The Thermality of Quantum Approximate Markov Chains

with implications to the Locality of Edge States and Entanglement Spectrum

<u>Kohtaro Kato</u> (Univ. Tokyo) Fernando G. S. L. Brandao (Caltech)

based on arXiv: 1609.06636 & paper in preperation

QIP2017

Motivation

When many-body systems are described by **local (short-range) Hamiltonians**, states have special correlation properties.

Area law for gapped ground states: restricts *entanglement* (rigorously proven for 1D systems [Hastings, 07])

Area law for Gibbs (thermal) states: restricts correlations (proven for any dim. [Wolf, et al., 07])

efficient descriptions of many-body states (MPS, PEPS, MPO,...)

A useful consequence of area laws Q. How to characterize? small "conditional mutual information (CMI)" on certain regions (Applications: [Kim, '12,'13], [Swingle & Kim, 14], [Kastryano & Brandao, '16] ...)

Motivation

When many-body systems are described by **local (short-range) Hamiltonians**, states have special correlation properties.

Area law for gapped ground states: restricts entanglement This talk: usly provapproximate Markov chains"

1. Characterizing states with small CMI in terms of Gibbs states Area law for Gibbs (thermal) states: restricts correlations (proven for any dim. [Wolf, et al., 07 (cf. previous talk by Kastoryano)

2. An application to "entanglement spectrum" of 2D gapped systems efficient descriptions of many-body states (MPS, PEPS, MPO,...)

A useful consequence of area laws Q. How to characterize? small "conditional mutual information (CMI)" on certain regions (Applications: [Kim, '12,'13], [Swingle & Kim, 14], [Kastryano & Brandao, '16] ...)

Outline of this talk

Part I: A characterization of approximate Markov chains

- ♦ Area law for Gibbs States
- Quantum Markov Chains & Approximate Quantum Markov
 Chains
- Equivalence to Gibbs states of short-range Hamiltonians

Part II: An application to entanglement spectrum in 2D systems

- Topological Entanglement Entropy and Entanglement
 Spectrum
- Previous Results on Entanglement Spectrum
- Locality of Entanglement Hamiltonian and Spectrum

Part I: A characterization of approximate Markov chains

Area law for Gibbs states

[Wolf, et al., '07]
$$I(A:B)_{\rho} \coloneqq S(A)_{\rho} + S(B)_{\rho} - S(AB)_{\rho} \le 2\beta J |\partial A|$$

$$\succ S(A)_{\rho} \coloneqq -\mathrm{tr}\rho_{A}\mathrm{log}_{2}\rho_{A}$$

Conditional Mutual Information of Gibbs States

The conditional mutual information:

$$I(A:C|B)_{\rho} \coloneqq I(A:BC)_{\rho} - I(A:B)_{\rho} \ge 0$$

• Monotonicity of MI: $I(A:BC)_{\rho} \ge I(A:B)_{\rho}$

$$\rightarrow I(A:B_1)_{\rho} \leq I(A:B_1B_2)_{\rho} \leq \dots \leq I(A:B_1\dots B_m)_{\rho} \leq 2\beta J|\partial A|$$

Quantum Markov Chain (for three systems)

If $I(A: C|B)_{\rho} = 0$, quantum state ρ_{ABC} is called a *Quantum Markov Chain* A - B - C.

[Hayden, et al., 03], [Brown & Poulin, '12]

1. There exists a CPTP-map $\Lambda_{B \to BC}$: $B \to BC$ s.t.

$$\rho_{ABC} = \mathrm{id}_{\mathrm{A}} \otimes \Lambda_{\mathrm{B} \to BC}(\rho_{AB})$$

2. There exists a Hamiltonian $H_{ABC} = H_{AB} + H_{BC}$ s.t.

$$\rho_{ABC} = e^{-H_{ABC}}, [H_{AB}, H_{BC}] = 0 \ (\rho_{ABC} > 0)$$

Longer Chains

 ρ_A on the chain $A_1A_2 \dots A_n$ is a (quantum) Markov chain if $I(A_1 \dots A_{i-1}: A_{i+1} \dots A_n | A_i)_{\rho} = 0$ for arbitrary $i \in [n]$.

