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Motivation: phases of matter

‚ Want robust computational structures

‚ Topological phases are fascinating + useful for quantum computation

‚ Order in many body spin systems ùñ robust computational structures

‚ The 2D Ising ferromagnet, a self correcting classical memory

‚ Kitaev’s toric code, a quantum error correcting code at T “ 0

‚ Finding models with topological order at Tą0 is an important problem
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The question

Symmetry protected topological (SPT) order: certain systems that
possess subtle order in the presence of symmetries ...

... are they stable at nonzero temperature?

Plan for the talk

1. Introduction: what are (symmetry protected) topological phases?
2. First result: thermal instability of a class of SPT models
3. Second result: existence of thermal SPT order
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What are topological phases of matter?

‚ Gapped Hamiltonian H “ ř

i hi with (geometrically) local terms

hi

ùñgapped
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.

u Op1q

‚ Defining property: Ground space properties are robust to any small
local perturbations

1. Ground space is a quantum code! e.g. toric code, color code
2. Information is encoded in nonlocal degrees of freedom
3. Robust to local errors
4. Often ground space degeneracy depends on boundary

conditions (e.g. genus of surface)
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Ground states of topologically ordered systems

Def: |ψ1y „ |ψ2y (belong to same phase) iff they are related by a
constant depth unitary circuit

|ψ1y

|ψ2y

d
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th

‚ Trivial phase = equivalence class of a product state

‚ Topologically ordered ùñ not equivalent to a product state.
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Example: SPT order in 1D

‚ Easiest example: 1D cluster state global onsite symmetry.

H “ ´
ÿ

j

Zj´1XjZj`1

S1 “
S1 “

‚ Has a symmetry
rS1,Hs “ rS2,Hs “ 0

|`y |`y |`y |`y |`y |`y |`y |`y

CZCZ CZCZ CZCZ CZCZ

CZCZ CZCZ CZCZ

‚ No constant depth symmetric circuit can prepare the cluster state from a
product state

Def |ψy is SPT ordered if no symmetric constant depth circuit can
map it to a product state, unless the symmetry is broken
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Generalized SPT models in d-dimensions

‚ A broad class of SPT models in d dimensions are the so-called group
cohomology models of Chen-Gu-Liu-Wen 13

H “
ÿ

v

hv , rhv , hw s “ 0

hi

‚ Has a global symmetry that acts onsite

Spgq “
ź

sites

upgq, rSpgq,Hs “ 0, g P G



Applications of SPT order

SPT states

Measurement-based
quantum computation

Codes:
Gapped boundaries

Codes:
Fault tolerant gate

‚ Question: What about all of these at nonzero temperature?

4D toric code Our work

2D toric code 1D cluster

No sym Symmetry

T “ 0

Tą0
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The problem

‚ Do any of the ground state properties of an SPT ordered system
survive at nonzero temperature?

T
em

p
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ordered

Perturbation

ùñ Thermal resources for MBQC, stable domain walls at T ě 0, . . .

Our results

1. We rule out thermal stability of a large class of SPT models.
2. Prove thermal SPT ordering of the 3D cluster model

‚ Computational aspects of this ordering
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Defining SPT order at Tą0

‚ Let H be a Hamiltonian with some symmetry S

‚ We consider the Gibbs ensemble of H at β “ T´1

ρpβq “ e´βH

Tr e´βH

‚ Product state Ñ classical ensemble e.g. of Hcl “ ´ř

v Xv
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Defining SPT order at Tą0

‚ Let H be a Hamiltonian with some symmetry S

‚ We consider the Gibbs ensemble of H at β “ T´1

ρpβq “ e´βH

Tr e´βH

‚ Product state Ñ classical ensemble e.g. of Hcl “ ´ř

v Xv

Def We say ρ is pr , εq SPT-trivial if

∥∥ρ´ TrH1
`

UρclU
:
˘
∥∥
1
ăε,

‚ ρcl is the Gibbs state of a classical Hamiltonian on an
enlarged space

‚ U is a symmetric circuit of depth r
‚ H1 is the ancillary space



First result: instability of global onsite models

Result 1: Theorem: For any Tą0, SPT models protected by global
onsite symmetries are not thermally robust, i.e, they are pr , εq SPT-
trivial for

‚ r “ Oplog
d`1
d pLqq

‚ ε “ poly´1pLq
where L is linear size of a d dimensional lattice.

