Symmetry protected topological order at nonzero temperature

<u>Sam Roberts</u>¹, Beni Yoshida², Aleksander Kubica³, Stephen Bartlett¹

¹University of Sydney, ²Perimeter institute, ³Caltech

arXiv:1611.05450

ARC CENTRE OF EXCELLENCE FOR ENGINEERED QUANTUM SYSTEMS

• Want robust computational structures

- Want robust computational structures
- $\bullet\,$ Topological phases are fascinating + useful for quantum computation

- Want robust computational structures
- Topological phases are fascinating + useful for quantum computation
- Order in many body spin systems \implies robust computational structures

- Want robust computational structures
- Topological phases are fascinating + useful for quantum computation
- Order in many body spin systems \implies robust computational structures
 - The 2D Ising ferromagnet, a self correcting classical memory

- Want robust computational structures
- Topological phases are fascinating + useful for quantum computation
- Order in many body spin systems \implies robust computational structures
 - The 2D Ising ferromagnet, a self correcting classical memory

• Kitaev's toric code, a quantum error correcting code at T = 0

- Want robust computational structures
- Topological phases are fascinating + useful for quantum computation
- Order in many body spin systems \implies robust computational structures
 - The 2D Ising ferromagnet, a self correcting classical memory

• Kitaev's toric code, a quantum error correcting code at T = 0

• Finding models with topological order at T>0 is an important problem

Symmetry protected topological (SPT) order: certain systems that possess subtle order in the presence of symmetries ...

Symmetry protected topological (SPT) order: certain systems that possess subtle order in the presence of symmetries \dots

... are they stable at nonzero temperature?

Symmetry protected topological (SPT) order: certain systems that possess subtle order in the presence of symmetries \ldots

... are they stable at nonzero temperature?

Plan for the talk

Symmetry protected topological (SPT) order: certain systems that possess subtle order in the presence of symmetries \ldots

... are they stable at nonzero temperature?

Plan for the talk

1. Introduction: what are (symmetry protected) topological phases?

Symmetry protected topological (SPT) order: certain systems that possess subtle order in the presence of symmetries \dots

... are they stable at nonzero temperature?

Plan for the talk

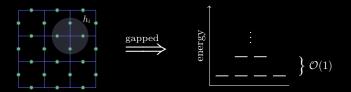
- 1. Introduction: what are (symmetry protected) topological phases?
- 2. First result: thermal instability of a class of SPT models

Symmetry protected topological (SPT) order: certain systems that possess subtle order in the presence of symmetries \dots

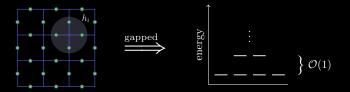
... are they stable at nonzero temperature?

Plan for the talk

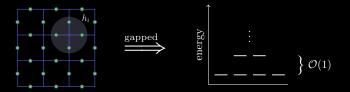
- 1. Introduction: what are (symmetry protected) topological phases?
- 2. First result: thermal instability of a class of SPT models
- 3. Second result: existence of thermal SPT order



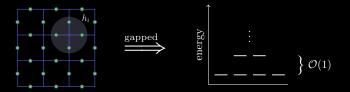
• Gapped Hamiltonian $H = \sum_{i} h_i$ with (geometrically) local terms



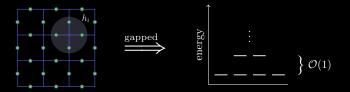
• Defining property: Ground space properties are robust to any small local perturbations



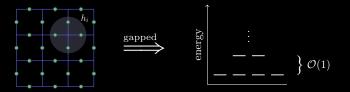
- Defining property: Ground space properties are robust to any small local perturbations
 - 1. Ground space is a quantum code! e.g. toric code, color code



- Defining property: Ground space properties are robust to any small local perturbations
 - 1. Ground space is a quantum code! e.g. toric code, color code
 - 2. Information is encoded in nonlocal degrees of freedom