*We can generalize the concept of Markov chains to general graphs as *Markov networks*

Hammersley-Clifford Theorem (1D)

[Hammersley&Clifford, '71]:

Random variables $X_1, X_2, ..., X_n$ forms a (positive) Markov chain

if, and only if, the distribution can be written as

$$p_{X_1X_2...X_n}(x_1, x_2, ..., x_n) = \frac{1}{Z} \exp\left(-\sum_i h_i(x_i, x_{i+1})\right)$$

* also holds for Markov networks

Gibbs distributions of 1D *short-range* Hamiltonians

Quantum Hammersley-Clifford Theorem (1D)

[Leifer & Poulin, '08], [Brown & Poulin, '12]:

A quantum state $\rho_{A_1...A_n} > 0$ on a chain forms a Markov chain

if, and only if, the state can be written as

2. There exists a Hamiltonian
$$H_{ABC} = H_{AB} + H_{BC}$$
 s.t.

$$p_{ABC} = e^{-H_{ABC}} [H_{AB}, H_{BC}] = 0$$

Gibbs states of 1D **commuting** short-range Hamiltonians

Quantum Hammersley-Clifford Theorem (1D)

[Leifer & Poulin, '08], [Brown & Poulin, '12]:

A quantum state $\rho_{A_1...A_n} > 0$ on a chain forms a Markov chain

if, and only if, the state can be written as

2. There exists a Hamiltonian
$$H_{ABC} = H_{AB} + H_{BC}$$
 s.t.
 $\rho_{ABC} = e^{-H_{ABC}}, [H_{AB}, H_{BC}] = 0$

Properties of Approximate Markov Chains

How about states having small but non-zero CMI?

Naïve guess: all properties of Markov chains *approximately* hold for *approximate* Markov chains

Classical:

$$I(X:Z|Y)_{p} = \min_{q:Markov} S(p_{XYZ}||q_{XYZ})$$

$$I(X:Z|Y)_{p} \le \varepsilon \leftrightarrow p_{XYZ} \approx_{\varepsilon} q_{XYZ}$$

However...

Quantum:

$$I(A:C|B)_{\rho} \neq \min_{\sigma:Markov} S(\rho_{ABC} || \sigma_{ABC})$$
 [Ibinson, et al., '06]

∃ property of Markov chains which is invalid for approximate Markov chains

Local Recoverability of States with Small CMI

Some properties still approximately hold for approximate Markov chains

[Fawzi & Renner, '15]: There exists a CPTP-map $\Lambda_{B \to BC}$ s.t. $I(A: C|B)_{\rho} \ge -2\log_2 F(\rho_{ABC}, \Lambda_{B \to BC}(\rho_{AB}))$

$$I(A:C|B)_{\rho} \approx 0$$
$$\leftrightarrow$$

1. There exists a CPTP-map $\Lambda_{B \to BC}$: $B \to BC$ s.t. $\rho_{ABC} \approx id_A \otimes \Lambda_{B \to BC}(\rho_{AB})$

*The converse part can be shown by using the Alicki-Fannes inequality.

Question

Q. How about the quantum Hammersley-Clifford theorem for approximate Markov chains ?

Quantum approximate Markov chains

Gibbs states of 1D **short-range** Hamiltonians

Approximate Quantum HC Theorem (1D)

 ρ_A is a ε –approximate Markov chain if $I(A_1 \dots A_{i-1}: A_{i+1} \dots A_n | A_i)_{\rho} \leq \varepsilon$ for arbitrary $i \in [n]$.

Result 1.

For any ε –approximate Markov chain $\rho_{A_1A_2...A_n}$, there exists a Hamiltonian

$$H_A = \sum h_{A_i A_{i+1}}$$
 s.t.,
 $S(\rho_A || e^{-H_A}) \le n\varepsilon.$ Application to gapped systems (next part)

Any approximate Markov chain can be approximated by local Gibbs states

Approximate Quantum HC Theorem (1D)

Result 2.

For any Gibbs state ρ of a short-range Hamiltonian *H* at temperature *T* Application to

$$I(A:C|B)_{\rho} \le ce^{-q(T)\sqrt{l}}$$

for $q(T) = e^{-c'T^{-1}}$, $c \ge 0$, c' > 0 and any partition ABC as in t

All 1D Gibbs states of short-range Hamiltonians are approximate Markov chains (Strengthen the area law of 1D Gibbs states)

Gibbs state

preparation

(see previous talk)

Approximate Quantum HC Theorem (1D)

All 1D Gibbs states of short-range Hamiltonians are approximate Markov chains (Strengthen the area law of 1D Gibbs states)

PartII: An application to entanglement spectrum in 2D systems

Area Law in 2D Gapped Systems

of boundary

 $S(A)_{\rho} = \alpha |\partial A| - \overset{*}{n}_{\partial A} \gamma + o(1)$

• Ground states of 2D gapped local Hamiltonians typically obey area law:

> γ : topological entanglement entropy [Kitaev & Preskill, '06], [Levin & Wen '06] ($\gamma > 0 \leftrightarrow$ the g.s. is in a topologically ordered phase (?))

