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MOTIVATION
Finite temperature quantum simulations

Strongly correlated/frustrated materials

New tools for the analysis of many body systems

Local recovery in many body systems
Exotic phases/topological order

Quantum SDP solvers, Quantum machine learning
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STRONG SUB-ADDITIVITY

I⇢(A : C|B) = S(AB) + S(BC)� S(B)� S(ABC) � 0

Strong sub-additivity (SSA):

Quantitative extension to the Area Law

Area Law for mixed states:
I(A : Ac) ⌘ S(A) + S(Ac)� S(AAc)  c|@A|

B`

Tells us how rapidly the area law is saturated

A B C

I(A : B1 · · ·Bn+1)� I(A : B1 · · ·Bn) = I(A : Bn+1|B1 · · ·Bn)
A



LOCAL RECOVERY MAPS

I⇢(A : C|B) = S(AB) + S(BC)� S(B)� S(ABC) � 0

I⇢(A : C|B) = 0 , RAB(⇢BC) = ⇢

RAB(�) = ⇢1/2AB⇢
�1/2
B �⇢�1/2

B ⇢1/2AB

Markov State

there exists a disentangling unitary on B. 

Petz map

Strong subadditivity (SSA):

Equality

⇢ = �j⇢ABL
j
⌦ ⇢BR

j C

P. Hayden, et. al., CMP 246 (2004)

M. Ohya and D. Petz, (2004)

A B C



LOCAL RECOVERY MAPS
Approximately
Strengthening SSA:

RAB(�) =

Z
dt�(t)⇢

1
2+it
AB ⇢

� 1
2�it

B �⇢
� 1

2+it
B ⇢

1
2�it
AB

Rotated Petz map

ABC are arbitrary

Related to theory of approximate error 
correction (subspaces)

O. Fawzi and R. Renner, CMP 340 (2015)

M. Junge, et. al. arXiv:1509.07127 
D. Sutter, et. al. arXiv:1604.03023

S. Flammia et. al. , arXiv:1610.06169

I⇢(A : C|B) � �2 logF (⇢, RAB(⇢BC))



CLASSIFICATION

   is the Gibbs state of a local 
commuting H

⇢ > 0

               is the ground state of a 
local commuting H

⇢ = | ih |

For any A, and B shielding A:

A`

B

C

Exact recovery

I⇢(A : C|B) = 0

H = H⌦N
2

W. Brown, D. Poulin,  arXiv:1206.0755



CLASSIFICATION

   is the Gibbs state of a local 
commuting H

⇢ > 0

               is the ground state of a 
local commuting H

⇢ = | ih |

For any A, and B shielding A:

A`

B

C

Exact recovery

I⇢(A : C|B) = 0

Approximate recovery

For any A, and B shielding A: I⇢(A : C|B)  Ke�c`

   is the Gibbs state of a quasi-local Hamiltonian⇢ > 0

    is the ground state of a gaped quasi-local Hamiltonian⇢ = | ih |

H = H⌦N
2

W. Brown, D. Poulin,  arXiv:1206.0755

K. Kato, F Brandao,  arXiv:1609.06636



Dynamics?



MONTE-CARLO SIMULATIONS
Want to evaluate: hQi =

X

x

⇡(x)Q(x) ⇡ / e��H

classical Gibbs state

Idea: - obtain a sample configuration from the distribution ⇡

- Set up a Markov chain with      as an approximate 
fixed point 
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Want to evaluate: hQi =

X

x

⇡(x)Q(x) ⇡ / e��H

classical Gibbs state

Idea: - obtain a sample configuration from the distribution ⇡

- Set up a Markov chain with      as an approximate 
fixed point 

⇡

Metropolis algorithm: (- start with random configuration)
- Flip a spin at random, calculate energy
- If energy decreased, accept the flip
- If energy increased, accept the flip with probability pflip = e���E

- Repeat until equilibrium is reached Equilibrium?
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ANALYTIC RESULTS
Note: - Glauber dynamics (Metropolis) is modelled by a 

semigroup Pt = etL

Fundamental result for Glauber dynamics:

    has exponentially 
decaying correlations

     mixes in time     

 independent of boundary conditions in 2D

no intermediate mixing

Pt⇡ O(log(N))

 independent of specifics of the model

     is gapped   L
F. Martinelli, Lect. Prof. Theor. Stats , Springer 

A. Guionnet, B. Zegarlinski, Sem. Prob., Springer 



QUANTUM GIBBS SAMPLERS

Davies maps are another 
generalization of Glauber 
dynamics

Tt = etL

L =
X

j2⇤

(Rj@ � id)

Rj@ is the Petz recovery map!