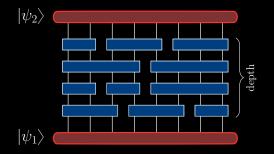
- Defining property: Ground space properties are robust to any small local perturbations
 - 1. Ground space is a quantum code! e.g. toric code, color code
 - 2. Information is encoded in nonlocal degrees of freedom
 - 3. Robust to local errors



- Defining property: Ground space properties are robust to any small local perturbations
 - 1. Ground space is a quantum code! e.g. toric code, color code
 - 2. Information is encoded in nonlocal degrees of freedom
 - 3. Robust to local errors
 - 4. Often ground space degeneracy depends on boundary conditions (e.g. genus of surface)

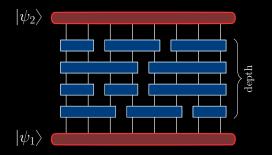
Ground states of topologically ordered systems

Def: $|\psi_1\rangle\sim|\psi_2\rangle$ (belong to same phase) iff they are related by a constant depth unitary circuit



Ground states of topologically ordered systems

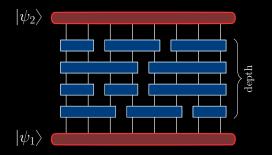
Def: $|\psi_1\rangle\sim|\psi_2\rangle$ (belong to same phase) iff they are related by a constant depth unitary circuit



• Trivial phase = equivalence class of a product state

Ground states of topologically ordered systems

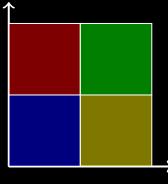
Def: $|\psi_1\rangle\sim|\psi_2\rangle$ (belong to same phase) iff they are related by a constant depth unitary circuit



- Trivial phase = equivalence class of a product state
- Topologically ordered \implies not equivalent to a product state.

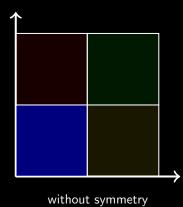
• Physical systems often have symmetries (e.g. invariance under spin flip $S = \bigotimes_{\nu} X_{\nu}$) that give rise to richer physics

• Physical systems often have symmetries (e.g. invariance under spin flip $S = \bigotimes_{\nu} X_{\nu}$) that give rise to richer physics

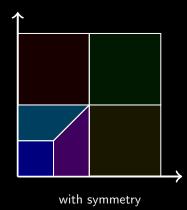


without symmetry

• Physical systems often have symmetries (e.g. invariance under spin flip $S = \bigotimes_{v} X_{v}$) that give rise to richer physics

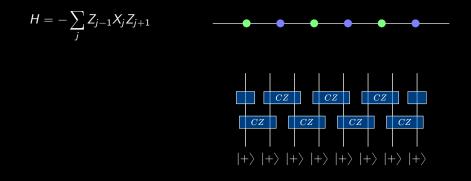


• Physical systems often have symmetries (e.g. invariance under spin flip $S = \bigotimes_{\nu} X_{\nu}$) that give rise to richer physics

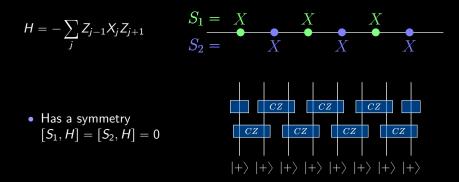


• Easiest example: 1D cluster state global onsite symmetry.

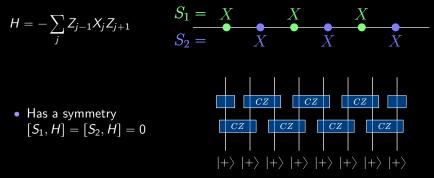
• Easiest example: 1D cluster state global onsite symmetry.



• Easiest example: 1D cluster state global onsite symmetry.