A strong type of area law (rest of this talk)

$$S(A)_{\rho} = \alpha |\partial A| - n_{\partial A} \gamma + e^{-|\partial A|/\xi}$$

 \hookrightarrow For any *ABC* with no holes,

$$I(A:C|B)_{\rho} \le e^{-cl}$$

 ρ_{ABC} is an approximate Markov chain

Entanglement Hamiltonian and Spectrum

• Other tools to study gapped g.s.

 $\rho_A =: e^{-H_A} \longleftarrow$ entanglement Hamiltonian

$\lambda(H_A)$: entanglement spectrum

- (logarithm of the Schmidt coefficients)
- Correspondence to edge theory in FQHE [Li & Haldane, '08] also has been studied in other systems [Ali, et al., '09, Lauchli & Bergholtz, '10,...]
- Previous observations in the PEPS formalism [Cirac et al., '11], [Schuch, et al., '13], [Cirac, et al., '16]

$$\rho_l = V \sigma_b^2 V^{\dagger}$$
 V:isometry

short-range (in trivial phase)

 $H_b =$ short-range + global interactions (in topologically ordered phases)

Entanglement Hamiltonian and Spectrum

• Other tools to study gapped g.s.

 $\underline{-}\cdot \rho^{-H_A} \leftarrow entanglement Hamiltonian$

Q. How general this observation in PEPS?

ogarithm of the Schmidt coefficients)

CThis talk: connection to the topological entanglement entropy also has been studied in other systems [Ali, et al., '09, Lauchli & Bergholtz, '

• Previous observations in the PEPS formalism [Cirac et al., '11], [Schuch, et al., '13], [Cirac, et al., '16] $\rho_l = V \sigma_b^2 V^{\dagger} \quad V:\text{isometry}$ [D vir

short-range (in trivial phase)

 $H_b =$ short-range + global interactions (in topologically ordered phases)

Locality of Entanglement Spectrum ($\gamma = 0$)

Suppose $|\psi_{YXY'}\rangle$ satisfies the area law and $\gamma = 0$ (trivial phase).

TEE and Non-Local Entanglement Hamiltonian

How about the case of $\gamma > 0$?

Result 3.

Under our assumption, for some c > 0 and sufficiently large l,

$$2\gamma = \min_{H_X \in \mathcal{H}_2} S(\rho_X || e^{-H_X}) + e^{-cl} \ge 0 \ (l \gg 1)$$
$$\mathcal{H}_2 \coloneqq \left\{ H = \sum h_{X_i X_{i+1}}, \left\| h_{X_i X_i + 1} \right\| \le \mathcal{O}(|X|) \right\}$$

 $\gamma > 0 \rightarrow -\log \rho_X$ is non-local **Note:** EH is local after tracing out X_i . $\operatorname{tr}_{X_1} e^{-H_X} = \exp(-h_{X_2X_3} \cdots - h_{X_{m-1}X_m})$ **Conjecture (no rigorous proof):** The non-local part is dominated by *m*-body interactions

Non-Locality of Entanglement Spectrum ($\gamma > 0$)

Result 3.

Under our assumption, for some c > 0 and sufficiently large l,

$$2\gamma = \min_{H_X \in \mathcal{H}_2} S(\rho_X || e^{-H_X}) + e^{-cl}$$
$$\mathcal{H}_2 \coloneqq \{H = \sum h_{X_i X_{i+1}}, \|h_{X_i X_i+1}\| \le \mathcal{O}(|X|)\}$$

Difference to The Previous Results

Assumption: PEPS formalism (fixed-point) [Cirac et al., '11], [Schuch, et al., '13], [Cirac, et al., '16]

$$\lambda(-\log \rho_l) = \lambda(H_b)$$

$$H_b = \begin{cases} \text{short-range} \\ \text{(in trivial phase)} \\ \text{short-range + global interactions} \\ \text{(in topologically ordered phases)} \end{cases}$$

Assumption: Strong type of area law (+ reflection symmetry)

this talk

$$\left\| \lambda \left(H_{Y}^{(2)} \right) - \lambda (H_{X}) \right\|_{1} \leq e^{-cl}$$

$$H_{X} = \begin{cases} \text{short-range} \\ (\gamma = 0) \\ \text{short-range + global interactions} \\ (\gamma > 0) \end{cases}$$

Take-home massages:

Part I: Quantum approximate Markov chains are Gibbs states of 1D short-range Hamiltonians.

