_{\beta}(\mathcal{N}_{\gamma}^{AD}) = \log(1 + \sqrt{1 - \gamma}).$$

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle

$$C(\mathcal{N}_{\gamma}^{AD}) \leq C_{\beta}(\mathcal{N}_{\gamma}^{AD}) = \log(1 + \sqrt{1 - \gamma}).$$

- Solid line depicts our bound.
- Dashed line depicts the previously best upper bound (Brandão, Eisert, Horodecki, Yang 2011).
- Dotted line depicts the lower bound (Giovannetti and Fazio 2005).

$$C(\mathcal{N}_{\gamma}^{AD}) \leq C_{\beta}(\mathcal{N}_{\gamma}^{AD}) = \log(1 + \sqrt{1 - \gamma}).$$

- Solid line depicts our bound.
- Dashed line depicts the previously best upper bound (Brandão, Eisert, Horodecki, Yang 2011).
- Dotted line depicts the lower bound (Giovannetti and Fazio 2005).
- Note that $C_{\rm E}(\mathcal{N}_{\gamma}^{AD}) \geq 1$ when $\gamma \leq 0.5$.

$$C(\mathcal{N}_{\gamma}^{AD}) \leq C_{\beta}(\mathcal{N}_{\gamma}^{AD}) = \log(1 + \sqrt{1 - \gamma}).$$

- Solid line depicts our bound.
- Dashed line depicts the previously best upper bound (Brandão, Eisert, Horodecki, Yang 2011).
- Dotted line depicts the lower bound (Giovannetti and Fazio 2005).
- Note that $C_{\rm E}(\mathcal{N}_{\gamma}^{AD}) \geq 1$ when $\gamma \leq 0.5$.
- Problem: how to further improve the lower bound or upper bound?

- Previous known channels:
 - classical-quantum channels (Ogawa, Nagaoka'99; Winter'99)
 - particular covariant quantum channels (Koenig and Wehner'09)
 - entanglement-breaking, Hadamard channels (Wilde, Winter, Yang'14).
 - Optical quantum channels (Bardhan, et al.'16)

- Previous known channels:
 - classical-quantum channels (Ogawa, Nagaoka'99; Winter'99)
 - particular covariant quantum channels (Koenig and Wehner'09)
 - entanglement-breaking, Hadamard channels (Wilde, Winter, Yang'14).
 - Optical quantum channels (Bardhan, et al.'16)
- The channel from A to B is given by $\mathcal{N}_{\alpha}(\rho) = E_0 \rho E_0^{\dagger} + E_1 \rho E_1^{\dagger}$ (0 < $\alpha \le \pi/4$) with

$$E_0 = \sin \alpha |0\rangle \langle 1| + |1\rangle \langle 2|, E_1 = \cos \alpha |2\rangle \langle 1| + |1\rangle \langle 0|.$$

- Previous known channels:
 - classical-quantum channels (Ogawa, Nagaoka'99; Winter'99)
 - particular covariant quantum channels (Koenig and Wehner'09)
 - entanglement-breaking, Hadamard channels (Wilde, Winter, Yang'14).
 - Optical quantum channels (Bardhan, et al.'16)
- The channel from A to B is given by $\mathcal{N}_{\alpha}(\rho) = E_0 \rho E_0^{\dagger} + E_1 \rho E_1^{\dagger}$ (0 < $\alpha \le \pi/4$) with

$$E_0 = \sin \alpha |0\rangle \langle 1| + |1\rangle \langle 2|, E_1 = \cos \alpha |2\rangle \langle 1| + |1\rangle \langle 0|.$$

• Applying the strong converse bound C_{β} ,

 $C(\mathcal{N}_{\alpha}) = C_{\mathrm{NS} \cap \mathrm{PPT}}(\mathcal{N}_{\alpha}) = C_{\beta}(\mathcal{N}_{\alpha}) = 1.$

- Previous known channels:
 - classical-quantum channels (Ogawa, Nagaoka'99; Winter'99)
 - particular covariant quantum channels (Koenig and Wehner'09)
 - entanglement-breaking, Hadamard channels (Wilde, Winter, Yang'14).
 - Optical quantum channels (Bardhan, et al.'16)
- The channel from A to B is given by $\mathcal{N}_{\alpha}(\rho) = E_0 \rho E_0^{\dagger} + E_1 \rho E_1^{\dagger}$ (0 < $\alpha \le \pi/4$) with

$$E_0 = \sin \alpha |0\rangle \langle 1| + |1\rangle \langle 2|, E_1 = \cos \alpha |2\rangle \langle 1| + |1\rangle \langle 0|.$$