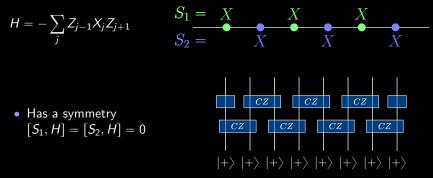


• Easiest example: 1D cluster state global onsite symmetry.



No constant depth symmetric circuit can prepare the cluster state from a product state

• Easiest example: 1D cluster state global onsite symmetry.

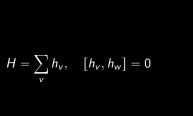


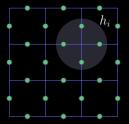
No constant depth symmetric circuit can prepare the cluster state from a product state

Def $|\psi\rangle$ is SPT ordered if no symmetric constant depth circuit can map it to a product state, unless the symmetry is broken

Generalized SPT models in *d*-dimensions

• A broad class of SPT models in *d* dimensions are the so-called group cohomology models of Chen-Gu-Liu-Wen 13

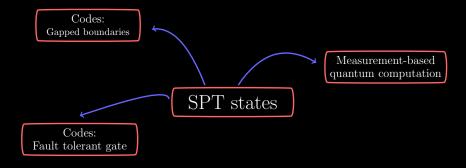




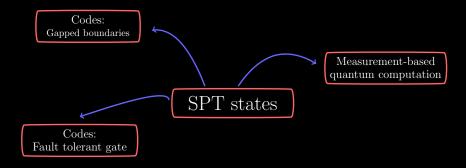
• Has a global symmetry that acts onsite

$$S(g) = \prod_{\text{sites}} u(g), \qquad [S(g), H] = 0, \qquad g \in G$$

Applications of SPT order

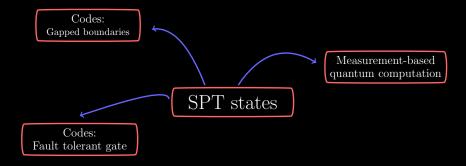


Applications of SPT order



• Question: What about all of these at nonzero temperature?

Applications of SPT order

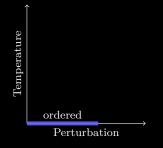


• Question: What about all of these at nonzero temperature?

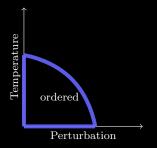
	No sym	Symmetry
T = 0	2D toric code	1D cluster
$T{>}0$	4D toric code	Our work

The problem

• Do any of the ground state properties of an SPT ordered system survive at nonzero temperature?

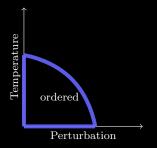


• Do any of the ground state properties of an SPT ordered system survive at nonzero temperature?



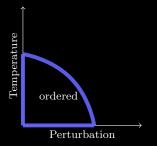
 \implies Thermal resources for MBQC, stable domain walls at $T \ge 0, \ldots$

• Do any of the ground state properties of an SPT ordered system survive at nonzero temperature?



 \implies Thermal resources for MBQC, stable domain walls at $T \ge 0, \ldots$

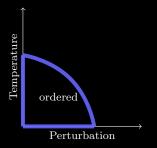
• Do any of the ground state properties of an SPT ordered system survive at nonzero temperature?



 \implies Thermal resources for MBQC, stable domain walls at $\mathcal{T} \geqslant 0, \, \dots$ $\underline{Our \ results}$

1. We rule out thermal stability of a large class of SPT models.

• Do any of the ground state properties of an SPT ordered system survive at nonzero temperature?