Commuting Hamiltonian

The exists a partial extension of the 
statics = dynamics theorem

MJK and F. Brandao, CMP 344 (2016) 

MJK and K. Temme,  arXiv:1505.07811



QUANTUM GIBBS SAMPLERS

Davies maps are another 
generalization of Glauber 
dynamics

Tt = etL

L =
X

j2⇤

(Rj@ � id)

Rj@ is the Petz recovery map!

Commuting Hamiltonian

The exists a partial extension of the 
statics = dynamics theorem

Non-commuting Hamiltonian

L =
X

j2⇤

(Rj@ � id)

Rj@ is the rotated Petz map!
no longer frustration-free
Theorem    does not hold
Davies maps are non-local

MJK and F. Brandao, CMP 344 (2016) 

MJK and K. Temme,  arXiv:1505.07811



New approach



SETTING

Hamiltonian:

Lattice: ⇤

A

Gibbs states:

A ⇢ ⇤

hj

hZ = 0 for |Z| � K

Note:

is the Gibbs state 
restricted to A 

HA =
X

Z⇢A

hZ

⇢A = e��HA/Tr[e��HA ]

Superscript for domain of definition of Gibbs state, 
while subscript for partial trace. 



THE MARKOV CONDITION
Uniform Markov:

A`

B

C

A B
B

C `

Any subset                        with     
shielding      from      in      , we 
have

X = ABC ⇢ ⇤ B
A C X

I⇢X (A : C|B)  �(`)

Recall: ⇢X = e��HX/Tr[e��HX ]

Also must hold for non-
contractible regions

⇤



CORRELATIONS

⇤

A
B

Cov⇢(f, g) = |tr[⇢fg]� tr[⇢f ]tr[⇢g]|

Cov⇢X (f, g)  ✏(`)

`
C

Uniform Clustering:

Any subset                        with     
                   and

X = ABC ⇢ ⇤
supp(f) ⇢ A supp(g) ⇢ B

ABC `

Note: Uniform Clustering 
follows from uniform Gap



if 

General

⇤
e��(HA+HB) = e��HA

e��HB

[HA, HB ] = 0

e��(H+V ) = OV e
��HO†

V

||OV ||  e�||V ||

Only works if    is local!  

V`

Commuting Hamiltonian

Non-commuting Hamiltonian

V

||OV �O`
V ||  c1e

�c2` ⌘ �(`)

LOCAL PERTURBATIONS

MB. Hastings, PRB 201102 (2007)



⇤

V`

Uniform Markov
APPROXIMATIONS

I⇢X (A : C|B)  �(`)
A`

B

C

A
B `

C
Uniform clustering

Cov⇢X (f, g)  ✏(`)

Local perturbations

||e��(H+V ) �O`
V e

��HO`
V ||  c1e

�c2` ⌘ �(`)



LOCAL INDISTINGUISHABILITY

⇤

Cov⇢X (f, g)  ✏(`)

Result 1:

Any subset                        with     
                   and

X = ABC ⇢ ⇤
supp(f) ⇢ A supp(g) ⇢ B

Any subset                        with     
shielding      from      in      , if     is 
uniformly clustering, 

X = ABC ⇢ ⇤ B
A C X

A`

B

C
⇢

Consequence: Efficient evaluation of local expectation values

hOAi = tr[⇢⇤OA] ⇡ tr[⇢ABOA]

||trBC [⇢
ABC ]� trB [⇢

AB ]||1  c|AB|(✏(`) + �(`))



LOCAL INDISTINGUISHABILITY

Cov⇢X (f, g)  ✏(`)

Result 1:

Any subset                        with     
                   and

X = ABC ⇢ ⇤
supp(f) ⇢ A supp(g) ⇢ B

Any subset                        with     
shielding      from      in      , if     is 
uniformly clustering, 

X = ABC ⇢ ⇤ B
A C X

C
⇢

Proof idea:

Remove pieces of the 
boundary of     one by oneB

A`

B

telescopic sum

Bound each term ||trBC [⇢
Xj+1 � ⇢Xj ]||1 ⇡ sup

gA
|tr[gA(O`

j⇢
XjO`,†

j � ⇢Xj ]|

||trBC [⇢
X � ⇢AB ⌦ ⇢C ]||1 

X

j

||trBC [⇢
Xj+1 � ⇢Xj ]||1

= Cov⇢Xj (gA, O
`,†
j O`

j)

||trBC [⇢
ABC ]� trB [⇢

AB ]||1  c|AB|(✏(`) + �(`))



STATE PREPARATION

Cov⇢X (f, g)  ✏(`)

Main Result:

Any subset                        with     
                   and

X = ABC ⇢ ⇤
supp(f) ⇢ A supp(g) ⇢ B

If     is uniformly clustering and uniformly Markov, then there 
exists a depth         circuit of quantum channels                      of 
local range               , such that 

⇢

D + 1 F = FD+1 · · ·F1

O(log(L))

||F( )� ⇢||1  cLD(✏(`) + �(`) + �(`))

MJK, F. Brandao,  arXiv:1609.07877



STATE PREPARATION

Cov⇢X (f, g)  ✏(`)

Main Result:

Any subset                        with     
                   and

X = ABC ⇢ ⇤
supp(f) ⇢ A supp(g) ⇢ B

If     is uniformly clustering and uniformly Markov, then there 
exists a depth         circuit of quantum channels                      of 
local range               , such that 

⇢

D + 1 F = FD+1 · · ·F1

Cov⇢X (f, g)  ✏(`)

Corollary:

Any subset                        with     
                   and

X = ABC ⇢ ⇤
supp(f) ⇢ A supp(g) ⇢ B

If     is uniformly clustering and uniformly Markov, then there 
exists a depth                     circuit of strictly local quantum 
channels                   , such that 

⇢

O(log(L))

F = FM · · ·F1

M = O(log(L))

||F( )� ⇢||1  cLD(✏(`) + �(`) + �(`))

||F( )� ⇢||1  cLD(✏(`) + �(`) + �(`))

MJK, F. Brandao,  arXiv:1609.07877



PROOF OUTLINE (2D)
Step 1: Cover the lattice in concentric 

squares
⇤

A

A+

A� ⇢ A ⇢ A+

By the Markov condition`
A�

By Local indistinguishability
||trA[⇢

Ac
�

Ac ]� ⇢Ac ]||1  NA✏(`)

Local cpt map FA ⌘ R⇢
A+

trA

||R⇢
A+

(⇢Ac)� ⇢||1  NA(�(`) + �(`))

||FA(⇢
Ac

�)� ⇢||1  NA(✏(`) + �(`) + �(`))

If we can build the lattice       with holes, then we can 
reconstruct the original lattice.

Ac
�



Step 2: Break up the connecting regions⇤

By the Markov condition

By Local indistinguishability

Local cpt map

If we can build the lattice            , then we can reconstruct 
the original lattice.

B�

B+

B `

B� ⇢ B ⇢ B+

||R⇢
Ac

�

B+
(⇢

Ac
�

Bc )� ⇢A
c
� ||1  NB(�(`) + �(`))A�

||trB [⇢(A�B�)c ]� ⇢
Ac

�
Bc

�
]||1  NB✏(`)

FB ⌘ R⇢
Ac

�

B+
trB

||FBFA(⇢
(A�B�)c)� ⇢||1  (NA +NB)(✏(`) + �(`) + �(`))

(A�B�)
c

PROOF OUTLINE (2D)



Step 3:
Project onto 

By locality 

C

⇢C

FC( ) = ⇢ctrC [ ]

Finally

The entire lattice can be built from a local circuit of cpt maps. 

||FCFBFA( )� ⇢||1  (NC +NA +NB)(✏(`) + �(`) + �(`))

PROOF OUTLINE (2D)



GROUND STATES?

Proof ingredients (uniform) Local indistinguishability
(uniform) Markov condition
Local definition of states



GROUND STATES?

Proof ingredients (uniform) Local indistinguishability
(uniform) Markov condition
Local definition of states

For injective PEPS, proof can be reproduced exactly. 

Connection to the topological entanglement entropy



is a topological contribution⌫

I(A : C|B)  ✏(`) + ⌫

TOPOLOGICAL ENTANGLEMENT

A B
B

C `

⇤
Area law:

Local indistinguishability and zero topological 
entanglement implies efficient preparation



OUTLOOK

Relaxing the assumption on uniform decay

Other applications of local indistinguishability to 
many body systems

Spectral gap analysis, entanglement spectrum
The same strategy might work for proving gaps of parent 
Hamiltonians of injective PEPS

More natural assumptions

Complete the classification



THANK YOU!



SPECTRAL GAP
We showed:

Define FA = etLA LA =
X

j

(FAi � id)

If                 had the same fixed point, then                           
is gaped, by the reverse detectability lemma. 
FA,FB ,FC L = LA + LB + LC

The same strategy might work for proving gaps of parent 
Hamiltonians of injective PEPS

New strategy for proving the gap of the 2D AKLT model!!!

All about boundary conditions

||FCFBFA( )� ⇢||1  LDe�`/⇠

A. Anshu, et. al., Phys. Rev. B 93, 205142 (2016)