• Applying the strong converse bound C_{β} ,

 $C(\mathcal{N}_{\alpha}) = C_{\mathrm{NS} \cap \mathrm{PPT}}(\mathcal{N}_{\alpha}) = C_{\beta}(\mathcal{N}_{\alpha}) = 1.$

• In (W. & D.,1608.04508), $C_{\rm E}(\mathcal{N}_{\alpha}) = 2 < \log \vartheta(\mathcal{N})$, and $\vartheta(\mathcal{N})$ is the quantum Lovász number (Duan,Severini,Winter'13).

- Previous known channels:
 - classical-quantum channels (Ogawa, Nagaoka'99; Winter'99)
 - particular covariant quantum channels (Koenig and Wehner'09)
 - entanglement-breaking, Hadamard channels (Wilde, Winter, Yang'14).
 - Optical quantum channels (Bardhan, et al.'16)
- The channel from A to B is given by $\mathcal{N}_{\alpha}(\rho) = E_0 \rho E_0^{\dagger} + E_1 \rho E_1^{\dagger}$ (0 < $\alpha \le \pi/4$) with

$$E_0 = \sin \alpha |0\rangle \langle 1| + |1\rangle \langle 2|, E_1 = \cos \alpha |2\rangle \langle 1| + |1\rangle \langle 0|.$$

• Applying the strong converse bound C_{β} ,

 $C(\mathcal{N}_{\alpha})=C_{\mathrm{NS}\cap\mathrm{PPT}}(\mathcal{N}_{\alpha})=C_{\beta}(\mathcal{N}_{\alpha})=1.$

- ▶ In (W. & D.,1608.04508), $C_{\rm E}(\mathcal{N}_{\alpha}) = 2 < \log \vartheta(\mathcal{N})$, and $\vartheta(\mathcal{N})$ is the quantum Lovász number (Duan,Severini,Winter'13).
- In particular,

$$Q(\mathcal{N}_{\alpha}) < 1 = P(\mathcal{N}_{\alpha}) = C(\mathcal{N}_{\alpha}) = \frac{1}{2}C_{E}(\mathcal{N}_{\alpha}).$$

Quantum capacity

 Quantum capacity is established by (Lloyd, Shor, Devetak 97-05) & (Barnum, Nielsen, Schumacher 96-00)

$$Q(\mathcal{N}) = \lim_{m\to\infty} \frac{1}{m} I_c(\mathcal{N}^{\otimes m}).$$

- Coherent information $I_c(\mathcal{N}) \coloneqq \max_{\rho} [H(\mathcal{N}(\rho)) H(\mathcal{N}^c(\rho))]$
- $Q(\mathcal{N})$ is also difficult to evaluate.

Quantum capacity

 Quantum capacity is established by (Lloyd, Shor, Devetak 97-05) & (Barnum, Nielsen, Schumacher 96-00)

$$Q(\mathcal{N}) = \lim_{m\to\infty} \frac{1}{m} I_c(\mathcal{N}^{\otimes m}).$$

- Coherent information $I_c(\mathcal{N}) \coloneqq \max_{\rho} [H(\mathcal{N}(\rho)) H(\mathcal{N}^c(\rho))]$
- $Q(\mathcal{N})$ is also difficult to evaluate.
- Known strong converse bounds:
 - Partial Transposition bound (Holevo, Werner 2001; Muller-Hermes, Reeb, Wolf 2016)
 - Rains information (Tomamichel, Wilde, Winter 2015)
 - Channel's entanglement cost (Berta, Brandao, Christandl, Wehner 2013)

SDP strong converse bound for quantum capacity

Theorem (SDP strong converse bound for Q) For any quantum channel \mathcal{N} , $Q(\mathcal{N}) \leq Q_{\Gamma}(\mathcal{N}) = \log \max \operatorname{Tr} J_{\mathcal{N}} R_{AB}$ s.t. $R_{AB}, \rho_A \geq 0, \operatorname{Tr} \rho_A = 1,$ $-\rho_A \otimes \mathbb{1}_B \leq R_{AB}^{T_B} \leq \rho_A \otimes \mathbb{1}_B.$

The fidelity of transmission goes to zero if the rate exceeds $Q_{\Gamma}(\mathcal{N})$.