 \implies Thermal resources for MBQC, stable domain walls at $T \ge 0, \ldots$

<u>Our results</u>

- 1. We rule out thermal stability of a large class of SPT models.
- 2. Prove thermal SPT ordering of the 3D cluster model
 - Computational aspects of this ordering

Defining SPT order at T > 0

• Let H be a Hamiltonian with some symmetry S

Defining SPT order at T>0

- Let H be a Hamiltonian with some symmetry S
- We consider the Gibbs ensemble of H at $eta=T^{-1}$

$$\rho(\beta) = rac{e^{-eta H}}{\operatorname{Tr} e^{-eta H}}$$

Defining SPT order at T > 0

- Let H be a Hamiltonian with some symmetry S
- We consider the Gibbs ensemble of H at $eta=T^{-1}$

$$\rho(\beta) = rac{\mathrm{e}^{-\beta H}}{\mathrm{Tr}\,\mathrm{e}^{-\beta H}}$$

• Product state \rightarrow classical ensemble e.g. of $H_{\rm cl} = -\sum_{\nu} X_{\nu}$

Defining SPT order at T > 0

- Let H be a Hamiltonian with some symmetry S
- We consider the Gibbs ensemble of H at $\beta = T^{-1}$

$$\rho(\beta) = \frac{e^{-\beta H}}{\operatorname{Tr} e^{-\beta H}}$$

• Product state \rightarrow classical ensemble e.g. of $H_{cl} = -\sum_{v} X_{v}$

```
Def We say \rho is (r, \epsilon) SPT-trivial if
```

$$\left\|
ho - \operatorname{Tr}_{\mathcal{H}'} \left(U
ho_{cl} U^{\dagger}
ight) \right\|_{1} < \epsilon,$$

- $\rho_{\rm cl}$ is the Gibbs state of a classical Hamiltonian on an enlarged space
- U is a symmetric circuit of depth r
- \mathcal{H}' is the ancillary space

First result: instability of global onsite models

Result 1: Theorem: For any T>0, SPT models protected by global *onsite* symmetries are not thermally robust, i.e., they are (r, ϵ) SPT-trivial for

•
$$r = \mathcal{O}(\log^{\frac{d+1}{d}}(L))$$

• $\epsilon = \operatorname{poly}^{-1}(L)$

where L is linear size of a d dimensional lattice.

First result: instability of global onsite models

Result 1: Theorem: For any T>0, SPT models protected by global *onsite* symmetries are not thermally robust, i.e., they are (r, ϵ) SPT-trivial for

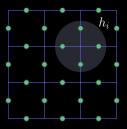
•
$$r = \mathcal{O}(\log^{\frac{d+1}{d}}(L))$$

• $\epsilon = \operatorname{poly}^{-1}(L)$

where L is linear size of a d dimensional lattice.

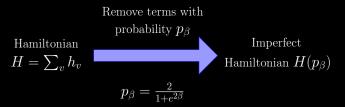
 \rightarrow Proof for the class of models described by group cohomology

$$H = \sum_{\mathbf{v}} h_{\mathbf{v}}, \quad [h_{\mathbf{v}}, h_{\mathbf{w}}] = 0$$

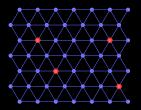


• First technical tool - approximation by 'imperfect Hamiltonian' Hastings 11, Siva-Yoshida 16

 First technical tool - approximation by 'imperfect Hamiltonian' Hastings 11, Siva-Yoshida 16



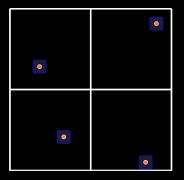
Ground space of *H*(*p_β*) approximates the Gibbs state of *H* up to poly⁻¹(*L*) error



• Second technical tool: local disentangler

	۰
•	
٩	
	۹

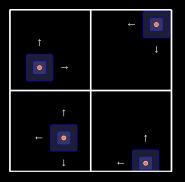
• Second technical tool: local disentangler



• Can construct a symmetric disentangler near each missing term, e.g. for qubits

 $\mathcal{D}_v: h_v \mapsto X_v$

• Second technical tool: local disentangler



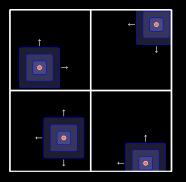
• Can construct a symmetric disentangler near each missing term, e.g. for qubits