Ñ Proof for the class of models described by group cohomology

H “
ÿ

v

hv , rhv , hw s “ 0

hi
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‚ First technical tool - approximation by ‘imperfect Hamiltonian’
Hastings 11, Siva-Yoshida 16

‚ Ground space of Hppβq approximates the Gibbs state of H up to
poly´1pLq error
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Hamiltonian
H =

∑
v hv

Remove terms with
probability pβ

pβ =
2

1+e2β

Imperfect

Hamiltonian H(pβ)

‚ Ground space of Hppβq approximates the Gibbs state of H up to
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First result: Thermal triviality

‚ Second technical tool: local disentangler

‚ Can construct a symmetric
disentangler near each missing
term, e.g. for qubits

Dv : hv ÞÑ Xv

...and continue:

D : hv 1 ÞÑ Xv 1

‚ High probability of a missing term in each log
1
2 pLq ˆ log

1
2 pLq region

‚ OplogpLqq spins to disentangle with gates of range ď Oplog
1
2 pLqq

‚ This gives a low-depth preparation of the Gibbs ensemble.
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Second result

‚ The existence of thermally stable SPT order



Second result

‚ The existence of thermally stable SPT order

Result 2: The Raussendorf-Bravyi-Harrington (RBH) cluster model
in 3D belongs to a thermally stable SPT phase for 0 ď TăTc



The Raussendorf-Bravyi-Harrington (RBH) model

‚ Underpins the fault-tolerant, topological measurement based scheme
of Raussendorf-Harrington-Goyal 06

‚ Very high threshold scheme
at „0.75 %

‚ Parts of the computation work thermally up to a critical temperature
but there is no thermodynamic phase transition!

‚ What underpins the thermal stability/high threshold?

ùñ Lets explore in the context of SPT phases!
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The Raussendorf-Bravyi-Harrington (RBH) model

‚ Cubic lattice with qubits on edges and faces - RBH 05

HC “ ´
ÿ

u
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K “ X Z
Z

Z
Z

K “ X Z
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‚ Unique ground state: Ku |ψCy “ |ψCy
‚ Constant depth preparation: |ψCy “ś

xu,wy CZu,w |`yN
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Generalized symmetries

‚ Generalized symmetry: Z2 ˆ Z2 1-form symmetry.

SMpgq “
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uPM
Xu, M a 2-dim surface
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rH,SMpgqs “ 0

‚ A symmetry for each sublattice

‚ Operators naturally arise in error correction for the topological
MBQC scheme
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Thermal SPT in the RBH model

Result 2: There exists a temperature Tc such that the Gibbs state
of the RBH model is SPT ordered under this 1-form symmetry for
0 ď TăTc .

‚ Two ways of proving this:

1. Explicit order parameters

ùñ Measurement based quantum computation and error
correction

2. Gauging the model

ùñ Domain wall in quantum error correcting code
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Sheet order parameter

‚ Sheet order parameters: symmetry operators with ‘twisted
boundaries’

‚ Allow for some error correction in the thermal state
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‚ If ρtriv is pr , εq-trivial with r ă L{2, then the expectation value of
these membrane operators is small

‚ Compare with
xXX y ` xZZy ď 1

for product states
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Sheet order parameter

‚ Error correction can maximize the expectation value of the RBH
thermal state with these membranes

‚ Error correction = ‘symmetrizing’: SMpgq “ 1

1. Excitations are string like objects

2. Syndrome = boundaries of strings

3. Apply correction map to return to
`1-eigenspace of 1-form operators

‚ Correction succeeds if no homologically nontrivial excitations

‚ Closed loops that are boundaries commute with membrane
operators!

‚ This protocol succeeds below Tc due to string tension of excitations
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Operational features

‚ Operationally: sheet order parameter quantifies the ability to distil
maximally entangled pairs (encoded in toric codes) using single
qubit measurements
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‚ Definition of SPT is protocol independent as one can use optimal
decoder i.e. maximum likelihood decoding
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Briefly: Generalized gauging

‚ Can define a 4D system with boundary, that is 1-form symmetric

H “ H4D
bulk ` H3D

boundary

(b)

Z2 ˆ Z2

4D Trivial

Z2

4D Toric code

Z2

4D Toric code

Gauge

& Unfold

3D RBH Domain wall

m1

e1

e2

m2

‚ Gauging gives 4D toric code with domain wall:

‚ Exchanges 1D loop-like electric and magnetic excitations

e1 Ø m2 m1 Ø e2



Conclusion: in this talk

1. Thermal fragility of SPT models protected by global onsite
symmetries

2. Robustness of SPT in the 3D cluster scheme

3. Computational aspects (distilling entanglement, fault tolerant gates,
error correction)

ùñ Usefulness of SPT for measurement based quantum
computation with 1-form symmetry

‚ Steps toward understanding what is possible: thermally stable
computational phases of matter



Further questions

1. The relationship between thermal SPT non triviality and
computational power (in MBQC)

ùñ Analogous to the question of thermal topological order and its
relationship to self-correcting quantum memories

2. Interesting topological defects in 3D

3. Symmetry principles for the single-shot error correction in 3D gauge
color code

4. More models: interplay with transversality, symmetry enriched
topological phases
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