SDP strong converse bound for quantum capacity

Theorem (SDP strong converse bound for Q) For any quantum channel \mathcal{N} , $Q(\mathcal{N}) \leq Q_{\Gamma}(\mathcal{N}) = \log \max \operatorname{Tr} J_{\mathcal{N}} R_{AB}$ s.t. $R_{AB}, \rho_A \geq 0, \operatorname{Tr} \rho_A = 1,$ $-\rho_A \otimes \mathbb{1}_B \leq R_{AB}^{T_B} \leq \rho_A \otimes \mathbb{1}_B.$

The fidelity of transmission goes to zero if the rate exceeds $Q_{\Gamma}(\mathcal{N})$.

- This is based on the optimal fidelity of transmitting quantum information assisted with PPT codes (Leung and Matthews'16).
- > The proof idea is similar to previous bound for classical capacity.

SDP strong converse bound for quantum capacity

Theorem (SDP strong converse bound for Q)For any quantum channel \mathcal{N} , $Q(\mathcal{N}) \leq Q_{\Gamma}(\mathcal{N}) = \log \max \operatorname{Tr} J_{\mathcal{N}} R_{AB}$ s.t. $R_{AB}, \rho_A \geq 0, \operatorname{Tr} \rho_A = 1,$ $-\rho_A \otimes \mathbb{1}_B \leq R_{AB}^{T_B} \leq \rho_A \otimes \mathbb{1}_B.$

The fidelity of transmission goes to zero if the rate exceeds $Q_{\Gamma}(\mathcal{N})$.

- This is based on the optimal fidelity of transmitting quantum information assisted with PPT codes (Leung and Matthews'16).
- > The proof idea is similar to previous bound for classical capacity.
- For noiseless quantum channel \mathcal{I}_d , $Q(\mathcal{I}_d) = Q_{\Gamma}(\mathcal{I}_d) = \log_2 d$.
- ► $Q_{\Gamma}(\mathcal{N} \otimes \mathcal{M}) = Q_{\Gamma}(\mathcal{M}) + Q_{\Gamma}(\mathcal{N})$ (by utilizing SDP duality).

Comparison with other bounds

 Partial Transposition bound (Holevo & Werner'01, Muller-Hermes, Reeb, Wolf'16)

$$Q(\mathcal{N}) \leq Q_{\Theta}(\mathcal{N}) = \log_2 \|J_{\mathcal{N}}^{T_B}\|_{cb},$$

where $\|\cdot\|_{cb}$ uses an alternative expression from (Watrous'12).

Comparison with other bounds

 Partial Transposition bound (Holevo & Werner'01, Muller-Hermes, Reeb, Wolf'16)

$$Q(\mathcal{N}) \leq Q_{\Theta}(\mathcal{N}) = \log_2 \|J_{\mathcal{N}}^{T_B}\|_{cb},$$

where $\|\cdot\|_{cb}$ uses an alternative expression from (Watrous'12).

Improved efficiently computable bound

For any quantum channel \mathcal{N} , $Q_{\Gamma}(\mathcal{N}) \leq Q_{\Theta}(\mathcal{N})$.

Comparison with other bounds

 Partial Transposition bound (Holevo & Werner'01, Muller-Hermes, Reeb, Wolf'16)

$$Q(\mathcal{N}) \leq Q_{\Theta}(\mathcal{N}) = \log_2 \|J_{\mathcal{N}}^{T_B}\|_{cb},$$

where $\|\cdot\|_{cb}$ uses an alternative expression from (Watrous'12).

Improved efficiently computable bound

For any quantum channel \mathcal{N} , $Q_{\Gamma}(\mathcal{N}) \leq Q_{\Theta}(\mathcal{N})$.