 $\mathcal{D}_v: h_v \mapsto X_v$

...and continue:

$$\mathcal{D}: h_{v'} \mapsto X_{v'}$$

• Second technical tool: local disentangler



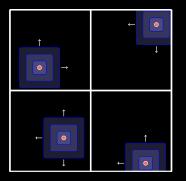
• Can construct a symmetric disentangler near each missing term, e.g. for qubits

 $\overline{\mathcal{D}_v:h_v}\mapsto X_v$

...and continue:

$$\mathcal{D}: h_{v'} \mapsto X_{v'}$$

• Second technical tool: local disentangler



• Can construct a symmetric disentangler near each missing term, e.g. for qubits

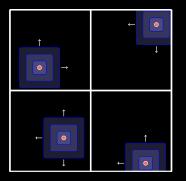
 $\mathcal{D}_{v}:h_{v}\mapsto X_{v}$

...and continue:

$$\mathcal{D}:h_{v'}\mapsto X_{v'}$$

• High probability of a missing term in each $\log^{\frac{1}{2}}(L) \times \log^{\frac{1}{2}}(L)$ region

• Second technical tool: local disentangler



 Can construct a symmetric disentangler near each missing term, e.g. for qubits

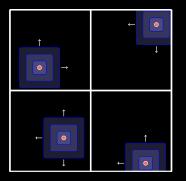
 $\mathcal{D}_{v}:h_{v}\mapsto X_{v}$

...and continue:

$$\mathcal{D}:h_{v'}\mapsto X_{v'}$$

- High probability of a missing term in each $\log^{\frac{1}{2}}(L) \times \log^{\frac{1}{2}}(L)$ region
- $\mathcal{O}(\log(L))$ spins to disentangle with gates of range $\leq \mathcal{O}(\log^{\frac{1}{2}}(L))$

• Second technical tool: local disentangler



• Can construct a symmetric disentangler near each missing term, e.g. for qubits

 $\mathcal{D}_v: h_v \mapsto X_v$

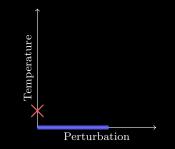
...and continue:

$$\mathcal{D}: h_{v'} \mapsto X_{v'}$$

- High probability of a missing term in each $\log^{\frac{1}{2}}(L) \times \log^{\frac{1}{2}}(L)$ region
- $\mathcal{O}(\log(L))$ spins to disentangle with gates of range $\leq \mathcal{O}(\log^{\frac{1}{2}}(L))$
- This gives a low-depth preparation of the Gibbs ensemble.

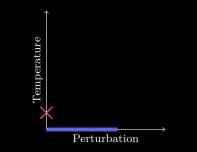
Instability of SPT models

• The group cohomology models completely classify SPT phases that are protected by global onsite symmetries in *d* = 1,2



Instability of SPT models

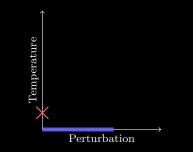
• The group cohomology models completely classify SPT phases that are protected by global onsite symmetries in *d* = 1,2



Instability of the associated computational structures at T>0?

Instability of SPT models

• The group cohomology models completely classify SPT phases that are protected by global onsite symmetries in *d* = 1,2



- Instability of the associated computational structures at T>0?
- Beyond group cohomology?

Second result

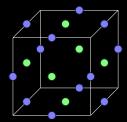
• The existence of thermally stable SPT order

Second result

• The existence of thermally stable SPT order

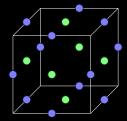
Result 2: The Raussendorf-Bravyi-Harrington (RBH) cluster model in 3D belongs to a thermally stable SPT phase for $0 \le T < T_c$

• Underpins the fault-tolerant, topological measurement based scheme of Raussendorf-Harrington-Goyal 06



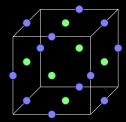
• Underpins the fault-tolerant, topological measurement based scheme of Raussendorf-Harrington-Goyal 06

• Very high threshold scheme at \sim 0.75 %



• Underpins the fault-tolerant, topological measurement based scheme of Raussendorf-Harrington-Goyal 06

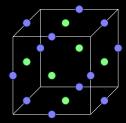
• Very high threshold scheme at \sim 0.75 %



• Parts of the computation work thermally up to a critical temperature but there is no thermodynamic phase transition!