Part II: The locality of the entanglement spectrum of gapped g.s. on a cylinder is related to the TEE.

Open problems:

Part I: Better bounds on CMI of 1D Gibbs states? Generalization of the equivalence to Markov networks? (→ application for Gibbs state preparation)

Part II: Weaker assumptions? Do we really need double of the ES? Consequences of the (non-)locality of ES?

Result 1.

For any ε –approximate Markov chain $\rho_{A_1A_2...A_n}$, there exists a Hamiltonian $H_A = \sum h_{A_iA_{i+1}}$ s.t.,

$$S(\rho_A||e^{-H_A}) \leq n\varepsilon.$$

• <u>The maximum entropy principle [Jaynes, '57]</u>

The maximum entropy state σ_A satisfying

$$\sigma_{A_iA_{i+1}} = \rho_{A_iA_{i+1}}, \forall i$$

has the form

$$\sigma_{A_iA_{i+1}} = e^{-\sum h_{A_iA_{i+1}}}.$$

• <u>A result from information geometry</u> [Knauf & Weis, '10] $\inf_{H_A = \sum h_{A_i A_{i+1}}} S(\rho_A || e^{-H_A}) = S(A)_{\rho} - S(A)_{\sigma}$

Small by the assumption + SSA

Result 2.

For any Gibbs state ρ of a short-range Hamiltonian H at temperature T,

$$I(A:C|B)_{\rho} \le ce^{-q(T)\sqrt{l}}$$

for $q(T) = e^{-c'T^{-1}}$, $c \ge 0$, c' > 0 and any partition *ABC* as in the below.

Explicitly construct a recovery map $\Lambda_{B \to BC}$ s.t.

$$\|\rho_{ABC} - \Lambda_{B \to BC}(\rho_{AB})\|_{1} \le c' e^{-q'\sqrt{l}} \qquad \text{inequality}$$

Quantum belief propagation equation [Hastings, '07][Kim, '11]

For 1D Hamiltonian with short-range H, $\exists O_I$ s.t. $\|e^{-\beta(H+V)} - O_I e^{-\beta H} O_I^{\dagger}\| \le e^{-q'' l}$

From the quantum belief propagation equation, there exists X_B s.t.

 $\rho_{ABC} \approx \kappa_{B \to BC}(\rho_{AB}) = X_B \left(\operatorname{tr}_{B^R} \left[X_B^{-1} \rho_{AB} (X_B^{-1})^{\dagger} \right] \otimes \rho_{B^R C} \right) X_B^{\dagger}$

Repeat-until-success method

We normalize $\kappa_{B \to BC}$ and define a CPTD-map $\tilde{\Lambda}_{B \to BC}$. \rightarrow Succeed to recover with a constant probability p (in 1D systems).

 $\Box \operatorname{Choose} N \sim l(|B| = \mathcal{O}(l^2)).$

We can construct a CPTP-map $\Lambda_{B \to BC}$ satisfying

 $\|\rho_{ABC} - \mathrm{id}_A \otimes \Lambda_{B \to BC} (\rho_{AB})\|_1 \le e^{-\mathcal{O}(l)}.$

Result 3.

Under our assumption, for some c > 0 and sufficiently large l,

$$2\gamma = \min_{H_X \in \mathcal{H}_2} S(\rho_X || e^{-H_X}) + e^{-cl}$$

> $\mathcal{H}_2 \coloneqq \left\{ H = \sum h_{X_i X_{i+1}}, \left\| h_{X_i X_i + 1} \right\| \le \mathcal{O}(|X|) \right\}$

By assumption, $I(X_1: X_3X_{m-1}|X_2X_m)_{\rho} \approx 0$. $\rightarrow \exists$ recovery map $\Lambda_{2m \rightarrow 12m}: X_2X_m \rightarrow X_2X_mX_1$

$$\sigma_X \coloneqq \Lambda_{2m \to 12m}(\rho_{X_2 \dots X_m})$$

Facts: $\sigma_{X_i X_{i+1}} \approx \rho_{X_i X_{i+1}}$

$$\to \sigma_X \approx \underset{H_X \in \mathcal{H}_2}{\operatorname{argmin}} S(\rho_X || e^{-H_X}), \qquad S(\rho_X || \sigma_X) \approx 2\gamma.$$