- Example: $\mathcal{N}_r = \sum_i E_i \cdot E_i^{\dagger}$ with $E_0 = |0\rangle\langle 0| + \sqrt{r}|1\rangle\langle 1|$ and $E_1 = \sqrt{1-r}|0\rangle\langle 1| + |1\rangle\langle 2|$.
- Solid line: SDP bound Q_Γ
- Dashed line: PT bound Q_{Θ}

- ▶ Non-asymptotic classical communication (NS/NS∩PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot ϵ -error capacity is given by SDP

- ▶ Non-asymptotic classical communication (NS/NS∩PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot ϵ -error capacity is given by SDP
- Limits for asymptotic classical/quantum communication
 - SDP strong converse bound for classical capacity

- ▶ Non-asymptotic classical communication (NS/NS∩PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot ϵ -error capacity is given by SDP
- Limits for asymptotic classical/quantum communication
 - SDP strong converse bound for classical capacity
 - Improved upper bound for $C(\mathcal{N}^{AD})$
 - Strong converse property for new class of quantum channels

- ▶ Non-asymptotic classical communication (NS/NS∩PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot ϵ -error capacity is given by SDP
- Limits for asymptotic classical/quantum communication
 - SDP strong converse bound for classical capacity
 - Improved upper bound for $C(\mathcal{N}^{AD})$
 - Strong converse property for new class of quantum channels
 - SDP strong converse bound for quantum capacity (improve the Partial Transposition bound).
- ▶ Non-asymptotic classical communication (NS/NS∩PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot ϵ -error capacity is given by SDP
- Limits for asymptotic classical/quantum communication
 - SDP strong converse bound for classical capacity
 - Improved upper bound for $C(\mathcal{N}^{AD})$
 - Strong converse property for new class of quantum channels
 - SDP strong converse bound for quantum capacity (improve the Partial Transposition bound).
- Outlook
 - Tighter strong converse bounds without using additive SDP?

- ▶ Non-asymptotic classical communication (NS/NS∩PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot ϵ -error capacity is given by SDP
- Limits for asymptotic classical/quantum communication
 - SDP strong converse bound for classical capacity
 - Improved upper bound for $C(\mathcal{N}^{AD})$
 - Strong converse property for new class of quantum channels
 - SDP strong converse bound for quantum capacity (improve the Partial Transposition bound).
- Outlook
 - Tighter strong converse bounds without using additive SDP?
 - Classical capacity of specific channels (AD channel)?

- ▶ Non-asymptotic classical communication (NS/NS∩PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot ϵ -error capacity is given by SDP
- Limits for asymptotic classical/quantum communication
 - SDP strong converse bound for classical capacity
 - Improved upper bound for $C(\mathcal{N}^{AD})$
 - Strong converse property for new class of quantum channels
 - SDP strong converse bound for quantum capacity (improve the Partial Transposition bound).
- Outlook
 - Tighter strong converse bounds without using additive SDP?
 - Classical capacity of specific channels (AD channel)?
 - How to implement the NS and PPT-preserving codes?

- ▶ Non-asymptotic classical communication (NS/NS∩PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot ϵ -error capacity is given by SDP
- Limits for asymptotic classical/quantum communication
 - SDP strong converse bound for classical capacity
 - Improved upper bound for $C(\mathcal{N}^{AD})$
 - Strong converse property for new class of quantum channels
 - SDP strong converse bound for quantum capacity (improve the Partial Transposition bound).
- Outlook
 - Tighter strong converse bounds without using additive SDP?
 - Classical capacity of specific channels (AD channel)?
 - How to implement the NS and PPT-preserving codes?
 - Relationship between Q_{Γ} and Rains information (TWW'15)?

- ▶ Non-asymptotic classical communication (NS/NS∩PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot ϵ -error capacity is given by SDP
- Limits for asymptotic classical/quantum communication
 - SDP strong converse bound for classical capacity
 - Improved upper bound for $C(\mathcal{N}^{AD})$
 - Strong converse property for new class of quantum channels
 - SDP strong converse bound for quantum capacity (improve the Partial Transposition bound).
- Outlook
 - Tighter strong converse bounds without using additive SDP?
 - Classical capacity of specific channels (AD channel)?
 - How to implement the NS and PPT-preserving codes?
 - ▶ Relationship between Q_{Γ} and Rains information (TWW'15)?
 - Continuous-variable quantum channels?

Wei Xie

Runyao Duan

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle

Wei Xie

Runyao Duan

Thank you for your attention!