• Underpins the fault-tolerant, topological measurement based scheme of Raussendorf-Harrington-Goyal 06

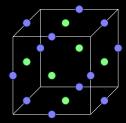
• Very high threshold scheme at \sim 0.75 %



- Parts of the computation work thermally up to a critical temperature but there is no thermodynamic phase transition!
- What underpins the thermal stability/high threshold?

• Underpins the fault-tolerant, topological measurement based scheme of Raussendorf-Harrington-Goyal 06

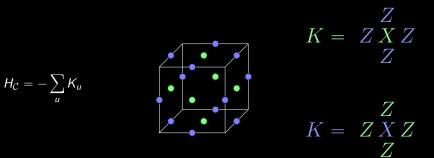
• Very high threshold scheme at \sim 0.75 %



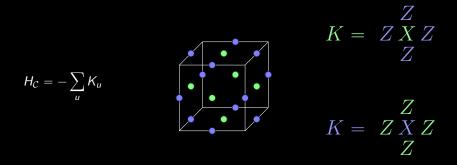
- Parts of the computation work thermally up to a critical temperature but there is no thermodynamic phase transition!
- What underpins the thermal stability/high threshold?

 \implies Lets explore in the context of SPT phases!

• Cubic lattice with qubits on edges and faces - RBH 05

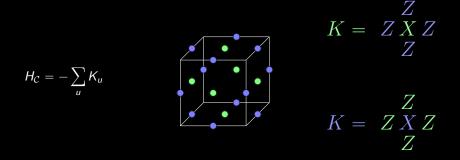


• Cubic lattice with qubits on edges and faces - RBH 05



• Unique ground state: $K_u |\psi_c\rangle = |\psi_c\rangle$

• Cubic lattice with qubits on edges and faces - RBH 05

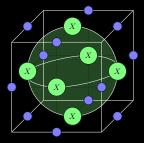


- Unique ground state: $K_u \ket{\psi_{\mathcal{C}}} = \ket{\psi_{\mathcal{C}}}$
- Constant depth preparation: $|\psi_{\mathcal{C}}\rangle = \prod_{\langle u,w \rangle} CZ_{u,w} |+\rangle^{N}$

Generalized symmetries

• Generalized symmetry: $\mathbb{Z}_2 \times \mathbb{Z}_2$ 1-form symmetry.

 $S_{\mathcal{M}}(g) = \prod_{u \in \mathcal{M}} X_u, \qquad \mathcal{M} \text{ a 2-dim surface}$

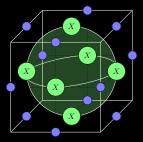


$$K = \begin{array}{c} Z \\ Z \\ Z \end{array}$$
$$[H, S_{\mathcal{M}}(g)] = 0$$

Generalized symmetries

• Generalized symmetry: $\mathbb{Z}_2 \times \mathbb{Z}_2$ 1-form symmetry.

 $S_{\mathcal{M}}(g) = \prod_{u \in \mathcal{M}} X_u, \qquad \mathcal{M} \text{ a 2-dim surface}$

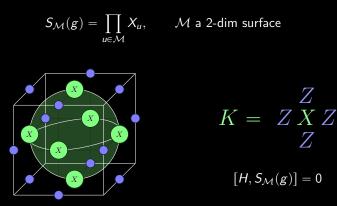


 $K = \begin{array}{c} Z \\ Z \\ Z \end{array}$ $[H, S_{\mathcal{M}}(g)] = 0$

• A symmetry for each sublattice

Generalized symmetries

• Generalized symmetry: $\mathbb{Z}_2 \times \mathbb{Z}_2$ 1-form symmetry.



- A symmetry for each sublattice
- Operators naturally arise in error correction for the topological MBQC scheme

Thermal SPT in the RBH model

Result 2: There exists a temperature T_c such that the Gibbs state of the RBH model is SPT ordered under this 1-form symmetry for $0 \leq T < T_c$.

Thermal SPT in the RBH model

Result 2: There exists a temperature T_c such that the Gibbs state of the RBH model is SPT ordered under this 1-form symmetry for $0 \leq T < T_c$.

- Two ways of proving this:
 - 1. Explicit order parameters

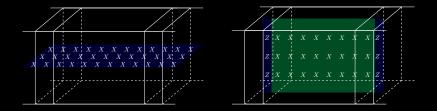
2. Gauging the model

Thermal SPT in the RBH model

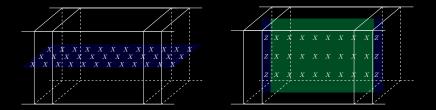
Result 2: There exists a temperature T_c such that the Gibbs state of the RBH model is SPT ordered under this 1-form symmetry for $0 \leq T < T_c$.

- Two ways of proving this:
 - 1. Explicit order parameters
 - → Measurement based quantum computation and error correction
 - 2. Gauging the model
 - \implies Domain wall in quantum error correcting code

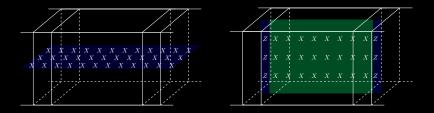
Sheet order parameters: symmetry operators with 'twisted boundaries'



- Sheet order parameters: symmetry operators with 'twisted boundaries'
- Allow for some error correction in the thermal state

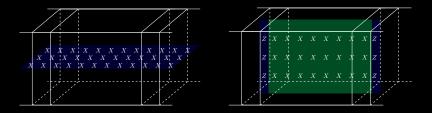


- Sheet order parameters: symmetry operators with 'twisted boundaries'
- Allow for some error correction in the thermal state



 If ρ_{triv} is (r, ε)-trivial with r < L/2, then the expectation value of these membrane operators is *small*

- Sheet order parameters: symmetry operators with 'twisted boundaries'
- Allow for some error correction in the thermal state



- If ρ_{triv} is (r, ε)-trivial with r < L/2, then the expectation value of these membrane operators is *small*
- Compare with

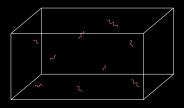
$$\langle \overline{XX} \rangle + \langle \overline{ZZ} \rangle \leqslant 1$$

for product states

• Error correction can maximize the expectation value of the RBH thermal state with these membranes

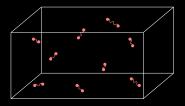
- Error correction can maximize the expectation value of the RBH thermal state with these membranes
- Error correction = 'symmetrizing': $S_{\mathcal{M}}(g) = 1$

- Error correction can maximize the expectation value of the RBH thermal state with these membranes
- Error correction = 'symmetrizing': $S_{\mathcal{M}}(g) = 1$



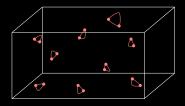
1. Excitations are string like objects

- Error correction can maximize the expectation value of the RBH thermal state with these membranes
- Error correction = 'symmetrizing': $S_{\mathcal{M}}(g) = 1$



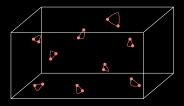
- 1. Excitations are string like objects
- 2. Syndrome = boundaries of strings

- Error correction can maximize the expectation value of the RBH thermal state with these membranes
- Error correction = 'symmetrizing': $S_{\mathcal{M}}(g) = 1$



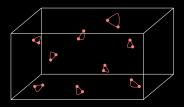
- 1. Excitations are string like objects
- 2. Syndrome = boundaries of strings
- 3. Apply correction map to return to +1-eigenspace of 1-form operators

- Error correction can maximize the expectation value of the RBH thermal state with these membranes
- Error correction = 'symmetrizing': $S_{\mathcal{M}}(g) = 1$



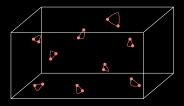
- 1. Excitations are string like objects
- 2. Syndrome = boundaries of strings
- 3. Apply correction map to return to +1-eigenspace of 1-form operators
- Correction succeeds if no homologically nontrivial excitations

- Error correction can maximize the expectation value of the RBH thermal state with these membranes
- Error correction = 'symmetrizing': $S_{\mathcal{M}}(g) = 1$



- 1. Excitations are string like objects
- 2. Syndrome = boundaries of strings
- 3. Apply correction map to return to +1-eigenspace of 1-form operators
- Correction succeeds if no homologically nontrivial excitations
- Closed loops that are boundaries commute with membrane operators!

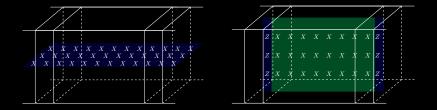
- Error correction can maximize the expectation value of the RBH thermal state with these membranes
- Error correction = 'symmetrizing': $S_{\mathcal{M}}(g) = 1$



- 1. Excitations are string like objects
- 2. Syndrome = boundaries of strings
- 3. Apply correction map to return to +1-eigenspace of 1-form operators
- Correction succeeds if no homologically nontrivial excitations
- Closed loops that are boundaries commute with membrane operators!
- This protocol succeeds below T_c due to string tension of excitations

Operational features

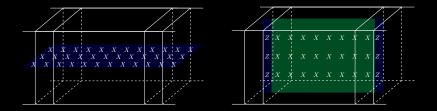
 Operationally: sheet order parameter quantifies the ability to distil maximally entangled pairs (encoded in toric codes) using single qubit measurements



$$\langle \overline{X}\overline{X} \rangle = \langle \overline{Z}\overline{Z} \rangle = 1$$

Operational features

 Operationally: sheet order parameter quantifies the ability to distil maximally entangled pairs (encoded in toric codes) using single qubit measurements



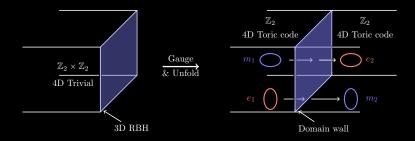
$$\langle \overline{X}\overline{X} \rangle = \langle \overline{Z}\overline{Z} \rangle = 1$$

 Definition of SPT is protocol independent as one can use optimal decoder i.e. maximum likelihood decoding

Briefly: Generalized gauging

• Can define a 4D system with boundary, that is 1-form symmetric

 $H = H_{\rm bulk}^{4D} + H_{\rm boundary}^{3D}$



- Gauging gives 4D toric code with domain wall:
 - Exchanges 1D loop-like electric and magnetic excitations

 $e_1 \leftrightarrow m_2 \qquad m_1 \leftrightarrow e_2$

Conclusion: in this talk

- 1. Thermal fragility of SPT models protected by global onsite symmetries
- 2. Robustness of SPT in the 3D cluster scheme
- 3. Computational aspects (distilling entanglement, fault tolerant gates, error correction)
 - $\implies {\sf Usefulness of SPT for measurement based quantum computation with 1-form symmetry}$
 - Steps toward understanding what is possible: thermally stable computational phases of matter

Further questions

- 1. The relationship between thermal SPT non triviality and computational power (in MBQC)
 - \implies Analogous to the question of thermal topological order and its relationship to self-correcting quantum memories
- 2. Interesting topological defects in 3D
- 3. Symmetry principles for the single-shot error correction in 3D gauge color code
- 4. More models: interplay with transversality, symmetry enriched topological phases